Inversion problem in measure and Fourier-Stieltjes algebras

Przemysław Ohrysko
(joint work with Mateusz Wasilewski)

Chalmers University of Technology and the University of Gothenburg
Basic definitions

Let G be a locally compact Abelian group with the dual \hat{G} and let $M(G)$ denote the Banach algebra of all complex-valued Borel regular measures on G equipped with the total variation norm and the convolution product. The Gelfand space of $M(G)$ (the set of all multiplicative - linear functionals endowed with the weak* topology) will be abbreviated $\triangle(M(G))$.

The Fourier-Stieltjes transform for $\gamma \in \hat{G}$ and $\mu \in M(G)$ we define $\hat{\mu}(\gamma) = \int_G \gamma(t) d\mu(t)$. Since the convolution is transferred to the pointwise product via Fourier-Stieltjes transform it is clear that \hat{G} is canonically embedded into $\triangle(M(G))$.

The Gelfand transform for $\mu \in M(G)$ we define the Gelfand transform of μ as a function $\hat{\mu} : \triangle(M(G)) \to \mathbb{C}$ given by the formula $\hat{\mu}(\phi) := \phi(\mu)$. We treat the Fourier-Stieltjes transform as the restriction of the Gelfand transform to \hat{G}.

Ohrysko (Chalmers)
Basic definitions

Let G be a locally compact Abelian group with the dual \hat{G} and let $M(G)$ denote the Banach algebra of all complex-valued Borel regular measures on G equipped with the total variation norm and the convolution product. The Gelfand space of $M(G)$ (the set of all multiplicative linear functionals endowed with the weak* topology) will be abbreviated $\triangle(M(G))$.

The Fourier-Stieltjes transform

For $\gamma \in \hat{G}$ and $\mu \in M(G)$ we define $\widehat{\mu}(\gamma) = \int_G \gamma(-t) d\mu(t)$. Since the convolution is transferred to the pointwise product via Fourier-Stieltjes transform it is clear that \hat{G} is canonically embedded into $\triangle(M(G))$.
Basic definitions

Let G be a locally compact Abelian group with the dual \hat{G} and let $M(G)$ denote the Banach algebra of all complex-valued Borel regular measures on G equipped with the total variation norm and the convolution product. The Gelfand space of $M(G)$ (the set of all multiplicative linear functionals endowed with the weak* topology) will be abbreviated $\triangle(M(G))$.

The Fourier-Stieltjes transform

For $\gamma \in \hat{G}$ and $\mu \in M(G)$ we define $\hat{\mu}(\gamma) = \int_G \gamma(-t) d\mu(t)$.
Since the convolution is transferred to the pointwise product via Fourier-Stieltjes transform it is clear that \hat{G} is canonically embedded into $\triangle(M(G))$.

The Gelfand transform

For $\mu \in M(G)$ we define the Gelfand transform of μ as a function $\hat{\mu} : \triangle(M(G)) \rightarrow \mathbb{C}$ given by the formula $\hat{\mu}(\varphi) := \varphi(\mu)$. We treat the Fourier-Stieltjes transform as the restriction of the Gelfand transform to \hat{G}.
I will discuss two problems proposed by N. Nikolski in the paper 'In search of the invisible spectrum'.

Let $\mu \in M(G)$ satisfy $\|\mu\| \leq 1$ and $|\hat{\mu}(\gamma)| \geq \delta$ for every $\gamma \in \hat{G}$ where $\delta > 0$ is fixed.

Problem 1 (qualitative)
What is the minimal $\delta_0 > 0$ such that for every $\delta > \delta_0$ the measure μ is automatically invertible?

Problem 2 (quantitative)
How can we estimate the norm of the inverse for $\delta > \delta_0$?

Remark
These problems are non-trivial because of the Wiener-Pitt phenomenon - the existence of non-invertible measures with Fourier-Stieltjes transforms bounded away from zero.
Statements of the problems

I will discuss two problems proposed by N. Nikolski in the paper ’In search of the invisible spectrum’.
Let $\mu \in M(G)$ satisfy $\|\mu\| \leq 1$ and $|\hat{\mu}(\gamma)| \geq \delta$ for every $\gamma \in \hat{G}$ where $\delta > 0$ is fixed.

