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ABSTRACT

In 1968–1969, A. V. Jategaonkar published his famous con-
structions of left but not right noetherian rings that provided
counterexamples to several important conjectures of that era.
These examples, and others like them, seemed to indicate that,
in general, the task of completely understanding the structure
of indecomposable injective modules over one-sided noe-
therian rings was hopeless. In this paper I show how to deduce
by natural methods, directly from the known description of
these rings and their properties, explicit computational
descriptions of the indecomposable injective left modules over
Jategaonkar’s rings. I use these explicit descriptions to answer
some simple structural questions about the indecomposables.
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The structure of indecomposable injective modules over a commutative
noetherian ring has been well understood since the work of Matlis½10" in the
1950’s. There is a natural correspondence between the indecomposable
injectives and the localizations of the ring, and the structure of the inde-
composables is preserved by the localizations. An indecomposable injective
is the union of an ascending chain (of order type at most o) of extensions by
finite dimensional vector spaces. In the case of non-commutative (one- or
two-sided) noetherian rings, the connection between the structure of injec-
tive modules and the behaviour—even the possibility—of localization
remains (see, e.g., Jategaonkar½4" for an extended argument as to why this is
so), but very little is understood about how the indecomposable injectives
are put together in general. Indeed, the book of Jategaonkar just cited
provides ample evidence that indecomposable injectives over one-sided
noetherian rings can have wildly varying kinds of structure, and that some
examples may be, in some sense, inaccessible to our understanding. In
remarking about the difficulties associated with one-sided noetherian rings,
Jategaonkar½4; p: 91" says ‘‘Our decision to work with Noetherian rings rather
than right Noetherian ones is often dictated by the exigencies of the situa-
tion under consideration. We note though that, after Jategaonkar (69) [that
is½3", of the current bibliography], an attempt to stay with right Noetherian
rings at all costs is generally regarded as futile.’’ The family of examples
developed in the paper cited are important and fascinating: they simulta-
neously provide counter-examples to a handful of different conjectures of
the time, and they illustrate how strongly the left ideal structure of a ring can
be disconnected from the right ideal structure of the ring. Nonetheless, they
do not provide examples of indecomposable injectives that are difficult to
understand or impossible to describe. It is the purpose of this paper not only
to describe the indecomposable injectives over these badly behaved rings,
but to convince the reader that the structure of the indecomposables is easily
and naturally deduced from elementary facts about injective modules
combined with the description of the rings themselves.

In actual fact, this latter task would take up far too much paper for the
family of rings in½3". Instead, I start with a much simplified version of these
rings, the ring R treated in Example 3.3.8 of Jategaonkar’s book.½4" This ring
is just a homomorphic image of the first member of the more general family.
After describing the ring, in Sec. 2 I take the reader step-by-step through a
natural process (complete with one intentional mistaken initial guess!) that
leads to explicit descriptions of the two indecomposable injectives over the
ring R. The description is sufficiently explicit to make it routine to check,
after the fact, that the structures that we have deduced actually are the
indecomposable injectives for which we were looking. This is followed in
Sec. 3 by showing how this explicit description can be used to solve certain
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kinds of problems related to the indecomposables. The process of showing
how to deduce from elementary facts what the indecomposable injectives
look like in the general version of the examples is not any more instructive
than the shorter exposition presented for the simple version of the example.
As a result, in the final section I content myself with describing the examples
and verifying their correctness. This is in fact in itself a fairly lengthy task. I
conclude the section by applying the explicit descriptions to analyze some of
the internal structure of these indecomposable injectives.

The idea that such constructions might be possible was inspired in part
by my work on some explicit descriptions of complicated indecomposable
injective modules over certain commutative noetherian rings½6" and by
example 9.3.7 in Jategaonkar’s book,½4" where the same sort of construction
is used to build an explicit description in a non-commutative noetherian
case. The opportunity to read an early version of Musson’s paper½11" also
helped.

The approach taken here to injective modules is to view them as
structures in which we can solve systems of linear equations. For more
details on this approach and its history, and in particular on the equivalency
with the usual definition, see my earlier paper.½6" Here I just repeat enough to
ensure readability of this paper.

