Injective, Pure-injective, and Saturated Modules A brief overview — Corrected and expanded, February 2024

T. G. Kucera

Department of Mathematics, University of Manitoba

Rings and Modules Seminar, January 30, 2024

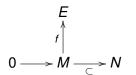
Injective modules

- *R* is a ring with unit;
- All modules are left *R*-modules;
- All ideals are left ideals;
- 0

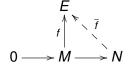
٩

A module _RE is injective iff

Every diagram of left *R*-modules of the form:



can be completed as follows:



- Abelian groups \mathbb{Q} ; $\mathbb{Z}(p^{\infty})$ (*p* a prime); \mathbb{R}/\mathbb{Z} .
- Any (non-zero) vector space over a division ring.
- Any direct summand of an injective module;
- Any direct product of injective modules;
- Every non zero module is injective iff *R* is semisimple.

Injective modules: Baer's criterion

A module _RE is injective iff

Every diagram of a left ideal of R of the form:

can be completed as follows:

Set Theory!

The proof requires the use of the Axiom of Choice. In fact, the statement " \mathbb{Q} is an injective abelian group" implies a fragment of Countable AC.

Let $\overline{x} = \langle x_j \rangle_{j \in J}$ be a (possibly infinite!) list of distinct variables and *N* a left *R*-module.

linear equation over N

A linear equation in \overline{x} over N is just some finite linear combination

$$\sum_{j\in J}r_jx_j=n$$
 ,

(that is, $r_j = 0$ for all but finitely many $j \in J$), where each $r_j \in R$ and $n \in N$.

System of linear equations

A system of linear equations in \overline{x} over *N* is just some set, possibly infinite, of such equations.

Matrix representation

Any such system can be represented in the form

$$A\overline{x} = \overline{b}$$

where A is a row-finite $I \times J$ matrix over R and \overline{b} is a $I \times 1$ column of constants from N.

Solutions

Suppose $N \le M$. A solution to $A\overline{x} = \overline{b}$ is some $\overline{m} \in M$ such that $A\overline{m} = \overline{b}$ (in M).

Satisfiability

 $A\overline{x} = \overline{b}$ is satisfiable iff for some $M \ge N$, $A\overline{x} = \overline{b}$ has a solution in M.

Systems of linear equations: (formal) consistency I

Suppose $N \le M$; $A\overline{x} = \overline{b}$ is a system of linear equations over N.

Consistency

 $A\overline{x} = \overline{b}$ is (formally) consistent iff for all $(1 \times I) \ \overline{r} \in R$, ($r_i = 0$ for all but finitely many $i \in I$),

 $\overline{r}A = 0$ implies $\overline{r}\overline{b} = 0$

Lemma

If $A\overline{x} = \overline{b}$ is satisfiable, then it is consistent.

Theorem

If $A\overline{x} = \overline{b}$ is consistent, then it is satisfiable.

T. G. Kucera (UofM)

For the Theorem:

- Let \mathcal{E} be the submodule of $\overline{N} = R^{(J)} \oplus N$ generated by the rows of $[A| \overline{b}]$.
- Let $M = \overline{N}/\mathcal{E}$.

Then *N* embeds in *M*—follows from consistency!

- Let $\langle \underline{\mathbf{e}}_j \rangle_{j \in J}$ be the standard basis of the free module $R^{(J)}$;
- let $n_j = \underline{e}_j / \mathcal{E}$.
- Then $\langle n_j \rangle j \in J$ is a solution of $A\overline{x} = \overline{b}$ in M.

Theorem

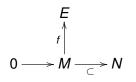
 $_{R}E$ is injective iff every formally consistent system of linear equations over E has a solution in E.

Theorem (Baer's Criterion)

 $_{R}E$ is injective iff every formally consistent system of linear equations in one variable over E has a solution in E.

Injectivity and systems of linear equations II

For the Theorem: the forward direction is easy; for the converse: Given a diagram of left *R*-modules of the form:



- Let J enumerate N as \overline{n} ;
- let $\langle x_j \rangle_{j \in J}$ be variables ;
- Let $A\overline{x} = \overline{b}$ list all the equations $\overline{r} \cdot \overline{x} = b$, with constant $b \in M$, such that $\overline{n} \cdot \overline{x} = b$.

