Linking the boundary and exponential spectra via the restricted topology

Sonja Mouton1* Robin Harte2

1Stellenbosch University, South Africa

2Trinity College, Dublin, Ireland

Banach Algebras and Applications, University of Manitoba, Winnipeg, Canada
11–18 July 2019
Outline of talk

The exponential spectrum

The boundary spectrum

Motivation: The "thin" and "fat" boundaries

Notation and preliminaries

The restricted topology

Examples

The ω-spectrum

A chain of boundaries

A chain of connected hulls

Final remarks and an application
The exponential spectrum

The boundary spectrum
Outline of talk

- The exponential spectrum
- The boundary spectrum
- Motivation: The “thin” and “fat” boundaries
Outline of talk

- The exponential spectrum
- The boundary spectrum
- Motivation: The “thin” and “fat” boundaries
- Notation and preliminaries
- The restricted topology
Outline of talk

- The exponential spectrum
- The boundary spectrum
- Motivation: The “thin” and “fat” boundaries
- Notation and preliminaries
- The restricted topology
- Examples
Outline of talk

- The exponential spectrum
- The boundary spectrum
- Motivation: The “thin” and “fat” boundaries
- Notation and preliminaries
- The restricted topology
- Examples
- The ω-spectrum
Outline of talk

- The exponential spectrum
- The boundary spectrum
- Motivation: The “thin” and “fat” boundaries
- Notation and preliminaries
- The restricted topology
- Examples
- The ω-spectrum
- A chain of boundaries
- A chain of connected hulls
Outline of talk

- The exponential spectrum
- The boundary spectrum
- Motivation: The “thin” and “fat” boundaries
- Notation and preliminaries
- The restricted topology
- Examples
- The ω-spectrum
- A chain of boundaries
- A chain of connected hulls
- Final remarks and an application
The exponential spectrum

Let A be a complex Banach algebra with unit 1 and A^{-1} the set of all invertible elements of A.

$\text{Exp}(A) = \{ e^{a_1} e^{a_2} \ldots e^{a_n} : n \in \mathbb{N}, a_1, a_2, \ldots, a_n \in A \} = \text{Comp}_A(1, A^{-1})$

The exponential spectrum of $a \in A$ is defined as $\epsilon(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1/\lambda \in \text{Exp}(A) \}$.

If $\sigma(a)$ denotes the spectrum of a and $\eta_{\sigma}(a)$ the connected hull of $\sigma(a)$, then $\sigma(a) \subseteq \epsilon(a) \subseteq \eta_{\sigma}(a)$.

$\epsilon(a)$ is non-empty and compact.
Let A be a complex Banach algebra with unit 1 and A^{-1} the set of all invertible elements of A.

The exponential spectrum of $a \in A$ is defined as $\varepsilon(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1/\lambda \in \text{Exp}(A) \}$. If $\sigma(a)$ denotes the spectrum of a and $\eta \sigma(a)$ the connected hull of $\sigma(a)$, then $\sigma(a) \subseteq \varepsilon(a) \subseteq \eta \sigma(a)$. $\varepsilon(a)$ is non-empty and compact.
Let A be a complex Banach algebra with unit 1 and A^{-1} the set of all invertible elements of A.

$$\text{Exp}(A) = \{ e^{a_1} e^{a_2} \ldots e^{a_n} : n \in \mathbb{N}, \ a_1, a_2, \ldots, a_n \in A \}$$
Let A be a complex Banach algebra with unit 1 and A^{-1} the set of all invertible elements of A.

$$\text{Exp}(A) = \{ e^{a_1} e^{a_2} \ldots e^{a_n} : n \in \mathbb{N}, \ a_1, a_2, \ldots, a_n \in A \}$$

$$= \text{Comp}_A(1, A^{-1})$$
Let A be a complex Banach algebra with unit 1 and A^{-1} the set of all invertible elements of A.

$$\text{Exp}(A) = \{ e^{a_1} e^{a_2} \ldots e^{a_n} : n \in \mathbb{N}, \ a_1, a_2, \ldots, a_n \in A \} = \text{Comp}_A(1, A^{-1})$$

The *exponential spectrum* of $a \in A$ is defined as

$$\varepsilon(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \notin \text{Exp}(A) \}.$$
Let A be a complex Banach algebra with unit 1 and A^{-1} the set of all invertible elements of A.

\[\text{Exp}(A) = \{ e^{a_1} e^{a_2} \ldots e^{a_n} : n \in \mathbb{N}, \ a_1, a_2, \ldots, a_n \in A \} \]

\[= \text{Comp}_A(1, A^{-1}) \]

The *exponential spectrum* of $a \in A$ is defined as

\[\varepsilon(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \notin \text{Exp}(A) \}. \]

If $\sigma(a)$ denotes the spectrum of a and $\eta \sigma(a)$ the connected hull of $\sigma(a)$, then

\[\sigma(a) \subseteq \varepsilon(a) \subseteq \eta \sigma(a). \]
Let A be a complex Banach algebra with unit 1 and A^{-1} the set of all invertible elements of A.

$$\text{Exp}(A) = \{ e^{a_1} e^{a_2} \ldots e^{a_n} : n \in \mathbb{N}, \ a_1, a_2, \ldots, a_n \in A \}$$

$$= \text{Comp}_A(1, A^{-1})$$

The exponential spectrum of $a \in A$ is defined as

$$\varepsilon(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \notin \text{Exp}(A) \}.$$

If $\sigma(a)$ denotes the spectrum of a and $\eta \sigma(a)$ the connected hull of $\sigma(a)$, then

$$\sigma(a) \subseteq \varepsilon(a) \subseteq \eta \sigma(a).$$

$\varepsilon(a)$ is non-empty and compact.
If B is also a (complex, unital) Banach algebra and $T : A \to B$ is a homomorphism,
If B is also a (complex, unital) Banach algebra and $T : A \to B$ is a homomorphism, then the Weyl spectrum of $a \in A$ is

$$\omega_T(a) = \cap \{\sigma(a + c) : c \in N(T)\}.$$
If B is also a (complex, unital) Banach algebra and $T : A \to B$ is a homomorphism, then the Weyl spectrum of $a \in A$ is

$$\omega_T(a) = \cap \{ \sigma(a + c) : c \in N(T) \}.$$

Note that

$$\sigma(Ta) \subseteq \omega_T(a) \subseteq \sigma(a).$$
If B is also a (complex, unital) Banach algebra and $T : A \to B$ is a homomorphism, then the Weyl spectrum of $a \in A$ is

$$\omega_T(a) = \cap\{\sigma(a + c) : c \in N(T)\}.$$ Note that

$$\sigma(Ta) \subseteq \omega_T(a) \subseteq \sigma(a).$$

Robin Harte used the exponential spectrum to prove:

Theorem

If $T : A \to B$ is bounded and has closed range, then

$$\eta\omega_T(a) = \eta\sigma(Ta)$$ for all $a \in A$.

If B is also a (complex, unital) Banach algebra and $T : A \to B$ is a homomorphism, then the Weyl spectrum of $a \in A$ is
\[\omega_T(a) = \cap \{ \sigma(a + c) : c \in N(T) \} \]. Note that
\[\sigma(Ta) \subseteq \omega_T(a) \subseteq \sigma(a) \].

Robin Harte used the exponential spectrum to prove:

Theorem

If $T : A \to B$ is bounded and has closed range, then
\[\eta \omega_T(a) = \eta \sigma(Ta) \] for all $a \in A$.

The key result: If T is bounded and onto, then
\[\varepsilon(Ta) = \cap \{ \varepsilon(a + c) : c \in N(T) \} \] for all $a \in A$.

