Exactness vs C^*-exactness for certain non-discrete groups

Nicholas Manor

University of Waterloo

July 12, 2019
The reduced crossed product

Given a locally compact group G, we may equip a C^*-algebra A with a continuous action $\alpha: G \to \text{Aut}(A)$ of G. There is an associated C^*-algebra $A\rtimes_r G$ which encodes α, called the reduced crossed product. The symbol "$\rtimes_r G$" may be regarded as a functor from C^*-algebras admitting an action of G to ordinary C^*-algebras. This functor has stimulated research connecting many areas, such as topological dynamics, coarse geometry, and C^*-algebras. In particular, one may ask when $\rtimes_r G$ is an exact functor.
The reduced crossed product

- Given a **locally compact** group G, we may equip a C*-algebra A with a continuous action $\alpha : G \to \text{Aut}(A)$ of G.
Given a **locally compact** group G, we may equip a C*-algebra A with a continuous action $\alpha : G \rightarrow \text{Aut}(A)$ of G.

There is an associated C*-algebra $A \rtimes_r G$ which encodes α, called the reduced crossed product.
The reduced crossed product

Given a **locally compact** group G, we may equip a C*-algebra A with a continuous action $\alpha : G \to \text{Aut}(A)$ of G.

There is an associated C*-algebra $A \rtimes_r G$ which encodes α, called the reduced crossed product.

The symbol “$\rtimes_r G$” may be regarded as a functor from C*-algebras admitting an action of G to ordinary C*-algebras.
The reduced crossed product

- Given a **locally compact** group G, we may equip a C^*-algebra A with a continuous action $\alpha : G \to \text{Aut}(A)$ of G.

- There is an associated C^*-algebra $A \rtimes_r G$ which encodes α, called the reduced crossed product.

- The symbol “$\rtimes_r G$” may be regarded as a functor from C^*-algebras admitting an action of G to ordinary C^*-algebras.

- This functor has stimulated research connecting many areas, such as topological dynamics, coarse geometry, and C^*-algebras.
The reduced crossed product

- Given a **locally compact** group G, we may equip a C^*-algebra A with a continuous action $\alpha : G \to \text{Aut}(A)$ of G.

- There is an associated C^*-algebra $A \rtimes_r G$ which encodes α, called the reduced crossed product.

- The symbol “$\rtimes_r G$” may be regarded as a functor from C^*-algebras admitting an action of G to ordinary C^*-algebras.

- This functor has stimulated research connecting many areas, such as topological dynamics, coarse geometry, and C^*-algebras.

- In particular, one may ask when $\rtimes_r G$ is an exact functor.
A locally compact group G is said to be exact if for every short exact sequence of G-C^*-algebras

$$0 \to I \to A \to B \to 0,$$

the associated sequence of reduced crossed products

$$0 \to I \rtimes_r G \to A \rtimes_r G \to B \rtimes_r G \to 0,$$

is also short exact. When G acts trivially on the first sequence, the second sequence becomes

$$0 \to I \otimes C^*_r(G) \to A \otimes C^*_r(G) \to B \otimes C^*_r(G) \to 0.$$

Hence, if G is exact then $C^*_r(G)$ is an exact C^*-algebra. In this case we will say G is C^*-exact.
Definition (Kirchberg–Wassermann 1999)

A locally compact group G is said to be **exact** if for every short exact sequence of G-C^*-algebras

$$0 \rightarrow I \rightarrow A \rightarrow B \rightarrow 0,$$
A locally compact group G is said to be **exact** if for every short exact sequence of G-C^*-algebras

$$0 \to I \to A \to B \to 0,$$

the associated sequence of reduced crossed products

$$0 \to I \rtimes_r G \to A \rtimes_r G \to B \rtimes_r G \to 0$$

is also short exact.
A locally compact group G is said to be **exact** if for every short exact sequence of G-C^*-algebras

$$0 \to I \to A \to B \to 0,$$

the associated sequence of reduced crossed products

$$0 \to I \rtimes_r G \to A \rtimes_r G \to B \rtimes_r G \to 0$$

is also short exact.