Problem 1 (qualitative)
What is the minimal $\delta_0 > 0$ such that for every $\delta > \delta_0$ the measure μ is automatically invertible?
Statements of the problems

I will discuss two problems proposed by N. Nikolski in the paper 'In search of the invisible spectrum'.

Let $\mu \in M(G)$ satisfy $\|\mu\| \leq 1$ and $|\hat{\mu}(\gamma)| \geq \delta$ for every $\gamma \in \hat{G}$ where $\delta > 0$ is fixed.

Problem 1 (qualitative)
What is the minimal $\delta_0 > 0$ such that for every $\delta > \delta_0$ the measure μ is automatically invertible?

Problem 2 (quantitative)
How can we estimate the norm of the inverse for $\delta > \delta_0$?
Statements of the problems

I will discuss two problems proposed by N. Nikolski in the paper ’In search of the invisible spectrum’.
Let $\mu \in M(G)$ satisfy $\|\mu\| \leq 1$ and $|\hat{\mu}(\gamma)| \geq \delta$ for every $\gamma \in \hat{G}$ where $\delta > 0$ is fixed.

Problem 1 (qualitative)
What is the minimal $\delta_0 > 0$ such that for every $\delta > \delta_0$ the measure μ is automatically invertible?

Problem 2 (quantitative)
How can we estimate the norm of the inverse for $\delta > \delta_0$?

Remark
These problems are non-trivial because of the Wiener-Pitt phenomenon - the existence of non-invertible measures with Fourier-Stieltjes transforms bounded away from zero.
The solution of Problem 1 (qualitative)

The first problem has a complete solution.
The solution of Problem 1 (qualitative)

The first problem has a complete solution.

Main theorem (qualitative)

Let $\mu \in M(G)$ satisfy $\|\mu\| \leq 1$ and $|\hat{\mu}| \geq \delta > \frac{1}{2}$. Then μ is invertible.
The solution of Problem 1 (qualitative)

The first problem has a complete solution.

Main theorem (qualitative)

Let $\mu \in \mathcal{M}(G)$ satisfy $\|\mu\| \leq 1$ and $|\hat{\mu}| \geq \delta > \frac{1}{2}$. Then μ is invertible.

Sharpness of the main theorem

This theorem is sharp for any non-discrete locally compact Abelian group: any continuous (non-atomic) probability measure with $\hat{\mu}(\hat{G}) \subset \mathbb{R}_+$ and $\sigma(\mu) = \overline{D}$ leads to the sharpness of this theorem - it is enough to consider $\nu := \frac{1}{2} \mu + \frac{1}{2} \delta_0$. Then $\|\nu\| = 1$, $|\hat{\nu}| \geq \frac{1}{2}$ but ν is not invertible as $0 \in \sigma(\nu) := \{ \lambda \in \mathbb{C} : \nu - \lambda \delta_0 \text{ is not invertible} \}$.
In his paper N. Nikolski gave the following partial solution to the second problem.

The proof is based on the following lemma.
The second problem

In his paper N. Nikolski gave the following partial solution to the second problem.

Partial solution of the second problem by N. Nikolski

Let $\mu \in M(G)$ satisfy $\|\mu\| \leq 1$ and $|\hat{\mu}| \geq \delta > \frac{1}{\sqrt{2}}$. Then μ is invertible and $\|\mu^{-1}\| \leq \frac{1}{2\delta^2 - 1}$.

The proof is based on the following lemma.
The second problem

In his paper N. Nikolski gave the following partial solution to the second problem.

Partial solution of the second problem by N. Nikolski

Let \(\mu \in M(G) \) satisfy \(\| \mu \| \leq 1 \) and \(|\hat{\mu}| \geq \delta > \frac{1}{\sqrt{2}} \). Then \(\mu \) is invertible and \(\| \mu^{-1} \| \leq \frac{1}{2\delta^2 - 1} \).

The proof is based on the following lemma.