Mouton, Harte Boundary and exponential spectra, restricted topology
If B is also a (complex, unital) Banach algebra and $T : A \to B$ is a homomorphism, then the Weyl spectrum of $a \in A$ is
\[\omega_T(a) = \cap \{ \sigma(a + c) : c \in N(T) \} \]. Note that \[\sigma(Ta) \subseteq \omega_T(a) \subseteq \sigma(a) \].

Robin Harte used the exponential spectrum to prove:

Theorem

*If $T : A \to B$ is bounded and has closed range, then
\[\eta \omega_T(a) = \eta \sigma(Ta) \] for all $a \in A$.***

The key result: If T is bounded and onto, then
\[\varepsilon(Ta) = \cap \{ \varepsilon(a + c) : c \in N(T) \} \] for all $a \in A$.

Let A be a (complex, unital) Banach algebra and S the set of all non-invertible elements of A. The boundary spectrum of $a \in A$ is defined as

$$S_{\partial}(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \partial S \} = \{ \lambda \in \mathbb{C} : (a - \lambda 1)/\in A - 1 \cup \text{int } S \}.$$

where $\text{int } S$ denotes the topological interior of the set S.

If $\partial \sigma(a)$ denotes the topological boundary of $\sigma(a)$, then

$$\partial \sigma(a) \subseteq S_{\partial}(a) \subseteq \sigma(a).$$

$S_{\partial}(a)$ is non-empty and compact.
Let A be a (complex, unital) Banach algebra and S the set of all non-invertible elements of A.
Let A be a (complex, unital) Banach algebra and S the set of all non-invertible elements of A. The boundary spectrum of $a \in A$ is defined as

$$S_\partial(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \partial S \} = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \partial A^{-1} \}$$
Let A be a (complex, unital) Banach algebra and S the set of all non-invertible elements of A. The \textit{boundary spectrum} of $a \in A$ is defined as

$$S_\partial(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \partial S \} = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \partial A^{-1} \}$$

$$= \{ \lambda \in \mathbb{C} : a - \lambda 1 \not\in A^{-1} \cup \text{int } S \},$$

where \text{int } S denotes the topological interior of the set S.

Mouton, Harte | Boundary and exponential spectra, restricted topology
Let A be a (complex, unital) Banach algebra and S the set of all non-invertible elements of A. The boundary spectrum of $a \in A$ is defined as

$$S_{\partial}(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \partial S \} = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \partial A^{-1} \}$$

$$= \{ \lambda \in \mathbb{C} : a - \lambda 1 \notin A^{-1} \cup \text{int } S \},$$

where int S denotes the topological interior of the set S.

If $\partial \sigma(a)$ denotes the topological boundary of $\sigma(a)$, then

$$\partial \sigma(a) \subseteq S_{\partial}(a) \subseteq \sigma(a).$$
Let A be a (complex, unital) Banach algebra and S the set of all non-invertible elements of A. The *boundary spectrum* of $a \in A$ is defined as

$$
S_{\partial}(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \partial S \} = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \partial A^{-1} \} \\
= \{ \lambda \in \mathbb{C} : a - \lambda 1 \notin A^{-1} \cup \text{int } S \},
$$

where \(\text{int } S \) denotes the topological interior of the set S.

If $\partial \sigma(a)$ denotes the topological boundary of $\sigma(a)$, then

$$
\partial \sigma(a) \subseteq S_{\partial}(a) \subseteq \sigma(a).
$$

$S_{\partial}(a)$ is non-empty and compact.
The spectral radius function is, in general, not continuous on the set of all positive elements in an ordered Banach algebra.

Theorem
Let A be an ordered Banach algebra with algebra cone C closed and normal. If $a \in C$ such that $S_{\partial}(a) \cap \mathbb{R}^+ = \{r(a)\}$ (where $r(a)$ is the spectral radius of a), then $r|_C$ is continuous at a.

The key result: the map $a \mapsto T(a) = \{\lambda \in C : |\lambda| \in S_{\partial}(a)\}$.

Mouton, Harte Boundary and exponential spectra, restricted topology
The spectral radius function is, in general, not continuous on the set of all positive elements in an ordered Banach algebra.

The boundary spectrum was used to prove the following result about spectral continuity in ordered Banach algebras:

Theorem

Let A be an ordered Banach algebra with algebra cone C closed and normal. If $a \in C$ such that $S_\partial(a) \cap \mathbb{R}^+ = \{r(a)\}$ (where $r(a)$ is the spectral radius of a), then $r|_C$ is continuous at a.

Mouton, Harte

Boundary and exponential spectra, restricted topology
The spectral radius function is, in general, not continuous on the set of all positive elements in an ordered Banach algebra.

The boundary spectrum was used to prove the following result about spectral continuity in ordered Banach algebras:

Theorem

Let A be an ordered Banach algebra with algebra cone C closed and normal. If $a \in C$ such that $S_\theta(a) \cap \mathbb{R}^+ = \{ r(a) \}$ (where $r(a)$ is the spectral radius of a), then $r|_C$ is continuous at a.

The key result: the map $a \mapsto T(a)$ is upper semicontinuous, where

$$T(a) = \{ \lambda \in \mathbb{C} : |\lambda| \in S_\theta(a) \}.$$
The boundary spectrum

The spectral radius function is, in general, not continuous on the set of all positive elements in an ordered Banach algebra.

The boundary spectrum was used to prove the following result about spectral continuity in ordered Banach algebras:

Theorem

Let A be an ordered Banach algebra with algebra cone C closed and normal. If $a \in C$ such that $S_{\theta}(a) \cap \mathbb{R}^+ = \{ r(a) \}$ (where $r(a)$ is the spectral radius of a), then $r|_C$ is continuous at a.

The key result: the map $a \mapsto T(a)$ is upper semicontinuous, where

$$T(a) = \{ \lambda \in \mathbb{C} : |\lambda| \in S_{\theta}(a) \}.$$

Recall: If A is a Banach algebra and $a \in A$, then
$$\partial \sigma(a) \subseteq S \partial(a) \subseteq \sigma(a).$$

$\partial \sigma(a)$: the “thin” boundary of $\sigma(a)$

$S \partial(a)$: the “fat” boundary of $\sigma(a)$

Using closed subalgebras B, it is possible to define a topology on A in such a way that a whole range of “boundaries” can be obtained, with $B = C$ giving the “thin” boundary and $B = A$ the “fat” boundary of $\sigma(a)$.

Mouton, Harte
Boundary and exponential spectra, restricted topology
Recall: If A is a Banach algebra and $a \in A$, then

$$\partial \sigma(a) \subseteq S_{\partial}(a) \subseteq \sigma(a).$$
Recall: If A is a Banach algebra and $a \in A$, then

$$\partial \sigma(a) \subseteq S_{\partial}(a) \subseteq \sigma(a).$$

$\partial \sigma(a)$: the “thin” boundary of $\sigma(a)$

$S_{\partial}(a)$: the “fat” boundary of $\sigma(a)$
Recall: If A is a Banach algebra and $a \in A$, then

$$\partial \sigma(a) \subseteq S_\partial(a) \subseteq \sigma(a).$$

$\partial \sigma(a)$: the “thin” boundary of $\sigma(a)$

$S_\partial(a)$: the “fat” boundary of $\sigma(a)$

Using closed subalgebras B, it is possible to define a topology on A in such a way that a whole range of “boundaries” can be obtained, with $B = \mathbb{C}$ giving the “thin” boundary and $B = A$ the “fat” boundary of $\sigma(a)$.
Recall: If A is a Banach algebra and $a \in A$, then

$$
\sigma(a) \subseteq \varepsilon(a) \subseteq \eta\sigma(a).
$$
Recall: If A is a Banach algebra and $a \in A$, then

$$\sigma(a) \subseteq \varepsilon(a) \subseteq \eta\sigma(a).$$

Corresponding to the “thin” and “fat” boundaries:
Recall: If A is a Banach algebra and $a \in A$, then

$$
\sigma(a) \subseteq \varepsilon(a) \subseteq \eta\sigma(a).
$$

Corresponding to the “thin” and “fat” boundaries:

Is $\varepsilon(a)$ the “little” connected hull of $\sigma(a)$?