When G acts trivially on the first sequence, the second sequence becomes

$$0 \to I \otimes C^*_r (G) \to A \otimes C^*_r (G) \to B \otimes C^*_r (G) \to 0.$$
Short exact sequences

Definition (Kirchberg–Wassermann 1999)

A locally compact group G is said to be **exact** if for every short exact sequence of G-C^*-algebras

$$0 \to I \to A \to B \to 0,$$

the associated sequence of reduced crossed products

$$0 \to I \rtimes_r G \to A \rtimes_r G \to B \rtimes_r G \to 0$$

is also short exact.

When G acts trivially on the first sequence, the second sequence becomes

$$0 \to I \otimes C^*_r(G) \to A \otimes C^*_r(G) \to B \otimes C^*_r(G) \to 0.$$

Hence, if G is exact then $C^*_r(G)$ is an exact C^*-algebra.
A locally compact group G is said to be **exact** if for every short exact sequence of G-C^*-algebras

$$0 \to I \to A \to B \to 0,$$

the associated sequence of reduced crossed products

$$0 \to I \rtimes_r G \to A \rtimes_r G \to B \rtimes_r G \to 0$$

is also short exact.

When G acts trivially on the first sequence, the second sequence becomes

$$0 \to I \otimes C^*_r(G) \to A \otimes C^*_r(G) \to B \otimes C^*_r(G) \to 0.$$

Hence, if G is exact then $C^*_r(G)$ is an exact C^*-algebra. In this case we will say G is **C^*-exact**.
The work of Anantharaman-Delaroche, Kirchberg–Wassermann and Ozawa shows the following.

Theorem

Let G be a discrete group. The following are equivalent:

1. G is exact.
2. (Dynamical) G is amenable at infinity.
3. (Metric) G has Yu’s property A.
4. (C*-algebraic) G is C*-exact.
The work of Anantharaman-Delaroche, Kirchberg–Wassermann and Ozawa shows the following.

Theorem

Let G be a discrete group. The following are equivalent:

1. G is exact.
2. (Dynamical) G is amenable at infinity.
3. (Metric) G has Yu’s property A.
4. (C∗-algebraic) G is C∗-exact.
The work of Anantharaman-Delaroche, Kirchberg–Wassermann and Ozawa shows the following.

Theorem

Let G be a discrete group. The following are equivalent:

1. G is exact.
2. (Dynamical) G is amenable at infinity.
3. (Metric) G has Yu’s property A.
4. (C∗-algebraic) G is C∗-exact.
Exactness for discrete groups

The work of Anantharaman-Delaroche, Kirchberg–Wassermann and Ozawa shows the following.

Theorem

Let G be a discrete group. The following are equivalent:

1. G is exact.
The work of Anantharaman-Delaroche, Kirchberg–Wassermann and Ozawa shows the following.

Theorem

Let G be a discrete group. The following are equivalent:

1. G is exact.
2. *(Dynamical) G is amenable at infinity.*
The work of Anantharaman-Delaroche, Kirchberg–Wassermann and Ozawa shows the following.

Theorem

Let G be a discrete group. The following are equivalent:

1. G is exact.
2. (Dynamical) G is amenable at infinity.
3. (Metric) G has Yu’s property A.
Exactness for discrete groups

The work of Anantharaman-Delaroche, Kirchberg–Wassermann and Ozawa shows the following.

Theorem

Let G be a discrete group. The following are equivalent:

1. G is exact.
2. (Dynamical) G is amenable at infinity.
3. (Metric) G has Yu’s property A.
4. (C*-algebraic) G is C*-exact.
The work of Anantharaman-Delaroche and Brodzki–Cave–Li shows the following.

Theorem
Let G be a locally compact group. Consider the following conditions:

1. G is exact.
2. (Dynamical) G is amenable at infinity.
3. (Metric) G has Yu’s property A.
4. (C*-algebraic) G is C*-exact.

We have $1 \iff 2 \iff 3 \implies 4$.

Question: Does C*-exactness imply exactness?
The work of Anantharaman-Delaroche and Brodzki–Cave–Li shows the following.

Theorem

Let G be a locally compact group. Consider the following conditions:

1. G is exact.
2. (Dynamical) G is amenable at infinity.
3. (Metric) G has Yu’s property A.
4. (C\mathbb{C}-algebraic) G is C\mathbb{C}-exact.

We have $1 \iff 2 \iff 3 \implies 4$.