Then $A\overline{x} = f[\overline{n}]$ is consistent in *E* because *f* is a homomorphism, and a solution \overline{x} in *E* defines a homomorphism $\overline{f} : N \to E$, because all the 'arithmetic' of *N* is encoded in the linear system.

Injective extensions

Theorem

Every module N can be embedded in an injective module.

"Proof"

The proof of the theorem "consistency implies satisfiability" shows how to add a solution to one consistent system of linear equations over N. A potentially VERY long construction by transfinite recursion will eventually give an injective extension.

Remark: I do have some notes on a probably mostly correct proof of this result.

$$<(\mathbf{2}^{|\mathbf{R}|+|\mathbf{N}|})^+$$
 is probably enough

Pure-injective modules

positive primitive formulas

A positive primitive formula (ppf) is some existential quantification of a (finite) system of linear equations.

For instance, divisibility: $\exists u r u = x$.

matrix representation

$$\varphi(\overline{\mathbf{x}},\overline{\mathbf{b}}) = \exists \overline{\mathbf{u}} \left(\mathbf{A} \begin{bmatrix} \overline{\mathbf{x}} \\ \overline{\mathbf{u}} \end{bmatrix} = \overline{\mathbf{b}} \right)$$

where A is a (finite) matrix over R of the appropriate shape, \overline{x} and \overline{u} are finite lists of variables, and \overline{b} are constants from some module N.

Theorem

Let $M \leq N$ be *R*-modules. The following are equivalent:

- Every Σ (a finite system of linear equations over M) that has a solution in N has a solution in M.
- Every ppf φ(x, b) over M that has a solution in N has a solution in M.

Definition

In this situation we say that M is pure in N, or that M is a pure submodule of N

$M \leq M \oplus N$

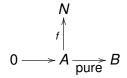
$\mathbb{Z}_{(\textit{p})} \leq \overline{\mathbb{Z}_{(\textit{p})}}$

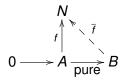
NOT, for instance, $\mathbb{Z} \leq \mathbb{Q}$, or $\mathbb{Z}/2\mathbb{Z} \hookrightarrow \mathbb{Z}/4\mathbb{Z}$.

A module $_RN$ is pure-injective iff it is injective over pure embeddings, that is

Every diagram of left *R*-modules of the form:

can be completed as follows:





Clearly every injective module is pure-injective.

	12	11-0.0
I. G.	Kucera	

Definition

N is equationally compact iff for all systems of linear equations Σ over *N*, if every finite subset of Σ has a solution in *N*, then Σ has a solution in *N*.

Kaplansky [1954] and [1969] for abelian groups; Łoś et al. [1957]; Mycielski [1964, 1968] for universal algebra.

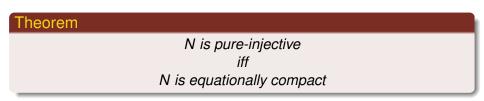
We say that "If Σ is finitely satisfiable, then it is satisfiable."

Standard exampled

If *N* carries a compatible compact Hausdorff topology, then *N* is equationally compact.

- e.g. any finite module.
- The abelian group \mathbb{R}/\mathbb{Z} .
- The p-adic group $\overline{\mathbb{Z}_{(p)}}$.

Pure-injectivity and equational compactness



NOTE: "Equational compactness" is a definition of universal algebra. It does not necessarily imply conditions similar to pure-injectivy in other kinds of algebras.

Saturated modules

A little bit of general Model Theory (1)

- an arbitrary first-order language—function symbols, constant symbols, relation symbols;
 - e.g. the usual first-order language for modules over a fixed ring *R*: (+, -, 0, <u>r</u>(−))_{r∈R}, where each <u>r</u> is a unary operation representing scalar multiplication by *r*.
 - The usual language for ordered fields $\langle +,\,-,\,0,\,\times,\,1,<\rangle$.
- formulas formed from terms and relations between them; combined using all propositional connectives
 (∧, ∨, ¬, →, ↔, ...) and quantifiers ∀, ∃; and allowing parameters from some subset *A* of some structure;
- in particular, sentences are formulas with no free variables: they assert something that will be true or false about a structure as a whole, not about individual elements (tuples) of the structure.

