The hull-kernel topology on the Berkovich spectrum for commutative Banach rings

Chi-Wai Leung
(joint work with Cheuk-Yin Lee)

Department of Mathematics
The Chinese University of Hong Kong

Banach Algebras 2019, July 11-18
Winnipeg, Canada
Introduction

Let A denote a commutative unital Banach ring with a complete sub-multiplicative norm $\| \cdot \|$, i.e. the complete metric given by a function $\| \cdot \| : A \to [0, \infty)$ which satisfies the conditions: $\|f\| = 0 \iff f = 0$; $\|f - g\| \leq \|f\| + \|g\|$; $\|fg\| \leq \|f\|\|g\|$ for all f, g in A and $\|1\| = 1$.

From now on, all Banach rings are assumed to be commutative and unital.
Recall that the *Berekovich spectrum* of A, write $\mathcal{M}(A)$, is the set of all non-zero multiplicative bounded semi-norms x (also write $\lvert \cdot \rvert_x := x$) on A and is equipped with the pointwise convergence topology (also called the *Gelfand topology*). In here bounded means that $\lvert \cdot \rvert_x \leq \lVert \cdot \rVert$ on A.

Notice that if A is a commutative unital complex Banach algebra, then $\mathcal{M}(A)$ is homeomorphic to the usual *Gelfand spectrum* of A due to the Gelfand-Mazur Theorem.

Example:
If the set of all integers \mathbb{Z} is endowed with the usual absolute $\lvert \cdot \rvert_\infty$, then the Ostrowski’s Theorem tells us that $\mathcal{M}(\mathbb{Z}) = \{\lvert \cdot \rvert_\infty^a : 0 < a \leq 1\} \cup \{\lvert \cdot \rvert_p^a : a = -\log \varepsilon / \log p : 0 < \varepsilon < 1\} \cup \{\lvert \cdot \rvert_0, \lvert \cdot \rvert_{p,0}\}$, here $\lvert \cdot \rvert_0$ denotes the trivial absolute value, i.e., $\lvert m \rvert_0 \equiv 1$ for $m \neq 0$, and $\lvert \cdot \rvert_{p,0}$ is the seminorm induced by the trivial norm on $\mathbb{Z}/p\mathbb{Z}$.
Introduction

Theorem

$\mathcal{M}(A)$ is always a non-empty compact Hausdorff space.

(See: V.G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical surveys and monographs, AMS, (1990).)
Regularity for Banach rings

Recall that a complex unital commutative Banach algebra B is said to be regular if every w^*-closed subset E of the character space $\Delta(B)$ and $\varphi \notin E$, there exists an element $f \in B$ such that $\hat{f}(E) \equiv 0$ and $\hat{f}(\varphi) \neq 0$, where \hat{f} denotes the usual Gelfand transform of f.

Example:
Urysohn’s Lemma implies that $C(X)$ is regular for any compact Hausdorff space X.

Fact: B is regular if and only if $\Delta(B)$ is Hausdorff in the hull-kernel topology.
Regularity for Banach rings

For each element x in $\mathcal{M}(A)$, put $\ker x := \{ f \in A : |f|_x = 0 \}$ the kernel of x. Note that the $\ker x$ is a norm closed prime ideal of A.

Let $\mathcal{H}(x)$ be the completion of the quotient field of $A/\ker x$ with respect to the absolute value, also write $|\cdot|_x$, induced by the semi-norm $|\cdot|_x$.

An absolute value $|\cdot|$ on a field K in here means that it is a multiplicative norm.

For convenience we write $\prod^\infty(A)$ for the set of all elements u in

$$\prod_{x \in \mathcal{M}(A)} \mathcal{H}(x)$$

which are bounded, i.e.,

$$\|u\|_\infty := \sup_{x \in \mathcal{M}(A)} |u(x)|_{\mathcal{H}(x)} < \infty.$$

Also, $\prod^\infty(A)$ is equipped with the $\|\cdot\|_\infty$-topology. Then $\prod^\infty(A)$ becomes a commutative unital Banach ring.
Regularity for Banach rings

As in the case of a complex Banach algebra, the Gelfand transform \mathcal{G} is defined by

$$\mathcal{G} : A \longrightarrow \Pi^\infty(A) : f \mapsto \hat{f}$$

where $\hat{f}(x) := f + \ker x \in \mathcal{H}(x)(:= \text{Frac}(A/ \ker x))$.

Definition

A commutative unital Banach ring A is said to be *regular* if the condition hold:

if E is a Gelfand closed subset of $\mathcal{M}(A)$ and $x_0 \in \mathcal{M}(A) \setminus E$, then there exists an element $f \in A$ such that $\hat{f}(x_0) \neq 0$ and $\hat{f}(E) \equiv 0$.