Question: Does C\mathbb{C}-exactness imply exactness?
The work of Anantharaman-Delaroche and Brodzki–Cave–Li shows the following.

Theorem

Let G be a locally compact group. Consider the following conditions:

1. G is exact.
2. (Dynamical) G is amenable at infinity.
3. (Metric) G has Yu's property A.
4. (C*-algebraic) G is C*-exact.

We have $1 \iff 2 \iff 3 \Rightarrow 4$.

Question: Does C*-exactness imply exactness?
Exactness for locally compact groups

The work of Anantharaman-Delaroche and Brodzki–Cave–Li shows the following.

Theorem

Let G be a locally compact group. Consider the following conditions:

1. G is exact.
2. (Dynamical) G is amenable at infinity.
3. (Metric) G has Yu’s property A.
4. (C*-algebraic) G is C*-exact.

We have $1 \iff 2 \iff 3 \implies 4$.

Question: Does C*-exactness imply exactness?
The work of Anantharaman-Delaroche and Brodzki–Cave–Li shows the following.

Theorem

Let G be a locally compact group. Consider the following conditions:

1. G is exact.
2. (Dynamical) G is amenable at infinity.
3. (Metric) G has Yu’s property A.
4. (C*-algebraic) G is C*-exact.

We have $1 \iff 2 \iff 3 \implies 4$.
The work of Anantharaman-Delaroche and Brodzki–Cave–Li shows the following.

Theorem

Let G be a locally compact group. Consider the following conditions:

1. G is exact.
2. (Dynamical) G is amenable at infinity.
3. (Metric) G has Yu’s property A.
4. (C*-algebraic) G is C*-exact.

We have $1 \iff 2 \iff 3 \implies 4$.

Question: Does C*-exactness imply exactness?
Recall that C^*-exactness and exactness are equivalent for discrete groups. This result was strengthened in 2002 by Anantharaman-Delaroche.

Theorem

Let G be a locally compact group with property (W). If G is C^*-exact then it is exact. Crann–Tanko showed in 2016 that property (W) is equivalent to inner amenability, providing a large class of groups to which this result applies.
Recall: C*-exactness and exactness are equivalent for discrete groups.
Cases when the two notions of exactness coincide

Recall: C*-exactness and exactness are equivalent for discrete groups. This result was strengthened in 2002 by Anantharaman-Delaroche.
Cases when the two notions of exactness coincide

Recall: C^*-exactness and exactness are equivalent for discrete groups.

This result was strengthened in 2002 by Anantharaman-Delaroche.

Theorem

Let G be a locally compact group with property (W). If G is C^*-exact then it is exact.
Recall: C*-exactness and exactness are equivalent for discrete groups.

This result was strengthened in 2002 by Anantharaman-Delaroche.

Theorem

Let G be a locally compact group with property (W). If G is C*-exact then it is exact.

Crann–Tanko showed in 2016 that property (W) is equivalent to **inner amenability**, providing a large class of groups to which this result applies.
Cases when the two notions of exactness coincide (cont.)

Proposition (M.)

Let G be a locally compact group such that $C^*\text{r}(G)$ admits a tracial state. If G is C^*-exact then it is exact. The implication remains true under open unions.

Theorem (M.)

Let G be a locally compact group, and $(H_i)_{i \in I}$ a family of open subgroups satisfying the following:

- Each $C^*\text{r}(H_i)$ admits a tracial state.
- The union $\bigcup_{i \in I} H_i$ equals G.

If G is C^*-exact then it is exact.
Cases when the two notions of exactness coincide (cont.)

Proposition (M.)

Let G be a locally compact group such that $C^*_r(G)$ admits a tracial state. If G is C^*-exact then it is exact.
Cases when the two notions of exactness coincide (cont.)

Proposition (M.)

Let G be a locally compact group such that $C^*_r(G)$ admits a tracial state. If G is C^*-exact then it is exact.

The implication remains true under open unions.
Cases when the two notions of exactness coincide (cont.)

Proposition (M.)

Let G be a locally compact group such that $C^*_r(G)$ admits a tracial state. If G is C^*-exact then it is exact.

The implication remains true under open unions.

Theorem (M.)

Let G be a locally compact group, and $(H_i)_{i \in I}$ a family of open subgroups satisfying the following:
Cases when the two notions of exactness coincide (cont.)

Proposition (M.)