Is $\eta\sigma(a)$ the “big” connected hull of $\sigma(a)$?
Let X be a topological space, $K \subseteq X$, $a \in X$ and $t \in X \setminus K$. Then:

- $\text{cl}_X(K)$: the closure of K
- $\text{Int}_X(K)$: the interior of K
- $\partial X(K)$: the boundary of K
- $\text{Nbd}_X(a)$: the collection of all neighbourhoods of a
- $\text{Comp}_X(t, X \setminus K)$: the (connected) component of t in $X \setminus K$
- $\eta_t(K) = X \setminus \text{Comp}_X(t, X \setminus K)$: the connected hull relative to t of K.
Notation and preliminaries

Let X be a topological space, $K \subseteq X$, $a \in X$ and $t \in X \setminus K$. Then:

- $\text{cl}_X(K)$: the closure of K
- $\text{Int}_X(K)$: the interior of K
- $\partial_X(K)$: the boundary of K
- $\text{Nbd}_X(a)$: the collection of all neighbourhoods of a
- $\text{Comp}_X(t, X \setminus K)$: the (connected) component of t in $X \setminus K$
- $\eta_t(K) = X \setminus \text{Comp}_X(t, X \setminus K)$: the connected hull relative to t of K
Let X be a topological space, $K \subseteq X$, $a \in X$ and $t \in X \setminus K$. Then:

- $\text{cl}_X(K)$: the closure of K
Let X be a topological space, $K \subseteq X$, $a \in X$ and $t \in X \setminus K$. Then:

$\operatorname{cl}_X(K)$: the closure of K

$\operatorname{Int}_X(K)$: the interior of K

$\partial_X(K)$: the boundary of K
Let X be a topological space, $K \subseteq X$, $a \in X$ and $t \in X \setminus K$. Then:

- $\text{cl}_X(K)$: the closure of K
- $\text{Int}_X(K)$: the interior of K
- $\partial_X(K)$: the boundary of K
- $\text{Nbd}_X(a)$: the collection of all neighbourhoods of a
Let X be a topological space, $K \subseteq X$, $a \in X$ and $t \in X \setminus K$. Then:

- $\text{cl}_X(K)$: the closure of K
- $\text{Int}_X(K)$: the interior of K
- $\partial_X(K)$: the boundary of K
- $\text{Nbd}_X(a)$: the collection of all neighbourhoods of a
- $\text{Comp}_X(t, X \setminus K)$: the (connected) component of t in $X \setminus K$
Let X be a topological space, $K \subseteq X$, $a \in X$ and $t \in X \setminus K$. Then:

closure of K \hspace{1cm} \text{cl}_X(K)

interior of K \hspace{1cm} \text{Int}_X(K)

boundary of K \hspace{1cm} \partial_X(K)

collection of all neighbourhoods of a \hspace{1cm} \text{Nbd}_X(a)

connected component of t in $X \setminus K$ \hspace{1cm} \text{Comp}_X(t, X \setminus K)

connected hull relative to t of K \hspace{1cm} \eta_t(K) = X \setminus \text{Comp}_X(t, X \setminus K)$
The restricted topology

Recall: If Y is a subset of a topological space X then the relative topology of Y induced by the topology of X is obtained via the closure operation, for $K \subseteq Y$, as follows:

$$\text{cl}_Y(K) = Y \cap \text{cl}_X(K)$$

Definition

Let B be a subgroup of an additive topological group A. If $K \subseteq A$ is arbitrary then its restricted closure in A relative to B is given by

$$\text{cl}_B(K) = \{ a \in A : \forall U \in \text{Nbd}_B(0) : (a - U) \cap K \neq \emptyset \}.$$
Recall: If Y is a subset of a topological space X then the relative topology of Y induced by the topology of X is obtained via the closure operation, for $K \subseteq Y$, as follows:

$$\text{cl}_Y(K) = Y \cap \text{cl}_X(K)$$

Definition

Let B be a subgroup of an additive topological group A. If $K \subseteq A$ is arbitrary then its restricted closure in A relative to B is given by

$$\text{cl}_B(K) = \{a \in A : \forall U \in \text{Nbd}_B(0) : (a - U) \cap K \neq \emptyset\}$$

The restricted topology

Recall: If Y is a subset of a topological space X then the *relative topology* of Y induced by the topology of X is obtained via the closure operation, for $K \subseteq Y$, as follows:

$$\text{cl}_Y(K) = Y \cap \text{cl}_X(K)$$
The restricted topology

Recall: If Y is a subset of a topological space X then the *relative topology* of Y induced by the topology of X is obtained via the closure operation, for $K \subseteq Y$, as follows:

$$\text{cl}_Y(K) = Y \cap \text{cl}_X(K)$$

Definition

Let B be a subgroup of an additive topological group A. If $K \subseteq A$ is arbitrary then its *restricted closure* in A relative to B is given by

$$\text{cl}^B(K) = \{ a \in A : \forall \; U \in \text{Nbd}_B(0) : (a - U) \cap K \neq \emptyset \}.$$
The restricted topology

The restricted closure does, in fact, define a topology:

1. $\text{cl}_B(\emptyset) = \emptyset$

2. If $K \subseteq H = \Rightarrow \text{cl}_B(K) \subseteq \text{cl}_B(H)$

3. $K \subseteq \text{cl}_B(K)$

4. $\text{cl}_B \text{cl}_B(K) \subseteq \text{cl}_B(K)$

5. $\text{cl}_B(K \cup H) \subseteq \text{cl}_B(K) \cup \text{cl}_B(H)$.
The restricted topology does, in fact, define a topology:

Theorem

If B is a subgroup of a topological group A and if $K, H \subseteq A$ then

1. $\text{cl}^B(\emptyset) = \emptyset$,
2. $K \subseteq H \implies \text{cl}^B(K) \subseteq \text{cl}^B(H)$,
3. $K \subseteq \text{cl}^B(K)$,
4. $\text{cl}^B \text{cl}^B(K) \subseteq \text{cl}^B(K)$,
5. $\text{cl}^B(K \cup H) \subseteq \text{cl}^B(K) \cup \text{cl}^B(H)$.