Lemma

Let \(\mu \in M(G) \) satisfy \(\| \mu \| \leq 1 \) and let \(\mu = \lambda \delta_0 + \nu \) where \(\nu(\{0\}) = 0 \) and \(|\lambda| \geq \delta > \frac{1}{2} \). Then \(\mu \) is invertible and \(\| \mu^{-1} \| \leq \frac{1}{2\delta - 1} \).
Elementary fact

In order to improve the result of Nikolski we need first to prove an elementary fact.

\[
\text{Fact on real numbers}
\]

Let \((x_n)_{n=1}^{\infty}\) be a non-increasing sequence of positive real numbers satisfying:

\[
\sum_{n=1}^{\infty} x_n \leq 1,
\]

\[
\sum_{n=1}^{\infty} x_n^2 \geq \delta^2 > 1/4.
\]

Then \(x_1 \geq \delta/2\) and \(x_1 + x_2 \geq \delta\).
Elementary fact

In order to improve the result of Nikolski we need first to prove an elementary fact.

Fact on real numbers

Let \((x_n)_{n=1}^{\infty}\) be a non-increasing sequence of positive real numbers satisfying:

\[
\sum_{n=1}^{\infty} x_n \leq 1,
\]

\[
\sum_{n=1}^{\infty} x_n^2 \geq \delta^2 > \frac{1}{4}.
\]

Then

\[
x_1 \geq \delta^2 \text{ and } \quad x_1 + x_2 \geq \delta.
\]
Proof of the elementary fact

First part
To prove the first inequality we simply observe that
\[\delta^2 \leq \sum_{n=1}^{\infty} x_n^2 \leq x_1 \cdot \sum_{n=1}^{\infty} x_n \leq x_1. \]

Second part
For the second one we proceed as follows:
\[\delta^2 \leq \sum_{n=1}^{\infty} x_n^2 = x_1^2 + \sum_{n=2}^{\infty} x_n^2 \leq x_1^2 + x_2 \cdot \sum_{n=2}^{\infty} x_n \leq x_1^2 + x_2 \cdot \left(1 - x_1\right). \]
If \(x_1 \geq \delta \) than we are done and if \(x_1 < \delta \) we are allowed to write the above inequality as \(x_2 \geq \delta^2 - x_1^2 - x_1 \cdot x_1 \). Thus it is enough to verify the quadratic inequality
\[x_1 + \delta^2 - x_2 ^2 - x_2 \cdot x_1 \geq \delta \text{ for } x_1 \in [\delta^2, \delta). \]
Proof of the elementary fact

First part

To proof the first inequality we simple observe that
\[\delta^2 \leq \sum_{n=1}^{\infty} x_n^2 \leq x_1 \cdot \sum_{n=1}^{\infty} x_n \leq x_1. \]
Proof of the elementary fact

First part

To proof the first inequality we simple observe that
\[\delta^2 \leq \sum_{n=1}^{\infty} x_n^2 \leq x_1 \cdot \sum_{n=1}^{\infty} x_n \leq x_1. \]

Second part

For the second one we proceed as follows:

\[\delta^2 \leq \sum_{n=1}^{\infty} x_n^2 = x_1^2 + \sum_{n=2}^{\infty} x_n^2 \leq x_1^2 + x_2 \sum_{n=2}^{\infty} x_n \leq x_1^2 + x_2(1-x_1). \]

If \(x_1 \geq \delta \) than we are done and if \(x_1 < \delta \) we are allowed to write the above inequality as \(x_2 \geq \frac{\delta^2 - x_1^2}{1-x_1} \). Thus it is enough to verify the quadratic inequality

\[x_1 + \frac{\delta^2 - x_1^2}{1-x_1} \geq \delta \text{ for } x_1 \in [\delta^2, \delta). \]
Two largest coefficients

Now, we can prove the following theorem which is crucial to proceed further.

Let $\mu \in M(G)$ satisfy $\|\mu\| \leq 1$, $|\hat{\mu}| \geq \delta > \frac{1}{2}$ and let $\mu_d = \sum_{n=1}^{\infty} a_n \tau_n$, where $|a_1| \geq |a_2| \geq ...$ and $\tau_n \in G$.

Then $|a_1| \geq \delta^2$ and $|a_1| + |a_2| \geq \delta$.
Two largest coefficients

Now, we can prove the following theorem which is crucial to proceed further.

On two largest coefficients

Let $\mu \in M(G)$ satisfy $\|\mu\| \leq 1$, $|\hat{\mu}| \geq \delta > \frac{1}{2}$ and let

$$\mu_d = \sum_{n=1}^{\infty} a_n \delta_{\tau_n}, \text{ where } |a_1| \geq |a_2| \geq \ldots \text{ and } \tau_n \in G.$$

Then $|a_1| \geq \delta^2$ and $|a_1| + |a_2| \geq \delta$.
Proof of the fact on two largest coefficients

We check the assumptions of the lemma.
Proof of the fact on two largest coefficients

We check the assumptions of the lemma.