Let G be a locally compact group such that $C^*_r(G)$ admits a tracial state. If G is C^*-exact then it is exact.

The implication remains true under open unions.

Theorem (M.)

Let G be a locally compact group, and $(H_i)_{i \in I}$ a family of open subgroups satisfying the following:

- Each $C^*_r(H_i)$ admits a tracial state.
Cases when the two notions of exactness coincide (cont.)

Proposition (M.)
Let G be a locally compact group such that $C^*_r(G)$ admits a tracial state. If G is C^*-exact then it is exact.

The implication remains true under open unions.

Theorem (M.)
Let G be a locally compact group, and $(H_i)_{i \in I}$ a family of open subgroups satisfying the following:

- Each $C^*_r(H_i)$ admits a tracial state.
- The union $\bigcup_{i \in I} H_i$ equals G.
Cases when the two notions of exactness coincide (cont.)

Proposition (M.)

Let G be a locally compact group such that $C_r^*(G)$ admits a tracial state. If G is C^*-exact then it is exact.

The implication remains true under open unions.

Theorem (M.)

Let G be a locally compact group, and $(H_i)_{i \in I}$ a family of open subgroups satisfying the following:

- Each $C_r^*(H_i)$ admits a tracial state.
- The union $\bigcup_{i \in I} H_i$ equals G.

If G is C^*-exact then it is exact.
Examples

Proposition (M.)

Let N be an amenable locally compact group, and let H be a discrete group with the property that ev is the only conjugation invariant state on $\ell_\infty(H)$. If $\alpha: H \to \text{Aut}(N)$ is an action such that there is no H-invariant state on $L_\infty(N)$, then $N \rtimes H$ is not inner-amenable.

The reduced C^*-algebra $C^*_r(N \rtimes H)$ admits a tracial state since N is an open normal amenable subgroup in $N \rtimes H$ (Kennedy–Raum 2017), hence our results apply.

Forrest–Spronk–Wiersma showed that $R^2 \rtimes F_6$ is such a group, where the action $F_6 \rtimes R^2$ is induced by the inclusion $F_6 \subseteq \text{SL}_2(R)$.

Work in progress: Find more examples of this kind.
Examples

Proposition (M.)

Let N be an amenable locally compact group, and let H be a discrete group with the property that ev_e is the only conjugation invariant state on $\ell^\infty(H)$.

Forrest–Spronk–Wiersma showed that $R_2 \rtimes F_6$ is such a group, where the action $F_6 \rtimes R_2$ is induced by the inclusion $F_6 \subseteq \text{SL}_2(R)$.

Work in progress: Find more examples of this kind.
Proposition (M.)

Let N be an amenable locally compact group, and let H be a discrete group with the property that e_N is the only conjugation invariant state on $\ell^\infty(H)$. If $\alpha : H \to \text{Aut}(N)$ is an action such that there is no $\alpha(H)$-invariant state on $L^\infty(N)$, then $N \rtimes H$ is not inner-amenable.
Examples

Proposition (M.)

Let N be an amenable locally compact group, and let H be a discrete group with the property that ev_e is the only conjugation invariant state on $\ell^\infty(H)$. If $\alpha : H \rightarrow \text{Aut}(N)$ is an action such that there is no $\alpha(H)$-invariant state on $L^\infty(N)$, then $N \rtimes H$ is not inner-amenable.

The reduced C^*-algebra $C^*_r(N \rtimes H)$ admits a tracial state since N is an open normal amenable subgroup in $N \rtimes H$ (Kennedy–Raum 2017), hence our results apply.
Examples

Proposition (M.)

Let \(N \) be an amenable locally compact group, and let \(H \) be a discrete group with the property that \(\text{ev}_e \) is the only conjugation invariant state on \(\ell^\infty(H) \). If \(\alpha : H \to \text{Aut}(N) \) is an action such that there is no \(\alpha(H) \)-invariant state on \(L^\infty(N) \), then \(N \rtimes H \) is not inner-amenable.

The reduced \(\mathcal{C}^* \)-algebra \(\mathcal{C}_r^*(N \rtimes H) \) admits a tracial state since \(N \) is an open normal amenable subgroup in \(N \rtimes H \) (Kennedy–Raum 2017), hence our results apply.