*If $B = A$ the B-topology coincides with the topology of A.***

Mouton, Harte
Boundary and exponential spectra, restricted topology
The restricted closure does, in fact, define a topology:

Theorem

If B is a subgroup of a topological group A and if $K, H \subseteq A$ then

1. $\text{cl}^B(\emptyset) = \emptyset$,
2. $K \subseteq H \implies \text{cl}^B(K) \subseteq \text{cl}^B(H)$,
3. $K \subseteq \text{cl}^B(K)$,
4. $\text{cl}^B \text{cl}^B(K) \subseteq \text{cl}^B(K)$,
5. $\text{cl}^B(K \cup H) \subseteq \text{cl}^B(K) \cup \text{cl}^B(H)$.

restricted topology or B-topology
The restricted topology does, in fact, define a topology:

Theorem

If B is a subgroup of a topological group A and if $K, H \subseteq A$ then

1. $\text{cl}^B(\emptyset) = \emptyset$,
2. $K \subseteq H \implies \text{cl}^B(K) \subseteq \text{cl}^B(H)$,
3. $K \subseteq \text{cl}^B(K)$,
4. $\text{cl}^B(\text{cl}^B(K)) \subseteq \text{cl}^B(K)$,
5. $\text{cl}^B(K \cup H) \subseteq \text{cl}^B(K) \cup \text{cl}^B(H)$.

restricted topology or B-topology

If $K \subseteq B$ then $\text{cl}^B(K) = \text{cl}_B(K)$.
The restricted topology

The restricted closure does, in fact, define a topology:

Theorem

If B is a subgroup of a topological group A and if $K, H \subseteq A$ then

1. $\text{cl}^B(\emptyset) = \emptyset$,

2. $K \subseteq H \implies \text{cl}^B(K) \subseteq \text{cl}^B(H),$

3. $K \subseteq \text{cl}^B(K),$

4. $\text{cl}^B \text{cl}^B(K) \subseteq \text{cl}^B(K),$

5. $\text{cl}^B(K \cup H) \subseteq \text{cl}^B(K) \cup \text{cl}^B(H).$

restricted topology or B-topology

If $K \subseteq B$ then $\text{cl}^B(K) = \text{cl}_B(K).$

If $B = A$ the B-topology coincides with the topology of $A.$
Let \(B \) be a subgroup of a topological group \(A \), \(K \subseteq A \) and \(a \in A \). Then:

- \(\text{Int} B(K) \): the restricted interior of \(K \)
- \(\partial B(K) \): the restricted boundary of \(K \)
- \(\text{Nbd} B(a) \): the collection of all restricted neighbourhoods of \(a \)
The restricted topology

Notation

Let B be a subgroup of a topological group A, $K \subseteq A$ and $a \in A$. Then:

- $\text{Int}_B(K)$: the restricted interior of K
- $\partial\text{Int}_B(K)$: the restricted boundary of K
- $\text{Nbd}_B(a)$: the collection of all restricted neighbourhoods of a
The restricted topology

Notation

Let B be a subgroup of a topological group A, $K \subseteq A$ and $a \in A$. Then:

$\text{Int}^B(K)$: the restricted interior of K

$\partial^B(K)$: the restricted boundary of K

$\text{Nbd}^B(a)$: the collection of all restricted neighbourhoods of a
Examples

$C^0[0,1]$: Banach space of all continuous complex valued functions on $[0,1]$.

C^x: the subset of $C^0[0,1]$ of all complex valued homogeneous polynomials on $[0,1]$ of degree 1.

Example: If $A = C^0[0,1]$, $B = C^0$ and $K = C^x$, then $cl_B(K) = K = cl_A(K)$ and $Int_A(K) = \emptyset = Int_B(K)$.
$C_\mathbb{C}[0,1]$: Banach space of all continuous complex valued functions on $[0,1]$ with the supremum norm
$C_\mathbb{C}[0, 1]$: Banach space of all continuous complex valued functions on $[0, 1]$ with the supremum norm

Cx: the subset of $C_\mathbb{C}[0, 1]$ of all complex valued homogeneous polynomials on $[0, 1]$ of degree 1
Examples

$C_C[0, 1]$: Banach space of all continuous complex valued functions on $[0, 1]$ with the supremum norm

C_x: the subset of $C_C[0, 1]$ of all complex valued homogeneous polynomials on $[0, 1]$ of degree 1

Example

If $A = C_C[0, 1]$, $B = \mathbb{C}$ and $K = C_x$, then $\text{cl}^B(K) = K = \text{cl}^A(K)$ and $\text{Int}^A(K) = \emptyset = \text{Int}^B(K)$.
Examples

$C_\mathbb{R}[0, 1]$: the Banach space of all continuous real valued functions on $[0, 1]$ with the supremum norm

$P_\mathbb{R}[0, 1]$: the subset of $C_\mathbb{R}[0, 1]$ of all real valued polynomials on $[0, 1]$

Example

If $A = C_\mathbb{R}[0, 1]$, $B = \mathbb{R}$ and $K = P_\mathbb{R}[0, 1]$, then $\text{cl}^B(K) = K$, $\text{cl}^A(K) = A$, $\text{Int}^A(K) = \emptyset$ and $\text{Int}^B(K) = K$.

Mouton, Harte
Boundary and exponential spectra, restricted topology
Example

Let $A = M_2^u(\mathbb{C})$, the space of all 2×2 complex upper triangular matrices, $B = \mathbb{C}, K = \left\{ \begin{pmatrix} w & z \\ 0 & w \end{pmatrix} : z \in \mathbb{C}, w \in \mathbb{Q} + i\mathbb{Q} \right\}$ and $S = \left\{ \begin{pmatrix} w & z \\ 0 & w \end{pmatrix} : z, w \in \mathbb{C} \right\}$. Then

$$\text{cl}^B(K) = S = \text{cl}^A(K)$$

and

$$\text{Int}^A(K) = \emptyset = \text{Int}^B(K).$$
The ω-spectrum

Definition

Let A be a topological algebra and B a subalgebra of A with unit e. If a map $\omega: A \rightarrow 2^B$ satisfies

$$\forall (a,b) \in A \times B: \omega(a-b) = \omega(a) - b \subseteq B,$$

set $H_{\omega} = \{a \in A: 0 \not\in \omega(a)\}$.

Then $\omega(a) = \{b \in B: a-b \not\in H_{\omega}\}$.

Motivation

If A is a complex Banach algebra with unit 1 and $B = \mathbb{C}$, then we can take $e = 1$ and $\omega = \sigma$; and then $H_{\sigma} = A - 1$.

Mouton, Harte

Boundary and exponential spectra, restricted topology
The ω-spectrum

Definition

Let A be a topological algebra and B a subalgebra of A with unit e. If a map $\omega: A \to 2^B$ satisfies

$$\forall (a, b) \in A \times B: \omega(a - b) = \omega(a) - b \subseteq B,$$

set $H_\omega = \{a \in A: 0 \not\in \omega(a)\}$. Then $\omega(a) = \{b \in B: a - b \not\in H_\omega\}$.

Motivation

If A is a complex Banach algebra with unit 1 and $B = \mathbb{C}$, then we can take $e = 1$ and $\omega = \sigma$; and then $H_\sigma = A - 1$.

(Mouton, Harte, Boundary and exponential spectra, restricted topology)
Definition

Let A be a topological algebra and B a subalgebra of A with unit e. If a map $\omega : A \mapsto 2^B$ satisfies

$$\forall (a, b) \in A \times B : \omega(a - b) = \omega(a) - b \subseteq B,$$

then

$$\omega(a) = \{b \in B : a - b \not\in H_{\omega}\}.$$
Definition

Let A be a topological algebra and B a subalgebra of A with unit e. If a map $\omega : A \mapsto 2^B$ satisfies

$$\forall (a, b) \in A \times B : \omega(a - b) = \omega(a) - b \subseteq B,$$

set

$$H_\omega = \{a \in A : 0 \not\in \omega(a)\}.$$
The ω-spectrum

Definition

Let A be a topological algebra and B a subalgebra of A with unit e. If a map $\omega : A \mapsto 2^B$ satisfies

$$\forall (a, b) \in A \times B : \omega(a - b) = \omega(a) - b \subseteq B,$$

set

$$H_\omega = \{a \in A : 0 \not\in \omega(a)\}.$$

Then

$$\omega(a) = \{b \in B : a - b \not\in H_\omega\}.$$
Definition

Let A be a topological algebra and B a subalgebra of A with unit e. If a map $\omega : A \rightarrow 2^B$ satisfies

$$\forall (a, b) \in A \times B : \omega(a - b) = \omega(a) - b \subseteq B,$$

set

$$H_\omega = \{ a \in A : 0 \notin \omega(a) \}.$$

Then

$$\omega(a) = \{ b \in B : a - b \notin H_\omega \}.$$

Motivation

If A is a complex Banach algebra with unit 1 and $B = \mathbb{C}$, then we can take $e = 1$ and $\omega = \sigma$; and then $H_\sigma = A^{-1}$.