It is clear that if there is $x \in \mathcal{M}(A)$ with $\ker x = 0$, then A must not be regular. For example, the ring of integers \mathbb{Z} is not regular.
Now the \textit{hull-kernel topology} on $\mathcal{M}(A)$ is given by the following way. For a subset E of $\mathcal{M}(A)$, the \textit{hull-kernel closure} of E, write \overline{E}^{hk}, is defined by

$$\overline{E}^{hk} := \{x \in \mathcal{M}(A) : \bigcap_{y \in E} \ker y \subseteq \ker x\}.$$

One can directly check that the hull-kernel topology on $\mathcal{M}(A)$ is a T_0 topology. Also, the Gelfand topology is always stronger than the hull-kernel topology on $\mathcal{M}(A)$.
Regularity for Banach rings

Proposition

Let A be a unital commutative Banach ring. Then the following statements are equivalent.

(i) A is regular.

(ii) The Gelfand topology and the hull-kernel topology are equivalent on $\mathcal{M}(A)$.

(iii) $\mathcal{M}(A)$ is Hausdorff in the hull-kernel topology.
Regularity for Banach rings

Question:

If k is a complete valuation field and X is a topological space, is the Banach algebra of all bounded continuous k-valued functions defined on X, write $C^b(X, k)$, regular?
Recall that a topological space T is said to be zero-dimension if the set of all closed and open (clopen) subsets of T forms an open basis of T. Let T be a zero-dimension space. Put

$$CO(T) := \{ U : U \text{ is a clopen subset of } T \}.$$

Recall that an ultrafilter of $CO(T)$ is a collection φ of clopen subsets of T which satisfies the following conditions: (i) the empty set $\emptyset \not\in \varphi$; (ii) if $A, B \in \varphi$ implies $A \cap B \in \varphi$; (iii) if $A \subseteq B$ with $A \in \varphi$ and $B \in CO(T)$, then $B \in \varphi$; and (iv) $A \in \varphi$ or the complement $A^c \in \varphi$ for each $A \in CO(T)$.

Regularity for Banach rings

The ultrafilter space, write $UF(T)$, of T is the set of all ultrafilters of $CO(T)$ which is equipped with the topology given by the following way:

A subset $\mathcal{W} \subseteq UF(T)$ is open if for each $\varphi_0 \in \mathcal{W}$, there exists an element $J_0 \in \varphi_0$ such that $\varphi \in \mathcal{W}$ whenever $J_0 \in \varphi$.
Regularity for Banach spaces

Let $C^b(T, k)$ be the space of bounded k-valued continuous functions defined on T and let $|\cdot|_k$ be the valuation of k. For each $\varphi \in UF(T)$ and $f \in C^b(T, k)$, put

$$|f|_\varphi := \inf_{J \in \varphi} \sup_{t \in J} |f(t)|_k.$$ \hfill (1)

The following result was first shown by Berkovich for the case of T being discrete.

Theorem

(Mihara): the Berkovich spectrum of $C^b(T, k)$ can be identified with the ultrafilter space $UF(T)$ under the homeomorphism

$$\Psi : \varphi \in UF(T) \mapsto |\cdot|_\varphi \in \mathcal{M}(C^b(T, k))$$

Regularity for Banach rings

Theorem
Using the notation as above, if T is a zero-dimension space, then the commutative unital Banach ring $C^b(T, k)$ is regular. Consequently, the Berkovich spectrum $\mathcal{M}(C^b(T, k))$ is Hausdorff in the hull-kernel topology.
Regularity for Banach rings

Proof.
Let E be a closed subset of $\mathcal{M}(C^b(T, k))$ and $\varphi_0 \notin E$. Now for each element $\varphi_l \in E$, then by the maximality of φ_l and φ_0, there exists a clopen subset J_l of T such that $J_l \in \varphi_l$ but $J_l \notin \varphi_0$.
Define a k-valued function g_l on T by $g_l := 1 - \chi_{J_l}$. Then $g_l \in C^b(T, k)$ because the set J_l is clopen.
Now put $V_l := \{\varphi \in UF(T) : J_l \in \varphi\}$. Then by the definition of the topology on $UF(T)$, V_l is an open neighborhood of φ_l in $UF(T)$ and thus, V_l is also open in $\mathcal{M}(C^b(T, k))$ under the identification Ψ by using Mihara’s Theorem above. Also Eq 1 gives $|g_l|_{\varphi} = |g_l|_{\varphi_l} = 0$ for all $\varphi \in V_l$ and $|g_l|_{\varphi_0} = 1$ because $J_l^c \in \varphi_0$.
On the other hand, since E is compact, there are finitely many elements, say $\varphi_1, \ldots, \varphi_N$, in E such that $E \subseteq V_1 \cup \cdots \cup V_N$, where V_j’s are the corresponding open neighborhood of φ_l in $\mathcal{M}(C^b(T, k))$ constructed as above.
Let f be the product $g_1 \cdots g_N \in C^b(T, k)$. Then $|f|_{\varphi_0} = 1$ and $\hat{f}(E) \equiv 0$. Thus, $C^b(T, k)$ is regular and the last assertion follows from Proposition 3 immediately. \qed
Using the same argument as the Theorem above, we also have the following result.

