Examples of Direct and Inverse Image Proofs

Several students were asking: what does a proof that f(E) is a particular set look like, and similarly for $f^{-1}(H)$? Here is an example.

Example One:

Problem: Let f be the function with domain \mathbb{R} and codomain \mathbb{R} given by $f(x) = 1 + x^2$. Let

$$E = \{ x \in \mathbb{R} : x < -3 \} \cup \{ x \in \mathbb{R} : x \ge 2 \}.$$

Find f(E) and $f^{-1}(H)$. Give a proof.

Solution # 1:

We claim that $f(E) = \{y : y \ge 5\}$. Proof: First assume that $y \in f(E)$. So there is some $x \in E$ such that f(x) = y. Either x < -3 or $x \ge 2$, so either $x^2 > 9$ or $x^2 \ge 4$. So $x^2 \ge 4$. So $y = 1 + x^2 \ge 5$. Therefore $f(E) \subseteq \{y : y \ge 5\}$.

Now assume $y \ge 5$. Then $y - 1 \ge 4$, so $\sqrt{y - 1} \ge 2$. So $\sqrt{y - 1} \in E$. Since $f(\sqrt{y - 1}) = 1 + (\sqrt{y - 1})^2 = y, y \in f(E)$. Therefore $\{y : y \ge 5\} \subseteq f(E)$. This proves the claim.

You could also write the same argument more symbolically:

Solution # 2: $f(E) = \{y : y \ge 5\}.$

 $f(E) \subset \{y : y \ge 5\}$. Assume that $y \in f(E)$. There is an $x \in E$ such that f(x) = y.

$$\begin{aligned} x \in E \Rightarrow x < -3 \text{ or } x \ge 2 \\ \Rightarrow x^2 > 9 \text{ or } x^2 \ge 4 \\ \Rightarrow 1 + x^2 > 10 \text{ or } 1 + x^2 \ge 5 \\ \Rightarrow 1 + x^2 \ge 5. \end{aligned}$$

So $f(E) \subset \{y : y \ge 5\}$.

 $\{y: y \ge 5 \subseteq f(E)\}$: Assume that $y \in \{y: y \ge 5\}$.

$$\begin{split} y \geq 5 \Rightarrow y-1 \geq 4 \\ \Rightarrow \sqrt{y-1} \geq 2 \\ \Rightarrow \sqrt{y-1} \in E \\ \Rightarrow y = 1 + (\sqrt{y-1})^2 = f(\sqrt{y-1}) \in f(E). \end{split}$$

So $\{y : y \ge 5\} \subseteq f(E)$.

Example Two:

Problem: Let $f(x) = 1 + x^2$ with domain \mathbb{R} and codomain \mathbb{R} as above and let

$$H = \{ y \in \mathbb{R} : y > 10 \}.$$

Find $f^{-1}(H)$. Give a proof.

Solution # 1:

We claim that $f^{-1}(H) = \{x : x < -3 \text{ or } x > 3\}$. $f^{-1}(H) \subseteq \{x : x < -3 \text{ or } x > 3\}$:

$$x \in f^{-1}(H) \Rightarrow f(x) \in H$$

$$\Rightarrow 1 + x^{2} > 10$$

$$\Rightarrow x^{2} > 9$$

$$\Rightarrow x > 3 \text{ or } x < -3.$$

So $f^{-1}(H) \subseteq \{x : x < -3 \text{ or } x > 3\}.$ $\{x : x < -3 \text{ or } x > 3\} \subseteq f^{-1}(H):$

$$x < -3 \text{ or } x > 3 \Rightarrow x^2 > 9$$

 $\Rightarrow 1 + x^2 > 10$
 $\Rightarrow f(x) \in H.$

So $\{x : x < -3 \text{ or } x > 3\} \subseteq f^{-1}(H)$.

Solution # 2:

We claim that $f^{-1}(H) = \{x : x < -3 \text{ or } x > 3\}$. Proof:

$$\begin{aligned} x \in f^{-1}(H) \Leftrightarrow f(x) \in H \\ \Leftrightarrow 1 + x^2 > 10 \\ \Leftrightarrow x^2 > 9 \\ \Leftrightarrow x > 3 \text{ or } x < -3. \end{aligned}$$

So $f^{-1}(H) = \{x : x < -3 \text{ or } x > 3\}.$

A few tips:

• You do NOT need to quote the real number properties for questions from Section 1 (they are not even covered yet in Section 1 of the text).

• You must prove both set inclusions. A common mistake is to only prove one inclusion.

• More than half of the class will make errors when using \Leftrightarrow . I recommend avoiding it at first.

• Even symbolic claims sound like complete sentences when read allowed. For example, "x < -3 or $x > 3 \Rightarrow x^2 > 9$ " means "if x is less than -3 or x is greater than 3 then x squared is greater than nine. If you read it allowed and it doesn't sound grammatical, then probably you're making a mistake. The verb in a phrase is often "=", "<", "∃" ("there exists"), and the like. " \Rightarrow " is not a verb.