Forrest–Spronk–Wiersma showed that \(\mathbb{R}^2 \rtimes F_6 \) is such a group, where the action \(F_6 \curvearrowright \mathbb{R}^2 \) is induced by the inclusion \(F_6 \subseteq SL_2(\mathbb{R}) \).
Proposition (M.)

Let N be an amenable locally compact group, and let H be a discrete group with the property that ev_e is the only conjugation invariant state on $\ell^\infty(H)$. If $\alpha : H \to \text{Aut}(N)$ is an action such that there is no $\alpha(H)$-invariant state on $L^\infty(N)$, then $N \rtimes H$ is not inner-amenable.

The reduced C^*-algebra $C^*_r(N \rtimes H)$ admits a tracial state since N is an open normal amenable subgroup in $N \rtimes H$ (Kennedy–Raum 2017), hence our results apply.

Forrest–Spronk–Wiersma showed that $\mathbb{R}^2 \rtimes F_6$ is such a group, where the action $F_6 \curvearrowright \mathbb{R}^2$ is induced by the inclusion $F_6 \subseteq SL_2(\mathbb{R})$.

Work in progress: Find more examples of this kind.
Examples (cont.)

Even among inner amenable groups, our results provide new proofs which don't require the machinery of property (W)/inner amenability: a class of groups considered by Suzuki in the context of non-discrete \mathbb{C}^*-simplicity. The class of totally disconnected IN groups.
Even among inner amenable groups, our results provide new proofs which don’t require the machinery of property (W)/inner amenability:
Even among inner amenable groups, our results provide new proofs which don’t require the machinery of property (W)/inner amenability:

- A class of groups considered by Suzuki in the context of non-discrete C*-simplicity.
Examples (cont.)

Even among inner amenable groups, our results provide new proofs which don’t require the machinery of property (W)/inner amenability:

- A class of groups considered by Suzuki in the context of non-discrete C*-simplicity.
- The class of totally disconnected IN groups.
Suzuki groups

Definition

Let G be a locally compact group with open subgroups $K_n \trianglelefteq L_n \leq G$ for each n. We say G is a Suzuki group if it satisfies the following:

- Each K_n is compact.
- (K_n) forms a neighbourhood base at the identity.
- $\bigcup_n L_n$ is all of G.

In 2016, Suzuki provided examples of non-discrete C*-simple groups in this class. It can be shown that each $C^*_r(L_n)$ has a tracial state. Hence the theorem naturally applies to this class.

Note: Forrest–Spronk–Wiersma showed that many groups in this class do not admit a tracial state.
Let G be a locally compact group with open subgroups $K_n \trianglelefteq L_n \leq G$ for each n. We say G is a **Suzuki group** if it satisfies the following:

1. Each K_n is compact.
2. $(K_n)_n$ forms a neighbourhood base at the identity.
3. $\bigcup L_n$ is all of G.

In 2016, Suzuki provided examples of non-discrete C^*-simple groups in this class. It can be shown that each $C^*\text{-}\text{r}(L_n)$ has a tracial state. Hence the theorem naturally applies to this class.

Note: Forrest–Spronk–Wiersma showed that many groups in this class do not admit a tracial state.
Suzuki groups

Definition

Let G be a locally compact group with open subgroups $K_n \trianglelefteq L_n \leq G$ for each n. We say G is a **Suzuki group** if it satisfies the following:

- Each K_n is compact.

In 2016, Suzuki provided examples of non-discrete C^*-simple groups in this class. It can be shown that each $C^*_{r}(L_n)$ has a tracial state. Hence the theorem naturally applies to this class.

Note: Forrest–Spronk–Wiersma showed that many groups in this class do not admit a tracial state.
Definition

Let G be a locally compact group with open subgroups $K_n \trianglelefteq L_n \leq G$ for each n. We say G is a **Suzuki group** if it satisfies the following:

- Each K_n is compact.
- $(K_n)_n$ forms a neighbourhood base at the identity.
Suzuki groups

Definition

Let G be a locally compact group with open subgroups $K_n \trianglelefteq L_n \leq G$ for each n. We say G is a **Suzuki group** if it satisfies the following:

- Each K_n is compact.
- $(K_n)_n$ forms a neighbourhood base at the identity.
- $\bigcup_n L_n$ is all of G.