Theorem

Let A be a topological algebra, B a subalgebra of A with unit e and $\omega : A \mapsto 2^B$ a map satisfying $\omega(a - b) = \omega(a) - b$ for all $(a, b) \in A \times B$. Then

$$\partial B \omega(a) = \{ b \in B : a - b \in \partial B (A \setminus H \omega) \}.$$

Let A be a complex Banach algebra with unit 1 and $a \in A$. If $B = C, e = 1$ and $\omega = \sigma$ (so $H \sigma = A \setminus 1$), then we have:

$$\partial C(a) := \partial C \sigma(a) = \{ \lambda \in C : a - \lambda 1 \in \partial C(A \setminus A - 1) \}.$$

Therefore we define, for any closed subalgebra B of A such that $1 \in B$:

$$\partial B(a) = \{ \lambda \in C : a - \lambda 1 \in \partial B(A \setminus A - 1) \}.$$
Theorem

Let A be a topological algebra, B a subalgebra of A with unit e and $\omega : A \mapsto 2^B$ a map satisfying $\omega(a - b) = \omega(a) - b$ for all $(a, b) \in A \times B$. Then

$$\partial^B \omega(a) = \{ b \in B : a - b \in \partial^B (A \setminus H_\omega) \}.$$
Theorem

Let A be a topological algebra, B a subalgebra of A with unit e and $\omega : A \mapsto 2^B$ a map satisfying $\omega(a - b) = \omega(a) - b$ for all $(a, b) \in A \times B$. Then

$$\partial^B \omega(a) = \{ b \in B : a - b \in \partial^B (A \setminus H_\omega) \}.$$

Let A be a complex Banach algebra with unit 1 and $a \in A$. If $B = \mathbb{C}$, $e = 1$ and $\omega = \sigma$ (so $H_\sigma = A^{-1}$), then we have:
Theorem

Let A be a topological algebra, B a subalgebra of A with unit e and $\omega : A \mapsto 2^B$ a map satisfying $\omega(a - b) = \omega(a) - b$ for all $(a, b) \in A \times B$. Then

$$\partial^B \omega(a) = \{ b \in B : a - b \in \partial^B(A \setminus H_\omega) \}.$$

Let A be a complex Banach algebra with unit 1 and $a \in A$. If $B = \mathbb{C}$, $e = 1$ and $\omega = \sigma$ (so $H_\sigma = A^{-1}$), then we have:

$$\partial^\mathbb{C} \sigma(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \partial^\mathbb{C}(A \setminus A^{-1}) \}.$$
A chain of boundaries

Theorem

Let A be a topological algebra, B a subalgebra of A with unit e and $\omega : A \mapsto 2^B$ a map satisfying $\omega(a - b) = \omega(a) - b$ for all $(a, b) \in A \times B$. Then

$$\partial^B \omega(a) = \{ b \in B : a - b \in \partial^B(A \setminus H_\omega) \}.$$

Let A be a complex Banach algebra with unit 1 and $a \in A$. If $B = \mathbb{C}$, $e = 1$ and $\omega = \sigma$ (so $H_\sigma = A^{-1}$), then we have:

$$\partial_\mathbb{C}(a) := \partial^\mathbb{C} \sigma(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \partial^\mathbb{C}(A \setminus A^{-1}) \}.$$
Theorem

Let A be a topological algebra, B a subalgebra of A with unit e and $\omega : A \mapsto 2^B$ a map satisfying $\omega(a - b) = \omega(a) - b$ for all $(a, b) \in A \times B$. Then

$$\partial^B \omega(a) = \{ b \in B : a - b \in \partial^B (A \setminus H_\omega) \}.$$

Let A be a complex Banach algebra with unit 1 and $a \in A$. If $B = \mathbb{C}$, $e = 1$ and $\omega = \sigma$ (so $H_\sigma = A^{-1}$), then we have:

$$\partial_\mathbb{C}(a) := \partial^\mathbb{C} \sigma(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \partial^\mathbb{C} (A \setminus A^{-1}) \}$$

Therefore we define, for any closed subalgebra B of A such that $1 \in B$:
A chain of boundaries

Theorem

Let A be a topological algebra, B a subalgebra of A with unit e and $\omega : A \mapsto 2^B$ a map satisfying $\omega(a - b) = \omega(a) - b$ for all $(a, b) \in A \times B$. Then

$$\partial^B \omega(a) = \{ b \in B : a - b \in \partial^B (A \setminus H_\omega) \}.$$

Let A be a complex Banach algebra with unit 1 and $a \in A$. If $B = \mathbb{C}$, $e = 1$ and $\omega = \sigma$ (so $H_\sigma = A^{-1}$), then we have:

$$\partial_\mathbb{C}(a) := \partial^\mathbb{C} \sigma(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \partial^\mathbb{C} (A \setminus A^{-1}) \}$$

Therefore we define, for any closed subalgebra B of A such that $1 \in B$:

$$\partial_B(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \partial^B (A \setminus A^{-1}) \}$$
A chain of boundaries

Theorem

Let A be a complex Banach algebra with unit 1. Then

1. $\partial_C(a) = \partial\sigma(a)$
A chain of boundaries

Theorem

Let A be a complex Banach algebra with unit 1. Then

1. $\partial_{\mathbb{C}}(a) = \partial \sigma(a)$ and
2. $\partial_{A}(a) = S_{\theta}(a),$

for all $a \in A$.

Mouton, Harte

Boundary and exponential spectra, restricted topology
Theorem

Let A be a complex Banach algebra with unit 1. Then

1. $\partial_{\mathbb{C}}(a) = \partial\sigma(a)$ and
2. $\partial_{A}(a) = S_{\theta}(a),$

for all $a \in A$.

Corollary

Let A be a complex Banach algebra with unit 1 and let B be a closed subalgebra of A such that $1 \in B$. Then

$$\partial\sigma(a) \subseteq \partial_{B}(a) \subseteq S_{\theta}(a),$$

for all $a \in A$.
A chain of boundaries

Theorem

Let A be a complex Banach algebra with unit 1. Then

1. $\partial_C(a) = \partial\sigma(a)$ and
2. $\partial_A(a) = S_\theta(a),$

for all $a \in A$.

Corollary

Let A be a complex Banach algebra with unit 1 and let B be a closed subalgebra of A such that $1 \in B$. Then

$$\partial\sigma(a) \subseteq \partial_B(a) \subseteq S_\theta(a),$$

for all $a \in A$, where $\partial_B(a)$ is smallest when $B = \mathbb{C}$, in which case $\partial_B(a) = \partial\sigma(a)$,
Theorem

Let A be a complex Banach algebra with unit 1. Then

1. $\partial_C(a) = \partial\sigma(a)$ and
2. $\partial_A(a) = S_\theta(a),$

for all $a \in A$.

