Examples of Direct and Inverse Image Proofs

Several students were asking: what does a proof that $f(E)$ is a particular set look like, and similarly for $f^{-1}(H)$? Here is an example.

Example One:

Problem: Let f be the function with domain \mathbb{R} and codomain \mathbb{R} given by $f(x)=1+x^{2}$. Let

$$
E=\{x \in \mathbb{R}: x<-3\} \cup\{x \in \mathbb{R}: x \geq 2\}
$$

Find $f(E)$ and $f^{-1}(H)$. Give a proof.

Solution \# 1:

We claim that $f(E)=\{y: y \geq 5\}$. Proof: First assume that $y \in f(E)$. So there is some $x \in E$ such that $f(x)=y$. Either $x<-3$ or $x \geq 2$, so either $x^{2}>9$ or $x^{2} \geq 4$. So $x^{2} \geq 4$. So $y=1+x^{2} \geq 5$. Therefore $f(E) \subseteq\{y: y \geq 5\}$.

Now assume $y \geq 5$. Then $y-1 \geq 4$, so $\sqrt{y-1} \geq 2$. So $\sqrt{y-1} \in E$. Since $f(\sqrt{y-1})=$ $1+(\sqrt{y-1})^{2}=y, y \in f(E)$. Therefore $\{y: y \geq 5\} \subseteq f(E)$. This proves the claim.

You could also write the same argument more symbolically:
Solution \# 2: $f(E)=\{y: y \geq 5\}$.
$\underline{f(E) \subset\{y: y \geq 5\}}$. Assume that $y \in f(E)$. There is an $x \in E$ such that $f(x)=y$.

$$
\begin{aligned}
x \in E & \Rightarrow x<-3 \text { or } x \geq 2 \\
& \Rightarrow x^{2}>9 \text { or } x^{2} \geq 4 \\
& \Rightarrow 1+x^{2}>10 \text { or } 1+x^{2} \geq 5 \\
& \Rightarrow 1+x^{2} \geq 5
\end{aligned}
$$

So $f(E) \subset\{y: y \geq 5\}$.
$\underline{\{y: y \geq 5 \subseteq f(E)\}}:$ Assume that $y \in\{y: y \geq 5\}$.

$$
\begin{aligned}
y \geq 5 & \Rightarrow y-1 \geq 4 \\
& \Rightarrow \sqrt{y-1} \geq 2 \\
& \Rightarrow \sqrt{y-1} \in E \\
& \Rightarrow y=1+(\sqrt{y-1})^{2}=f(\sqrt{y-1}) \in f(E)
\end{aligned}
$$

So $\{y: y \geq 5\} \subseteq f(E)$.

Example Two:

Problem: Let $f(x)=1+x^{2}$ with domain \mathbb{R} and codomain \mathbb{R} as above and let

$$
H=\{y \in \mathbb{R}: y>10\}
$$

Find $f^{-1}(H)$. Give a proof.

Solution \# 1:

We claim that $f^{-1}(H)=\{x: x<-3$ or $x>3\}$.
$\underline{f^{-1}(H) \subseteq\{x: x<-3 \text { or } x>3\}:}$

$$
\begin{aligned}
x \in f^{-1}(H) & \Rightarrow f(x) \in H \\
& \Rightarrow 1+x^{2}>10 \\
& \Rightarrow x^{2}>9 \\
& \Rightarrow x>3 \text { or } x<-3 .
\end{aligned}
$$

So $f^{-1}(H) \subseteq\{x: x<-3$ or $x>3\}$.
$\underline{\{x: x<-3 \text { or } x>3\} \subseteq f^{-1}(H)}:$

$$
\begin{aligned}
x<-3 \text { or } x>3 & \Rightarrow x^{2}>9 \\
& \Rightarrow 1+x^{2}>10 \\
& \Rightarrow f(x) \in H .
\end{aligned}
$$

So $\{x: x<-3$ or $x>3\} \subseteq f^{-1}(H)$.

Solution \# 2:

We claim that $f^{-1}(H)=\{x: x<-3$ or $x>3\}$. Proof:

$$
\begin{aligned}
x \in f^{-1}(H) & \Leftrightarrow f(x) \in H \\
& \Leftrightarrow 1+x^{2}>10 \\
& \Leftrightarrow x^{2}>9 \\
& \Leftrightarrow x>3 \text { or } x<-3 .
\end{aligned}
$$

So $f^{-1}(H)=\{x: x<-3$ or $x>3\}$.

A few tips:

- You do NOT need to quote the real number properties for questions from Section 1 (they are not even covered yet in Section 1 of the text).
- You must prove both set inclusions. A common mistake is to only prove one inclusion.
- More than half of the class will make errors when using \Leftrightarrow. I recommend avoiding it at first.
- Even symbolic claims sound like complete sentences when read allowed. For example, " $x<-3$ or $x>3 \Rightarrow x^{2}>9$ " means "if x is less than -3 or x is greater than 3 then x squared is greater than nine. If you read it allowed and it doesn't sound grammatical, then probably you're making a mistake. The verb in a phrase is often "=", "<", " " ("there exists"), and the like. " \Rightarrow " is not a verb.