First assumption

This is clear as \(\sum_{n=1}^{\infty} |a_n| = \|\mu_d\| \leq \|\mu\| \leq 1 \)
Proof of the fact on two largest coefficients

We check the assumptions of the lemma.

First assumption

This is clear as \(\sum_{n=1}^{\infty} |a_n| = \|\mu_d\| \leq \|\mu\| \leq 1 \)

Second assumption

By G-W theorem \((\hat{\mu}_d(\hat{G} \subset \hat{\mu}(\hat{G}))\) we have \(|\hat{\mu}_d| \geq \delta\) and since \(\hat{G}\) is dense in \(b\hat{G} = \hat{G}_d\) we get from Parseval’s identity:

\[
\|\mu_d\|_{L^2(G_d)}^2 = \sum_{n=1}^{\infty} |a_n|^2 = \int_{b\hat{G}} |\hat{\mu}_d|^2 \, dx \geq \delta^2.
\]
The main theorem

Let $\mu \in M(G)$ satisfy $\|\mu\| \leq 1$ and $|\hat{\mu}(\gamma)| > \delta > 1$ for every $\gamma \in \hat{G}$. Let $\mu_d = \sum_{n=1}^{\infty} a_n \delta^{\tau_n}$, $|a_1| \geq |a_2| \geq \ldots$

If the order of element $\tau_2 - \tau_1$ is infinite then $|a_1| \geq 1 - \delta + \sqrt{17 \delta^2 + 6 \delta - 7} \geq 3 \delta - \frac{1}{2}$ and $\|\mu - 1\| \leq \frac{1}{3} \delta - \frac{2}{3}$ for $\delta > \frac{2}{3}$, $\|\mu - 1\| \leq 2 - (1 + \delta) + \sqrt{17 \delta^2 + 6 \delta - 7}$ for $\delta > -1 + \sqrt{\frac{33}{8}} \approx 0.593$.

Ohrysko (Chalmers) Inversion problem in measure and Fourier
The main theorem

Let $\mu \in M(G)$ satisfy $\|\mu\| \leq 1$ and $|\hat{\mu}(\gamma)| > \delta > \frac{1}{2}$ for every $\gamma \in \hat{G}$. Let

$$\mu_d = \sum_{n=1}^{\infty} a_n \delta_{\tau_n}, \quad |a_1| \geq |a_2| \geq \ldots.$$

If the order of element $\tau_2 - \tau_1$ is infinite then

$$|a_1| \geq \frac{1 - \delta + \sqrt{17\delta^2 + 6\delta - 7}}{4} \geq \frac{3}{2} \delta - \frac{1}{2} \quad \text{and}$$

$$\|\mu^{-1}\| \leq \frac{1}{3\delta - 2} \quad \text{for} \ \delta > \frac{2}{3},$$

$$\|\mu^{-1}\| \leq \frac{2}{-(1 + \delta) + \sqrt{17\delta^2 + 6\delta - 7}} \quad \text{for} \ \delta > \frac{-1 + \sqrt{33}}{8} \approx 0.593.$$
Proof of the main theorem

We consider the following measure $\nu := c \mu \ast \delta_{-\tau_1}$ where $ca_1 = |a_1|$ and observe that we are allowed to work with ν instead of μ. Then

$$\nu_d = |a_1| \delta_0 + ca_2 \delta_{\tau_2 - \tau_1} + \rho,$$

where $\rho := c \sum_{n=3}^{\infty} a_n \delta_{\tau_n - \tau_1}$.