Corollary

Let A be a complex Banach algebra with unit 1 and let B be a closed subalgebra of A such that $1 \in B$. Then

$$\partial\sigma(a) \subseteq \partial_B(a) \subseteq S_\theta(a),$$

for all $a \in A$, where $\partial_B(a)$ is smallest when $B = \mathbb{C}$, in which case $\partial_B(a) = \partial\sigma(a)$, and largest when $B = A$, in which case $\partial_B(a) = S_\theta(a)$.

Mouton, Harte

Boundary and exponential spectra, restricted topology
Let B be a subgroup of a topological group A, $K \subseteq A$ and $t \in A \setminus K$. Then:

$\text{Comp}_B(t, A \setminus K)$: the restricted component of t in $A \setminus K$

$\eta^B_t(K)$ = $A \setminus \text{Comp}_B(t, A \setminus K)$: the restricted connected hull relative to t of K

If $K \subseteq B$ and $t \in B \setminus K$, then:

$\text{Comp}_B(t, B \setminus K)$: the restricted component of t in $B \setminus K$

$\eta^B_t(K)$ = $B \setminus \text{Comp}_B(t, B \setminus K)$: the restricted connected hull relative to t of K
A chain of connected hulls

Notation

Let B be a subgroup of a topological group A, $K \subseteq A$ and $t \in A \setminus K$. Then:

$\eta_B^t(K) = A \setminus \text{Comp}_B(t, A \setminus K)$: the restricted component of t in $A \setminus K$.

$\eta_B^t(K) = B \setminus \text{Comp}_B(t, B \setminus K)$: the restricted connected hull relative to t of K. If $K \subseteq B$ and $t \in B \setminus K$, then:

$\text{Comp}_B(t, B \setminus K)$: the restricted component of t in $B \setminus K$.

$\eta_B^t(K) = B \setminus \text{Comp}_B(t, B \setminus K)$: the restricted connected hull relative to t of K. If $K \subseteq B$ and $t \in B \setminus K$, then:
Notation

Let B be a subgroup of a topological group A, $K \subseteq A$ and $t \in A \setminus K$. Then:

$\text{Comp}^B(t, A \setminus K)$: the restricted component of t in $A \setminus K$

$\eta^B_t(K) = A \setminus \text{Comp}^B(t, A \setminus K)$: the restricted connected hull relative to t of K
Notation

Let B be a subgroup of a topological group A, $K \subseteq A$ and $t \in A \setminus K$. Then:

- $\text{Comp}^B(t, A \setminus K)$: the restricted component of t in $A \setminus K$
- $\eta^B_t(K) = A \setminus \text{Comp}^B(t, A \setminus K)$: the restricted connected hull relative to t of K
A chain of connected hulls

Notation

Let B be a subgroup of a topological group A, $K \subseteq A$ and $t \in A \setminus K$. Then:

$\text{Comp}^B(t, A \setminus K)$: the restricted component of t in $A \setminus K$

$\eta^B_t(K) = A \setminus \text{Comp}^B(t, A \setminus K)$: the restricted connected hull relative to t of K

If $K \subseteq B$ and $t \in B \setminus K$, then:
Notation

Let B be a subgroup of a topological group A, $K \subseteq A$ and $t \in A \setminus K$. Then:

$\text{Comp}^B(t, A \setminus K)$: the restricted component of t in $A \setminus K$

$\eta^B_t(K) = A \setminus \text{Comp}^B(t, A \setminus K)$: the restricted connected hull relative to t of K

If $K \subseteq B$ and $t \in B \setminus K$, then:

$\text{Comp}^B(t, B \setminus K)$: the restricted component of t in $B \setminus K$
A chain of connected hulls

Notation

Let B be a subgroup of a topological group A, $K \subseteq A$ and $t \in A \setminus K$. Then:

$\text{Comp}^B(t, A \setminus K)$: the restricted component of t in $A \setminus K$

$\eta^B_t(K) = A \setminus \text{Comp}^B(t, A \setminus K)$: the restricted connected hull relative to t of K

If $K \subseteq B$ and $t \in B \setminus K$, then:

$\text{Comp}^B(t, B \setminus K)$: the restricted component of t in $B \setminus K$

$\eta^B_t(K) = B \setminus \text{Comp}^B(t, B \setminus K)$: the restricted connected hull relative to t of K
Notation

Let A be a complex normed algebra with unit 1, B a closed subalgebra of A with $e = 1 \in B$ and $\omega : A \to 2^B$ a map satisfying $\omega(a - b) = \omega(a) - b$ for all $(a, b) \in A \times B$.

Suppose that, for some $a \in A$, $\omega(a)$ is bounded. Then:

$\text{Comp}_{B}(\infty, B \setminus \omega(a))$: the unique unbounded restricted component of $B \setminus \omega(a)$

$\eta_{B \omega(a)} := B \setminus \text{Comp}_{B}(\infty, B \setminus \omega(a))$: the restricted connected hull of $\omega(a)$

Suppose that $1 \in \mathcal{H}_{\omega}$. Then:

$\text{Comp}_{B}(1, \mathcal{H}_{\omega})$: the restricted component of 1 in \mathcal{H}_{ω}

$\eta_{A \setminus \mathcal{H}_{\omega}} := A \setminus \text{Comp}_{B}(1, \mathcal{H}_{\omega})$: the restricted connected hull of $A \setminus \mathcal{H}_{\omega}$
Notation

Let A be a complex normed algebra with unit 1, B a closed subalgebra of A with $e = 1 \in B$ and $\omega : A \to 2^B$ a map satisfying $\omega(a - b) = \omega(a) - b$ for all $(a, b) \in A \times B$.

- Suppose that, for some $a \in A$, $\omega(a)$ is bounded. Then:
Let A be a complex normed algebra with unit 1, B a closed subalgebra of A with $e = 1 \in B$ and $\omega : A \to 2^B$ a map satisfying $\omega(a - b) = \omega(a) - b$ for all $(a, b) \in A \times B$.

Suppose that, for some $a \in A$, $\omega(a)$ is bounded. Then:

$\text{Comp}_B^B(\infty, B \setminus \omega(a))$: the unique unbounded restricted component of $B \setminus \omega(a)$
Notation

Let A be a complex normed algebra with unit 1, B a closed subalgebra of A with $e = 1 \in B$ and $\omega : A \to 2^B$ a map satisfying $\omega(a - b) = \omega(a) - b$ for all $(a, b) \in A \times B$.

- Suppose that, for some $a \in A$, $\omega(a)$ is bounded. Then:

 $\text{Comp}^B(\infty, B \setminus \omega(a))$: the unique unbounded restricted component of $B \setminus \omega(a)$

 $B \setminus \text{Comp}^B(\infty, B \setminus \omega(a))$
A chain of connected hulls

Notation

Let A be a complex normed algebra with unit 1, B a closed subalgebra of A with $e = 1 \in B$ and $\omega : A \to 2^B$ a map satisfying $\omega(a - b) = \omega(a) - b$ for all $(a, b) \in A \times B$.

- Suppose that, for some $a \in A$, $\omega(a)$ is bounded. Then:
 - $\text{Comp}^B(\infty, B \setminus \omega(a))$: the unique unbounded restricted component of $B \setminus \omega(a)$
 - $\eta^B \omega(a) := B \setminus \text{Comp}^B(\infty, B \setminus \omega(a))$: the restricted connected hull of $\omega(a)$
Notation

Let A be a complex normed algebra with unit 1, B a closed subalgebra of A with $e = 1 \in B$ and $\omega : A \to 2^B$ a map satisfying $\omega(a - b) = \omega(a) - b$ for all $(a, b) \in A \times B$.