•
$$(\forall x)[(\underline{s}x \neq 0) \longrightarrow (\exists y)(\underline{r}y = x)].$$

•
$$(\forall x)[(0 < x \longrightarrow (\exists y)(y \times y = x)].$$

- A theory is a set of sentences, usually taken to be deductively closed and consistent (does not contain, e.g., ∃x(x ≠ x)).
- Two structures for the same language are elementarily equivalent, $M \equiv N$, if they satisfy exactly the same sentences.
- If *M* is a substructure of *N*, then *M* is an elementary substructure of *N*, $M \leq N$ if for some/any enumeration of *M* as \overline{m} , $\langle M, \overline{m} \rangle \equiv \langle N, \overline{m} \rangle$.

Let *N* be a structure, $A \subseteq N$, \overline{b} some (usually finitely many) elements of *N*, and \overline{x} a list of variables matching \overline{n} .

- The type of $\overline{b} \in N$ over A is the set of all such formulas in \overline{x} and with parameters from A which are true in N of \overline{b} .
- Such a type is a complete, consistent set of formulas over A: for any such formula φ over A, either φ or ¬φ is a property of b, but not both.
- Conversely, if $p(\overline{x})$ is a complete, consistent set of formulas over A, there is $M \succeq N$ such that p is the type of some $\overline{b} \in M$ over A.

A little bit of general Model Theory (4): Saturation

Definition

Let $\kappa \ge |R|$ be an infinite cardinal. *N* is κ -saturated if every type over every $A \subset N$, $|A| < \kappa$, is realized in *N*.

Clearly we must have $|N| \ge \kappa$.

Definition

N is saturated if it is |N|-saturated.

Basic facts

- It is consistent with ZFC that there are no uncountable saturated dense linear orders; in fact, the cardinality of such is a "large" cardinal.
- If there is a strongly inaccessible cardinal κ > |T| + |N|, N infinite, then N has a saturated elementary extension of cardinality κ.

• (κ is regular and $\lambda < \kappa$ implies $2^{\lambda} < \kappa$.)

- If a theory *T* is stable in cardinality κ, then it has a saturated model of cardinality κ.
- Examples
 - Any vector space over a (skew) field *K* of dimension $\geq |K|$.
 - Any algebraically closed field of infinite transcendence degree.

- Examples:
 - \mathbb{R}/\mathbb{Z} as an abelian group;
 - If *E* is a "sufficiently large" injective module over a left noetherian ring, then it is a saturated model of its complete theory;
 - The abelian groups $\overline{\mathbb{Z}_{\rho}} \oplus \mathbb{Q}^{(\kappa)}$, κ infinite.
- If *N* is a saturated module, then it is pure-injective.
 - because a saturated module is clearly equationally compact!
- In particular, every module can be purely embedded in a pure injective module (any saturated elementary extension).

Definition/Theorem

Let *M* be any module.

There is a unique up-to-isomorphism pure-injective pure extension $N = \overline{M}$ of M such that for any pure-injective pure extension N' of M, there is a pure embedding of N into N' fixing M. The pure-injective envelope of M.

Definition/Theorem

Let $M \le N$ be modules, with N pure-injective. There is a unique (up to isomorphism of N fixing M) minimal pure-injective pure submodule H(M) of N containing M, the hull of M in N.

Both of these are fundamental tools of the model theory of modules.

Contrasting examples

Consider $\mathbb{Z}_{(p)}$ and \mathbb{Z} as abelian groups.

- $\mathbb{Z}_{(p)}$ is not pure in Q; $H(\mathbb{Z}_{(p)}) = \mathbb{Q}$.
- $\mathbb{Z}_{(p)}$ is pure in $\overline{\mathbb{Z}_{(p)}}$, and this is in fact the pure-injective envelope.

- The injective envelope of \mathbb{Z} is \mathbb{Q} .
- The pure-injective envelope of Z is the profinite completion of Z, an abelian group of cardinality the continuum.

The End