Proposition

Let I be a discrete set. Let $\{ k_i : i \in I \}$ be a family of complete valuation fields. Then the Banach ring $\prod_{i \in I}^{b} k_i := \{ a \in \prod_{i \in I} k_i : \sup_{i} |a(i)|_{k_i} < \infty \}$ is regular.
Finiteness of $\mathcal{M}(A)$

By considering the dual transform of G, that is,

$$\hat{G} : \mathcal{M}(\Pi^\infty(A)) \to \mathcal{M}(A)$$

given by $\hat{G}(\varphi)(f) := |\hat{f}|_\varphi$ for $\varphi \in \mathcal{M}(\Pi^\infty(A))$ and $f \in A$, we have the following

Proposition

If the image of Gelfand transform G is dense in $\Pi^\infty(A)$, then the spectrum $\mathcal{M}(A)$ is finite.

Question

(i) *Does the converse of the above Proposition hold?*

(ii) *Is A is regular if $\mathcal{M}(A)$ is finite?*
Finiteness of $\mathcal{M}(A)$

Recall that the spectral radius $\rho(f)$ of an element f in A is defined by $\rho(f) := \max_{x \in \mathcal{M}(A)} |f|_x$.

$$\rho(f) = \lim_n \|f^n\|^{1/n}.$$

From this when A is uniform, i.e. $\|f^2\| = \|f\|^2$ for all f in A, then the Gelfand transform $\mathcal{G} : A \to \Pi^\infty(A)$ is an isometry.
Finiteness of $\mathcal{M}(A)$

Now if A^u denotes the completion of $A/\ker \rho$ under the spectral radius ρ, then A^u is a uniform Banach ring.

Notice that from the definition of spectral radius ρ, one can directly check that the map $\tilde{\phi}_u : \mathcal{M}(A^u) \rightarrow \mathcal{M}(A)$ which is induced by the canonical ring homomorphism $\phi_u : A \rightarrow A^u$ is a homeomorphism.
Finiteness of $\mathcal{M}(A)$

Theorem

Assume that x is non-trivial on $\mathcal{H}(x)$ for all $x \in \mathcal{M}(A)$. Then the Berkovich spectrum $\mathcal{M}(A)$ is finite if and only if the image $\mathcal{G}(A)$ is dense in $\Pi^\infty(A)$.
Finiteness of $\mathcal{M}(A)$

Outline Proof (\Rightarrow):
Let $\mathcal{M}(A) = \{x_1, ..., x_n\}$.

- If $G(A^u)$ is dense in $\Pi^\infty(A^u)$, then $G(A)$ is also dense in $\Pi^\infty(A)$.
 Hence, we may assume that A is uniform.

- Assume that $\mathcal{M}(A)$ is finite and each element x in $\mathcal{M}(A)$ is non-trivial on $\mathcal{H}(x)$. Then $\ker x$ is a maximal ideal for all $x \in \mathcal{M}(A)$.

- We need the following Artin-Whaples approximation theorem: if $x_1, ..., x_n$ are the pairwise inequivalent non-trivial absolute values on a field K, then for any $\varepsilon > 0$ and $a_1, ..., a_n$ in K, one can find an element a in K such that $|a - a_k|_{x_k} < \varepsilon$ for all $k = 1, ..., n$.

Then one can show that $G(A) = A/\ker x_1 \times \cdots \times A/\ker x_n = \mathcal{H}(x_1) \times \cdots \times \mathcal{H}(x_n)$ as desired.
Corollary

If A is uniform with finite spectrum, then A is regular.

Proof.

By Theorem 9, we see that the Gelfand transform of A is an isometric isomorphic from A onto $\Pi^\infty(A) := \prod_{x \in \mathcal{M}(A)}^b \mathcal{H}(x)$. So the result follows from Proposition 6 immediately. \qed
Finiteness of $\mathcal{M}(A)$

Remark
When A is a commutative unital Banach algebra over a valuation field, then the above theorem can be directly obtained by the Shilov Idempotent Theorem: for each non-empty closed and open subset D of $\mathcal{M}(A)$, there is an idempotent e in A such that $\hat{e} \equiv 1$ on D and is equal to 0 outside D.

Indeed, as in the proof of the Theorem above, we may assume that A is uniform. Let $\mathcal{M}(A) = \{x_1, ..., x_n\}$ as before. To apply Shilov Idempotent Theorem, we can obtain the idempotents $e_1, ..., e_n$ in A such that $\hat{e_i}(x_j) = \delta_{ij}1 \in \mathcal{H}(x_j)$. Hence, we have $e_ie_j = \delta_{ij}1$ because the Gelfand transform G is a ring monomorphism. Then $A = e_1A \times \cdots \times e_nA$ as the rings isomorphic. From this, we can see that the completion of $A/\ker x_k$ with respect to \bar{x}_k is a valuation field, where \bar{x}_k is the multiplicative norm on $A/\ker x_k$ induced by x_k. This, together with the isometric property of G, the canonical map (the restriction of G) is an isometric isomorphism from e_kA onto $A/\ker x_k = A/\ker x_k |_{\bar{x}_k} = \mathcal{H}(x_k)$. This is as desired.
Thank you!!