- Suppose that, for some $a \in A$, $\omega(a)$ is bounded. Then:
 \[\text{Comp}^B(\infty, B \setminus \omega(a)) : \text{the unique unbounded restricted component of } B \setminus \omega(a) \]
 \[\eta^B\omega(a) := B \setminus \text{Comp}^B(\infty, B \setminus \omega(a)) : \text{the restricted connected hull of } \omega(a) \]

- Suppose that $1 \in H_\omega$. Then:
A chain of connected hulls

Notation

Let A be a complex normed algebra with unit 1, B a closed subalgebra of A with $e = 1 \in B$ and $\omega : A \to 2^B$ a map satisfying $\omega(a - b) = \omega(a) - b$ for all $(a, b) \in A \times B$.

- Suppose that, for some $a \in A$, $\omega(a)$ is bounded. Then:

 $\text{Comp}^B(\infty, B \setminus \omega(a))$: the unique unbounded restricted component of $B \setminus \omega(a)$

 $\eta^B \omega(a) := B \setminus \text{Comp}^B(\infty, B \setminus \omega(a))$: the *restricted connected hull* of $\omega(a)$

- Suppose that $1 \in H_\omega$. Then:

 $\text{Comp}^B(1, H_\omega)$: the restricted component of 1 in H_ω
A chain of connected hulls

Notation

Let A be a complex normed algebra with unit 1, B a closed subalgebra of A with $e = 1 \in B$ and $\omega : A \to 2^B$ a map satisfying $\omega(a - b) = \omega(a) - b$ for all $(a, b) \in A \times B$.

- Suppose that, for some $a \in A$, $\omega(a)$ is bounded. Then:
 \[
 \text{Comp}^B(\infty, B \setminus \omega(a)) : \text{the unique unbounded restricted component of } B \setminus \omega(a)
 \]
 \[
 \eta^B \omega(a) := B \setminus \text{Comp}^B(\infty, B \setminus \omega(a)) : \text{the } \textit{restricted connected hull of } \omega(a)
 \]

- Suppose that $1 \in H_\omega$. Then:
 \[
 \text{Comp}^B(1, H_\omega) : \text{the restricted component of } 1 \text{ in } H_\omega
 \]
 \[
 \eta^B(A \setminus H_\omega) := A \setminus \text{Comp}^B(1, H_\omega) : \text{the } \textit{restricted connected hull of } A \setminus H_\omega
 \]
Recall:

Theorem

Let A be a topological algebra, B a subalgebra of A with unit e and $\omega : A \mapsto 2^B$ a map satisfying $\omega(a - b) = \omega(a) - b$ for all $(a, b) \in A \times B$. Then

$$\partial^B \omega(a) = \{ b \in B : a - b \in \partial^B (A \setminus H_\omega) \}.$$
Now, partially analogous to the previous theorem, we have:
A chain of connected hulls

Now, partially analogous to the previous theorem, we have:

Theorem

Let \(A \) be a complex normed algebra with unit \(1 \) and \(B \) a closed subalgebra of \(A \) such that \(e = 1 \in B \). Let \(\omega : A \to 2^B \) be a mapping such that \(\omega(a - b) = \omega(a) - b \) for all \((a, b) \in A \times B \), \(\omega(a) \) is bounded and closed in \(B \) for all \(a \in A \) and \(\omega(\lambda 1) = \lambda \omega(1) \) for all \(\lambda \in \mathbb{C} \). If \(1 \in H_\omega \) then

\[
\eta^B \omega(a) \subseteq \{ b \in B : a - b \in \eta^B (A \setminus H_\omega) \}.
\]
Recall:

\[\partial_B(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \partial^B(A\setminus A^{-1}) \} \]
A chain of connected hulls

Recall:

\[\partial_B(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \partial^B(A \setminus A^{-1}) \} \]

Now we define:

\[\eta_B(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \in \eta^B(A \setminus A^{-1}) \} \]
Theorem

Let A be a complex Banach algebra with unit 1 and let $a \in A$. Then

1. $\eta_A(a) = \varepsilon(a)$.

Corollary

Let A be a complex Banach algebra with unit 1, B a closed subalgebra of A such that $1 \in B$ and $a \in A$. Then

1. If $a \in C$, then $\varepsilon(a) = \eta_B(a) = \eta_\sigma(a) = \{a\}$.
2. If $a \notin C$, then $\varepsilon(a) \subseteq \eta_B(a) \subseteq C$, where $\eta_B(a)$ is largest when $B = C$, in which case $\eta_B(a) = C$, and smallest when $B = A$, in which case $\eta_B(a) = \varepsilon(a)$.
Theorem

Let A be a complex Banach algebra with unit 1 and let $a \in A$. Then

1. $\eta_A(a) = \varepsilon(a)$.
2. $\eta\sigma(a) \subseteq \eta\mathcal{C}(a)$.
A chain of connected hulls

Theorem

Let A be a complex Banach algebra with unit 1 and let $a \in A$. Then

1. $\eta_A(a) = \varepsilon(a)$.
2. $\eta\sigma(a) \subseteq \eta\mathbb{C}(a)$.
 - If $a \in \mathbb{C}$, then $\eta\mathbb{C}(a) = \eta\sigma(a)$.

Mouton, Harte
Boundary and exponential spectra, restricted topology
Theorem

Let A be a complex Banach algebra with unit 1 and let $a \in A$. Then

1. $\eta_A(a) = \varepsilon(a)$.
2. $\eta_{\sigma}(a) \subseteq \eta_{\mathbb{C}}(a)$.
 - If $a \in \mathbb{C}$, then $\eta_{\mathbb{C}}(a) = \eta_{\sigma}(a)$.
 - If $a \in A \setminus \mathbb{C}$, then $\eta_{\mathbb{C}}(a) = \mathbb{C}$.
A chain of connected hulls

Theorem

Let A be a complex Banach algebra with unit 1 and let $a \in A$. Then

1. $\eta_A(a) = \varepsilon(a)$.
2. $\eta\sigma(a) \subseteq \eta_C(a)$.
 - If $a \in \mathbb{C}$, then $\eta_C(a) = \eta\sigma(a)$.
 - If $a \in A \setminus \mathbb{C}$, then $\eta_C(a) = \mathbb{C}$.

Corollary

Let A be a complex Banach algebra with unit 1, B a closed subalgebra of A such that $1 \in B$ and $a \in A$.

1. If $a \in \mathbb{C}$, then $\varepsilon(a) = \eta_B(a) = \eta\sigma(a) = \{a\}$.

Mouton, Harte
Boundary and exponential spectra, restricted topology
Theorem

Let A be a complex Banach algebra with unit 1 and let $a \in A$. Then

1. $\eta_A(a) = \varepsilon(a)$.
2. $\eta\sigma(a) \subseteq \eta_C(a)$.
 - If $a \in C$, then $\eta_C(a) = \eta\sigma(a)$.
 - If $a \in A \setminus C$, then $\eta_C(a) = \mathbb{C}$.

Corollary

Let A be a complex Banach algebra with unit 1, B a closed subalgebra of A such that $1 \in B$ and $a \in A$.

1. If $a \in C$, then $\varepsilon(a) = \eta_B(a) = \eta\sigma(a) = \{a\}$.
2. If $a \not\in C$, then $\varepsilon(a) \subseteq \eta_B(a) \subseteq \mathbb{C}$,
A chain of connected hulls

Theorem

Let A be a complex Banach algebra with unit 1 and let $a \in A$. Then

1. $\eta_A(a) = \varepsilon(a)$.
2. $\eta\sigma(a) \subseteq \eta_C(a)$.
 - If $a \in \mathbb{C}$, then $\eta_C(a) = \eta\sigma(a)$.
 - If $a \in A \setminus \mathbb{C}$, then $\eta_C(a) = \mathbb{C}$.

