cone

double cone

Ellipse

If we cut the cone with a plane that intersects all the slant heights, the resulting shape is an *ellipse*.

Circle

If we cut the cone with a plane that intersects all the slant heights and is perpendicular to the axis, the resulting shape is an *circle*. A circle is a special case of an ellipse.

Parabola

If we cut the cone with a plane that is parallel to a tangent plane, the resulting shape is an *parabola*

Note: This is unbounded, since the cone is unbounded

hyperbola

If we cut the double cone with a plane that intersects both nappe, the resulting shape is an *hyperbola*

Conic sections and quadratic equations

circle
$$x^2 + y^2 = r^2$$

ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
parabola $y = x^2$
hyperbola $x^2 - y^2 = a$

In General, a 2^{nd} degree equation in x and y is

$$ax^2 + by^2 + cxy + dx + ey + f = 0$$

All non-trivial equations of this type are conic sections.

Conic constructions - parabola

Conic constructions - ellipse (circle)

Conic constructions - circle

Conic constructions - hyperbola

Conic constructions - cardiod (1)

Conic constructions - cardiod (2)

