BERNOULLI NUMBERS, UMBRAL CALCULUS, AND UNIVERSAL ALGEBRA

BOB QUACKENBUSH

Abstract. Define $B^{0}:=1$ and $(B+1)^{n}-B^{n}=0$ for $n \geq 2$. That is, $B_{0}=1, B_{1}=-1 / 2, B_{2}=1 / 6, B_{3}=0, B_{4}=1 / 30, B_{5}=$ $0, \ldots$ We refer to B_{k} as the $k^{t h}$ Bernoulli number. Let us rewrite this definition into one equation:

$$
e^{(B+1) x}-e^{B x}=x
$$

Hence,

$$
x=e^{(B+1) x}-e^{B x}=e^{B x} e^{x}-e^{B x} 1=e^{B x}\left(e^{x}-1\right)
$$

and so,

$$
e^{B x}=\frac{x}{e^{x}-1} .
$$

But $\frac{x}{e^{x}-1}+\frac{x}{2}$ is an even function, and so $B_{2 n+1}=0$ for $n \geq 1$.
This is the basic Umbral Calculus argument for the Bernoulli numbers; I will explain Umbral Calculus in terms of modern algebra.