Corollary

Let A be a complex Banach algebra with unit 1, B a closed subalgebra of A such that $1 \in B$ and $a \in A$.

1. If $a \in \mathbb{C}$, then $\varepsilon(a) = \eta_B(a) = \eta\sigma(a) = \{a\}$.
2. If $a \notin \mathbb{C}$, then $\varepsilon(a) \subseteq \eta_B(a) \subseteq \mathbb{C}$, where $\eta_B(a)$ is largest when $B = \mathbb{C}$, in which case $\eta_B(a) = \mathbb{C}$.
Let A be a complex Banach algebra with unit 1 and let $a \in A$. Then

1. $\eta_A(a) = \varepsilon(a)$.
2. $\eta \sigma(a) \subseteq \eta_C(a)$.
 - If $a \in \mathbb{C}$, then $\eta_C(a) = \eta \sigma(a)$.
 - If $a \in A \setminus \mathbb{C}$, then $\eta_C(a) = \mathbb{C}$.

Let A be a complex Banach algebra with unit 1, B a closed subalgebra of A such that $1 \in B$ and $a \in A$.

1. If $a \in \mathbb{C}$, then $\varepsilon(a) = \eta_B(a) = \eta \sigma(a) = \{a\}$.
2. If $a \not\in \mathbb{C}$, then $\varepsilon(a) \subseteq \eta_B(a) \subseteq \mathbb{C}$, where $\eta_B(a)$ is largest when $B = \mathbb{C}$, in which case $\eta_B(a) = \mathbb{C}$, and smallest when $B = A$, in which case $\eta_B(a) = \varepsilon(a)$.
Final remarks and an application

Let A be a complex Banach algebra with unit 1, B a closed subalgebra of A such that $1 \in B$ and $a \in A$. If $a \in C$, then $\partial \sigma(a) = \partial C(a) = \partial B(a) = \partial A(a) = S \partial(a) = \sigma(a) = \epsilon(a) = \eta_A(a) = \eta_B(a) = \eta_C(a) = \{a\}$. If $a \not\in C$, then $\partial \sigma(a) \subseteq \partial C(a) \subseteq \partial B(a) \subseteq \partial A(a) = S \partial(a) \subseteq \sigma(a) \subseteq \epsilon(a) = \eta_A(a) \subseteq \eta_B(a) \subseteq \eta_C(a) = C$.

Mouton, Harte Boundary and exponential spectra, restricted topology
Corollary

Let A be a complex Banach algebra with unit 1, B a closed subalgebra of A such that $1 \in B$ and $a \in A$.

1. If $a \in \mathbb{C}$, then

$$
\partial\sigma(a) = \partial\mathbb{C}(a) = \partial_B(a) = \partial_A(a) = S_\theta(a) = \sigma(a) = \varepsilon(a) = \eta_A(a) = \eta_B(a) = \eta\mathbb{C}(a) = \eta\sigma(a) = \{a\}.
$$

2. If $a \not\in \mathbb{C}$, then

$$
\partial\sigma(a) = \partial\mathbb{C}(a) \subseteq \partial_B(a) \subseteq \partial_A(a) = S_\theta(a) \subseteq \sigma(a) \subseteq \varepsilon(a) = \eta_A(a) \subseteq \eta_B(a) \subseteq \eta\mathbb{C}(a) = \mathbb{C}.
$$
Note that there is a type of duality between the boundary spectrum $S_{\partial}(a)$ and the exponential spectrum $\varepsilon(a)$:

$$S_{\partial}(a) = \partial_A(a) \quad \text{and} \quad \varepsilon(a) = \eta_A(a)$$
Final remarks and an application

Note that there is a type of duality between the boundary spectrum $S_{\partial}(a)$ and the exponential spectrum $\varepsilon(a)$:

$$S_{\partial}(a) = \partial A(a) \quad \text{and} \quad \varepsilon(a) = \eta A(a)$$

The “connected hull” corresponding to $\partial \sigma(a)$ via this duality is $\eta \sigma(a) = \{a\}$ if $a \in \mathbb{C}$.
Note that there is a type of duality between the boundary spectrum $S_\partial(a)$ and the exponential spectrum $\varepsilon(a)$:

\[S_\partial(a) = \partial A(a) \quad \text{and} \quad \varepsilon(a) = \eta A(a) \]

The “connected hull” corresponding to $\partial \sigma(a)$ via this duality is $\eta \sigma(a) = \{a\}$ if $a \in C$ and C if $a \in A \setminus C$.

Mouton, Harte
Boundary and exponential spectra, restricted topology
Final remarks and an application

Γ: the circle with centre 0 and radius 1 in \(\mathbb{C} \)

\(D \): the closed disk with centre 0 and radius 1 in \(\mathbb{C} \)

Example

Let \(A = C(\Gamma) \), the Banach algebra of complex-valued functions which are continuous on \(\Gamma \), and \(B = A(D) \), the closed subalgebra of \(A \) consisting of all functions which are continuous on \(D \) and analytic on its interior. Let \(a = z : \lambda \mapsto \lambda \) be the identity function on \(D \). Then \(\partial_B(a) = \Gamma \) and \(\eta_B(a) = D \).
Certain results that are known to hold for the boundary spectrum \(S_\partial(a) = \partial_A(a) \) can be generalised by replacing \(A \) by \(B \), with \(B \) a closed subalgebra of \(A \) containing the unit of \(A \).
Certain results that are known to hold for the boundary spectrum $S_{\partial}(a) = \partial_A(a)$ can be generalised by replacing A by B, with B a closed subalgebra of A containing the unit of A.

Theorem (Mouton, 2009)

Let A be a complex Banach algebra with unit 1. Let $a \in A$ and let f be a complex valued function which is analytic and one-to-one on a neighbourhood of $\sigma_A(a)$. Then $S_{\partial}(f(a)) = f(S_{\partial}(a))$, i.e. $\partial_A(f(a)) = f(\partial_A(a))$.

Theorem (Mouton, Harte, 2017)

Let A be a complex Banach algebra with unit 1 and let B be a closed subalgebra of A such that $1 \in B$. Let $a \in B$ and let f be a complex valued function which is analytic and one-to-one on a neighbourhood of $\sigma_B(a)$. Then $\partial_B(f(a)) = f(\partial_B(a))$.

Mouton, Harte
Boundary and exponential spectra, restricted topology
Certain results that are known to hold for the boundary spectrum \(S_\partial(a) = \partial_A(a) \) can be generalised by replacing \(A \) by \(B \), with \(B \) a closed subalgebra of \(A \) containing the unit of \(A \).

Theorem (Mouton, 2009)

Let \(A \) be a complex Banach algebra with unit 1. Let \(a \in A \) and let \(f \) be a complex valued function which is analytic and one-to-one on a neighbourhood of \(\sigma_A(a) \). Then \(S_\partial(f(a)) = f(S_\partial(a)) \), i.e. \(\partial_A(f(a)) = f(\partial_A(a)) \).

Theorem (Mouton, Harte, 2017)

Let \(A \) be a complex Banach algebra with unit 1 and let \(B \) be a closed subalgebra of \(A \) such that \(1 \in B \). Let \(a \in B \) and let \(f \) be a complex valued function which is analytic and one-to-one on a neighbourhood of \(\sigma_B(a) \). Then \(\partial_B(f(a)) = f(\partial_B(a)) \).
THANK YOU