As $\tau_2 - \tau_1$ has infinite order we pick a sequence $\gamma_n \in \hat{G}$ such that $\hat{\delta}_{\tau_2 - \tau_1}(\gamma_n)ca_2 \to -|a_2|$. By G-W theorem:

$$||a_1| + ca_2 \hat{\delta}_{\tau_2 - \tau_1}(\gamma_n) + \hat{\rho}(\gamma_n)|| \geq \delta.$$

Of course, $||\rho|| = ||\mu_d|| - |a_1| - |a_2|$ and passing with n to infinity we get $||\mu_d|| - 2|a_2| \geq \delta$.
The inequality $\|\mu_d\| - 2|a_2| \geq \delta$ is equivalent to $|a_2| \leq \frac{\|\mu_d\| - \delta}{2} \leq \frac{1 - \delta}{2}$. Since $|a_1| + |a_2| \geq \delta$, we obtain $|a_1| \geq \frac{3}{2}\delta - \frac{1}{2}$ which proves the first assertion.

In order to get a more refined bound we recall from the proof of the elementary fact that:

$$|a_2| \geq \frac{\delta^2 - |a_1|^2}{1 - |a_1|}.$$

As $|a_2| \leq \frac{1 - \delta}{2}$ we get (again) a quadratic inequality on $|a_1|$ whose verification finishes the proof of the theorem.
It is worth to state the full formulation for the most classical case of $G = \mathbb{Z}$.

$\|f\|_{A(T)} \leq 1$ and $|f(t)| \geq \delta > \frac{1}{2}$ for every $t \in T$. Then $\|f\|_{A(T)} \leq \frac{1}{3} \delta - \frac{2}{\delta + 2} + \frac{\sqrt{17}}{\delta^{2}} + \frac{6}{\delta} - \frac{7}{\delta - 1} \approx 0.593$.

Ohrysko (Chalmers)
It is worth to state the full formulation for the most classical case of $G = \mathbb{Z}$.

Let $f \in A(\mathbb{T})$ satisfy $\|f\|_{A(\mathbb{T})} \leq 1$ and $|f(t)| \geq \delta > \frac{1}{2}$ for every $t \in \mathbb{T}$. Then

$$\left\| \frac{1}{f} \right\|_{A(\mathbb{T})} \leq \frac{1}{3\delta - 2} \quad \text{for } \delta > \frac{2}{3},$$

$$\left\| \frac{1}{f} \right\|_{A(\mathbb{T})} \leq \frac{2}{-(1 + \delta) + \sqrt{17\delta^2 + 6\delta - 7}} \quad \text{for } \delta > \frac{-1 + \sqrt{33}}{8} \approx 0.593.$$
As it was shown before $\delta_0 = \frac{1}{2}$ is a critical constant for invertibility on any non-discrete group. But for discrete case we have the following result due to N. Nikolsky:
Remarks on the condition $\delta > \frac{1}{2}$

As it was shown before $\delta_0 = \frac{1}{2}$ is a critical constant for invertibility on any non-discrete group. But for discrete case we have the following result due to N. Nikolsky:

Discrete groups

Let G be a an infinite discrete group and let $\delta \leq \frac{1}{2}$. Then

$$\sup\{\|\mu^{-1}\| : \mu \in M(G), \|\mu\| \leq 1, |\hat{\mu}| \geq \delta\} = \infty.$$
Fourier-Stieltjes algebras

Let G be an arbitrary locally compact group (not necessarily Abelian) and let $B(G)$ denote the Fourier-Stieltjes algebra of G. In this setting the first problem of Nikolski can be formulated as follows.

Qualitative problem for Fourier-Stieltjes algebras

Let $f \in B(G)$ satisfy $\|f\| \leq 1$ and $|f(x)| \geq \delta > \delta_0$ for every $x \in G$. What is the minimal value of δ_0 assuring the invertibility of f?
(Weak) almost periodicity

A continuous bounded function on G is called (weakly) almost periodic if the set of all of its translates is precompact in (weak topology) uniform topology, respectively. The set of all such functions will be denoted by $AP(G)$ ($WAP(G)$).

A classical result of Eberlain states that $B(G) \subset WAP(G)$. Moreover, there exists an invariant mean $M \in (WAP(G))^*$ and restricting this mean to $B(G)$ we obtain the following decomposition:

$B(G) = B_c(G) \oplus (B(G) \cap AP(G))$ where

$B_c(G) := \{ f \in B(G) : M(|f|) = 0 \}$.

Ohrysko (Chalmers)
Main result for Fourier-Stieltjes algebras

The solution of the qualitative problem is a direct analogue of the result for measure algebras.