In 2016, Suzuki provided examples of non-discrete \mathbb{C}^*-simple groups in this class.

It can be shown that each $\mathbb{C}^r(L_n)$ has a tracial state. Hence the theorem naturally applies to this class.

Note: Forrest–Spronk–Wiersma showed that many groups in this class do not admit a tracial state.
Suzuki groups

Definition

Let G be a locally compact group with open subgroups $K_n \trianglelefteq L_n \leq G$ for each n. We say G is a **Suzuki group** if it satisfies the following:

- Each K_n is compact.
- $(K_n)_n$ forms a neighbourhood base at the identity.
- $\bigcup_n L_n$ is all of G.

In 2016, Suzuki provided examples of non-discrete C^*-simple groups in this class.
Suzuki groups

Definition

Let G be a locally compact group with open subgroups $K_n \triangleleft L_n \leq G$ for each n. We say G is a **Suzuki group** if it satisfies the following:

- Each K_n is compact.
- $(K_n)_n$ forms a neighbourhood base at the identity.
- $\bigcup_n L_n$ is all of G.

In 2016, Suzuki provided examples of non-discrete \mathbb{C}^*-simple groups in this class.

It can be shown that each $C^*_r(L_n)$ has a tracial state. Hence the theorem naturally applies to this class.
Suzuki groups

Definition

Let G be a locally compact group with open subgroups $K_n \triangleleft L_n \leq G$ for each n. We say G is a **Suzuki group** if it satisfies the following:

- Each K_n is compact.
- $(K_n)_n$ forms a neighbourhood base at the identity.
- $\bigcup_n L_n$ is all of G.

In 2016, Suzuki provided examples of non-discrete \mathbb{C}^*-simple groups in this class.

It can be shown that each $\mathbb{C}_r^*(L_n)$ has a tracial state. Hence the theorem naturally applies to this class.

Note: Forrest–Spronk–Wiersma showed that many groups in this class do not admit a tracial state.
Totally disconnected IN groups

A locally compact group G is called:

Totally disconnected if its connected components are singletons.

IN if it admits a conjugation invariant compact neighbourhood of the identity.

There are many natural examples of IN groups:

Abelian groups: any compact neighbourhood of the identity.

Discrete groups: the singleton $\{e\}$.

Groups admitting a compact open normal subgroup, e.g., $\prod \Gamma \cdot \Gamma$.

NOT $\text{SL}_n(C)$: elements may be conjugated arbitrarily far from the identity.

Proposition

Let G be a totally disconnected IN group. If G is C^\ast-exact then it is exact.
A locally compact group \(G \) is called:

- Totally disconnected IN groups

- If its connected components are singletons.

- If it admits a conjugation invariant compact neighbourhood of the identity.

There are many natural examples of IN groups:

- Abelian groups: any compact neighbourhood of the identity.
- Discrete groups: the singleton \(\{ e \} \).
- Groups admitting a compact open normal subgroup, e.g., \(\prod_{\Gamma} K \rtimes \Gamma \).
- \(\text{NOT } \text{SL}_n(\mathbb{C}) \): elements may be conjugated arbitrarily far from the identity.

Proposition

Let \(G \) be a totally disconnected IN group. If \(G \) is \(C^* \)-exact then it is exact.
A locally compact group G is called:
- **Totally disconnected** if its connected components are singletons.
A locally compact group G is called:

- **Totally disconnected** if its connected components are singletons.
- **IN** if it admits a conjugation invariant compact neighbourhood of the identity.

Proposition

Let G be a totally disconnected IN group. If G is C^\ast-exact then it is exact.
A locally compact group G is called:

- **Totally disconnected** if its connected components are singletons.
- **IN** if it admits a conjugation invariant compact neighbourhood of the identity.

There are many natural examples of IN groups:
Totally disconnected IN groups

A locally compact group G is called:

- **Totally disconnected** if its connected components are singletons.
- **IN** if it admits a conjugation invariant compact neighbourhood of the identity.

There are many natural examples of IN groups:

- Abelian groups: any compact neighbourhood of the identity.
A locally compact group G is called:

- **Totally disconnected** if its connected components are singletons.
- **IN** if it admits a conjugation invariant compact neighbourhood of the identity.