Inspection of the argument for measure algebras readily implies that the only missing part in the present setting is the theorem of Glicksberg and Wik.
Main result for Fourier-Stieltjes algebras

The solution of the qualitative problem is a direct analogue of the result for measure algebras.

Solution of the qualitative problem for Fourier-Stieltjes algebras

Let \(f \in B(G) \) satisfy \(\|f\| \leq 1 \) and \(|f(x)| > \frac{1}{2} \) for every \(x \in G \). Then \(f \) is invertible.

Inspection of the argument for measure algebras readily implies that the only missing part in the present setting is the theorem of Glicksberg and Wik.
Main result for Fourier-Stieltjes algebras

The solution of the qualitative problem is a direct analogue of the result for measure algebras.

Solution of the qualitative problem for Fourier-Stieltjes algebras

Let $f \in B(G)$ satisfy $\|f\| \leq 1$ and $|f(x)| > \frac{1}{2}$ for every $x \in G$. Then f is invertible.

Inspection of the argument for measure algebras readily implies that the only missing part in the present setting is the theorem of Glicksberg and Wik.

Glicksberg-Wik theorem for Fourier-Stieltjes algebras

Let $f \in B(G)$ have the decomposition $f = g + h$ with $g \in B(G) \cap AP(G)$ and $h \in B_c(G)$. Then $g(G) \subset \overline{f(G)}$.
Proof of G-W theorem for Fourier-Stieltjes algebras

Let us fix $\varepsilon > 0$. Without loss of generality, it is enough to show $g(e) \in \overline{f(G)}$. First we prove the existence of distinct group elements $(x_n)_{n=1}^\infty$ such that:

$$\left| h(x_1) \right| < \varepsilon \quad \text{and} \quad \left| h(x_n - x_{n-1}) \right| < \varepsilon \quad \text{for} \quad j < n \quad \text{and} \quad n > 1.$$

Since $h \in B_c(G)$ we clearly have $\inf_{x \in G} |h(x)| = 0$ and we can choose x_1 easily.

Suppose that we have already picked up x_1, \ldots, x_{n-1}.

Ohrysko (Chalmers) Inversion problem in measure and Fourier 18 / 23
Proof of G-W theorem for Fourier-Stieltjes algebras

Let us fix $\varepsilon > 0$. Without loss of generality, it is enough to show $g(e) \in \overline{f(G)}$. First we prove the existence of distinct group elements $(x_n)_{n=1}^{\infty}$ such that:

Special sequence

$|h(x_1)| < \varepsilon$ and $|h(x_n x_j^{-1})| < \varepsilon$ for $j < n$ and $n > 1$.

Since $h \in B_c(G)$ we clearly have $\inf_{x \in G} |h(x)| = 0$ and we can choose x_1 easily.

Suppose that we have already picked up x_1, \ldots, x_{n-1}.
Proof continued

We consider an auxiliary function $u \in B_c(G)$.

As $u \in B_c(G)$ we also have $\inf_{x \in G} |u(x)| = 0$ so we are allowed to choose x_n different from x_1, \ldots, x_{n-1} or $|h(e)| < \varepsilon$ and the argument is finished. Let us define the following set of functions in $B(G) \cap AP(G)$:
Proof continued

We consider an auxiliary function $u \in B_c(G)$.

Auxiliary function

$$u(x) = \sum_{j=1}^{n-1} |h(xx_j^{-1})|^2.$$

As $u \in B_c(G)$ we also have $\inf_{x \in G} |u(x)| = 0$ so we are allowed to choose x_n different from x_1, \ldots, x_{n-1} or $|h(e)| < \varepsilon$ and the argument is finished. Let us define the following set of functions in $B(G) \cap AP(G)$:
We consider an auxiliary function \(u \in B_c(G) \).

Auxiliary function

\[
u(x) = \sum_{j=1}^{n-1} |h(xx_j^{-1})|^2.
\]

As \(u \in B_c(G) \) we also have \(\inf_{x \in G} |u(x)| = 0 \) so we are allowed to choose \(x_n \) different from \(x_1, \ldots, x_{n-1} \) or \(|h(e)| < \varepsilon \) and the argument is finished.

Let us define the following set of functions in \(B(G) \cap AP(G) \):

Set of translates

\[X = \{ g_{x_n} : n \in \mathbb{N} \} \text{ where } g_x(y) = g(xy) \text{ for } x, y \in G. \]
Proof continued 2

By definition, this set is precompact in the uniform topology. Hence there exists a subsequence \((g_{x_n^k})_{k \in \mathbb{N}}\) which is a Cauchy sequence:

In particular,

Finally,
Proof continued 2

By definition, this set is precompact in the uniform topology. Hence there exists a subsequence \((g_{x_{n_k}})_{k \in \mathbb{N}}\) which is a Cauchy sequence:

\[
\|g_{x_{n_{k+1}}} - g_{x_{n_k}}\|_\infty < \varepsilon \text{ for } k > N.
\]

In particular,

Finally,
Proof continued 2

By definition, this set is precompact in the uniform topology. Hence there exists a subsequence \((g_{x_{n_k}})_{k\in\mathbb{N}}\) which is a Cauchy sequence:

Cauchy sequence

\[\|g_{x_{n_k+1}} - g_{x_{n_k}}\|_\infty < \varepsilon \text{ for } k > N.\]

In particular,

Inequality

\[|g_{x_{n_k+1}}(x_n^{-1}) - g_{x_{n_k}}(x_n^{-1})| = |g(x_{n_k+1}x_n^{-1}) - g(e)| < \varepsilon.\]

Finally,
Proof continued 2

By definition, this set is precompact in the uniform topology. Hence there exists a subsequence \((g_{x_{n_k}})_{k \in \mathbb{N}}\) which is a Cauchy sequence:

Cauchy sequence

\[
\|g_{x_{n_k+1}} - g_{x_{n_k}}\|_\infty < \varepsilon \text{ for } k > N.
\]

In particular,

Inequality

\[
|g_{x_{n_k+1}}(x_{n_k}^{-1}) - g_{x_{n_k}}(x_{n_k}^{-1})| = |g(x_{n_k+1}x_{n_k}^{-1}) - g(e)| < \varepsilon.
\]

Finally,

Final inequality

\[
|f(x_{n_k+1}^{-1}x_{n_k}) - g(e)| = |h(x_{n_k+1}^{-1}x_{n_k}) + g(x_{n_k+1}x_{n_k}^{-1}) - g(e)| < 2\varepsilon.
\]
Let $f \in B(G)$ satisfy $\|f\| \leq 1$, $\inf_{x \in G} |f(x)| > \frac{1}{2}$ and let $f = g + h$ with $g \in AP(G) \cap B(G)$ and $h \in B_c(G)$. By the variant of G-W theorem for Fourier-Stieltjes algebras we have $\inf_{x \in G} |g(x)| > \frac{1}{2}$ and since G is dense in $\Delta(A(P(G) \cap B(G))$ we obtain $|\varphi(g)| > \frac{1}{2}$ for every $\varphi \in \Delta(A(P(G) \cap B(G))$. Suppose now that f is not invertible. Then there exists $\varphi_0 \in \Delta(B(G))$ such that $\varphi_0(f) = 0$. This gives $|\varphi_0(g)| = |\varphi_0(h)|$. But $|\varphi_0(g)| > \frac{1}{2}$ and $|\varphi_0(h)| \leq \|h\| \leq 1 - \|g\| \leq 1 - r(g) < \frac{1}{2}$ which is a contradiction.
Let $f \in B(G)$ satisfy $\|f\| \leq 1$ and $\inf_{x \in G} |f(x)| \geq \delta > \frac{1}{\sqrt{2}}$. Then f is invertible and $\|f^{-1}\|_{B(G)} \leq \frac{1}{2\delta^2 - 1}$.
Quantitative result

Generalization of Nikolski’s result

Let \(f \in B(G) \) satisfy \(\| f \| \leq 1 \) and \(\inf_{x \in G} |f(x)| \geq \delta > \frac{1}{\sqrt{2}} \). Then \(f \) is invertible and \(\| f^{-1} \|_{B(G)} \leq \frac{1}{2\delta^2 - 1} \).

Proof

We consider \(|f|^2 = f \cdot \bar{f} \). One can show that \(|f|^2 = m(|f|^2)1 + f_0 \). Since \(|f|^2 \geq \delta^2 > \frac{1}{2} \) we also have \(m(|f|^2) \geq \delta^2 > \frac{1}{2} \) and we are allowed to write down the inverse as an absolutely convergent series.
Thank You for your attention!