There are many natural examples of IN groups:

- Abelian groups: any compact neighbourhood of the identity.
- Discrete groups: the singleton $\{e\}$.
Totally disconnected IN groups

A locally compact group G is called:

- **Totally disconnected** if its connected components are singletons.
- **IN** if it admits a conjugation invariant compact neighbourhood of the identity.

There are many natural examples of IN groups:

- Abelian groups: any compact neighbourhood of the identity.
- Discrete groups: the singleton $\{e\}$.
- Groups admitting a compact open normal subgroup, e.g., $\prod_\Gamma K \rtimes \Gamma$.

\[NOT SL_n(C): \] elements may be conjugated arbitrarily far from the identity.

Proposition Let G be a totally disconnected IN group. If G is C^\ast-exact then it is exact.
Totally disconnected IN groups

A locally compact group G is called:

- **Totally disconnected** if its connected components are singletons.
- **IN** if it admits a conjugation invariant compact neighbourhood of the identity.

There are many natural examples of IN groups:

- **Abelian groups**: any compact neighbourhood of the identity.
- **Discrete groups**: the singleton $\{e\}$.
- **Groups admitting a compact open normal subgroup**, e.g., $\prod_{\Gamma} K \rtimes \Gamma$.
- **NOT $SL_n(\mathbb{C})$**: elements may be conjugated arbitrarily far from the identity.
Totally disconnected IN groups

A locally compact group G is called:
- **Totally disconnected** if its connected components are singletons.
- **IN** if it admits a conjugation invariant compact neighbourhood of the identity.

There are many natural examples of IN groups:
- Abelian groups: any compact neighbourhood of the identity.
- Discrete groups: the singleton $\{e\}$.
- Groups admitting a compact open normal subgroup, e.g., $\prod_{\Gamma} K \rtimes \Gamma$.
- **NOT** $SL_n(\mathbb{C})$: elements may be conjugated arbitrarily far from the identity.

Proposition

Let G be a totally disconnected IN group. If G is C^*-exact then it is exact.
Why mention these examples?

Theorem (Cave-Zacharias 2018)
If there is a locally compact group which is C^*-exact but not exact, there
is necessarily a totally disconnected unimodular such group.

Suzuki groups and totally disconnected IN groups are examples of totally
disconnected unimodular groups, and act as a proof of concept for
techniques tackling this larger class.

Lemma
Let G be a totally disconnected group, and $K \leq G$ a compact open
subgroup. The canonical vector state on the Hecke C^*-algebra
$C^*_r(G, K)$ is
tracial if and only if G is unimodular.

Thank you!
Why mention these examples?

Theorem (Cave-Zacharias 2018)

If there is a locally compact group which is C^-exact but not exact, there is necessarily a totally disconnected unimodular such group.*

Lemma

Let G be a totally disconnected group, and $K \leq G$ a compact open subgroup. The canonical vector state on the Hecke C^*-algebra $C^r_r(G, K)$ is tracial if and only if G is unimodular.

Thank you!
Why mention these examples?

Theorem (Cave-Zacharias 2018)

If there is a locally compact group which is C-exact but not exact, there is necessarily a totally disconnected unimodular such group.*

Suzuki groups and totally disconnected IN groups are examples of totally disconnected unimodular groups, and act as a proof of concept for techniques tackling this larger class.
Why mention these examples?

Theorem (Cave-Zacharias 2018)

If there is a locally compact group which is C^*-exact but not exact, there is necessarily a totally disconnected unimodular such group.

Suzuki groups and totally disconnected IN groups are examples of totally disconnected unimodular groups, and act as a proof of concept for techniques tackling this larger class.

Lemma

Let G be a totally disconnected group, and $K \leq G$ a compact open subgroup. The canonical vector state on the Hecke C^*-algebra $C^*_r(G, K)$ is tracial if and only if G is unimodular.
Theorem (Cave-Zacharias 2018)

If there is a locally compact group which is C^*-exact but not exact, there is necessarily a totally disconnected unimodular such group.

Suzuki groups and totally disconnected IN groups are examples of totally disconnected unimodular groups, and act as a proof of concept for techniques tackling this larger class.

Lemma

Let G be a totally disconnected group, and $K \leq G$ a compact open subgroup. The canonical vector state on the Hecke C^*-algebra $C^*_r(G,K)$ is tracial if and only if G is unimodular.

Thank you!