A linear equation (in variables !v ) (over a right R-module M ) is just an
R-linear combination of the variables in !v set equal to some constant fromM.
A system of linear equations in possibly infinitely many variables !v overM is
a set (again possibly infinite) of linear equations overM, each in finitely many
variables from !v. A solution to such a system in some N #M is just an
assignment of values in N to each of the variables of !v that makes each of the
equations true in N. Note that of course a finite system of equations can be
presented in matrix form as !vA ¼ !m, where A is a matrix over R and !m is a
tuple in the right R-moduleM. Such a finite system of equations is consistent
if for every matrix B over R (of the right shape) such that AB ¼ 0, we also
have !mB ¼ 0. An infinite system of linear equations is consistent if every finite
subset of it is consistent. It is straightforward to see that a system of equations
over M is consistent if and only if it has a solution in some extension of M.

A right R-module E is injective if every consistent system of linear
equations over E (possibly infinite, with infinitely many variables) has a
solution in E itself. Baer’s criterion for injectivity in this formulation reads:
E is injective if every (possibly infinite) system of linear equations over E in
one variable has a solution in E itself.

I remind the reader that the injective envelope ERðMÞ of the right
R-module M is characterized variously as a maximal essential extension of
M, as a minimal injective extension of M, or as an injective essential
extension of M. (In the language of linear equations, a module N is an
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essential extension of its submodule M if and only if every non-zero element
of N satisfies a non-trivial linear equation overM.) The injective envelope of
M always exists. An injective module is (direct sum) indecomposable if and
only if it is the injective envelope of R=I for some meet-irreducible right
ideal I.

Much of the work here has been motivated by my work in the model
theory of modules. The main body of the material presented here requires
no knowledge of mathematical logic or the model theory of modules, but
some of the applications of these results are to problems in the model theory
of modules (Sec. 3.1, 3.3).

Notation. The symbol hh' ' 'ii is used to denote the submodule ðideal, etcÞ
generated by ‘‘' ' '’’. Scalar multiplications are indicated by a large dot: m ·r.
Ordered pairs are enclosed in angle brackets: ha; bi.

1 DESCRIPTIONS OF THE RINGS

I follow Jategaonkar’s descriptions in the original sources as closely as
possible. So in particular in the first example, I work ‘‘on the right’’, and in
the second example I work ‘‘on the left’’.

1.1 The Ring R—A Simple Case

In the first main Section, I study the two injective modules over the
ring R of example 3.3.8 in Jategaonkar.½4" This ring is, in essence, a much
simplified version of the more complicated examples of Jategaonkar½3",
which will be treated in the final section of this paper. There are a few
alternative ways of presenting this ring: for instance, as a trivial extension
(cf.½1"), or as an image of a twisted polynomial ring; but I will follow Jate-
gaonkar’s exposition closely.

Let k be a field and F ¼ kðxn: n ( 1Þ, the rational function field in
countably many commuting indeterminates over the field k. Let D ¼ F½x"hhxii
and note that FðxÞ is the quotient field of D. Let s : D )! F :
ðx 7! x1; xn 7! xnþ1; ðn ( 1ÞÞ be a k-algebra homomorphism. Note that s is
one-to-one but not onto, and is not nilpotent. Note also that s extends
naturally to a k-algebra isomorphism of FðxÞ onto F. Let r be the F-algebra
homomorphism r : D )! F : d 7! dð0Þ, evaluation of d at 0 for x. Note that
r is the identity on F. These two maps make F into a ðD;DÞ-bimodule B
with scalar actions d ·b ¼ sðdÞb and b ·d ¼ brðdÞ, (showing how to construe
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R as a trivial extension). The ring R then has B+D as the underlying
abelian group, with the multiplication determined by:

hb; d ihb0; d 0i ¼ hbrðd 0Þ þ sðdÞb0; dd 0i:

The ring R is local, right noetherian, not left noetherian, and not right
classical. It has subrings F , D , R, (D ffi 0+D) . The identity element is
h0; 1i and the units are all elements hb; di with d =2 xD, in which case

hb; di)1 ¼ )b
rðdÞsðdÞ ;

1
d

D E

. Thus JðRÞ ¼ xR ¼ B+ xD, so hb; di 2 J iff rðdÞ ¼ 0.

I will use xn for h0; xni. The right zero-divisors are precisely the elements of
J, the left zero-divisors are the elements of the form hb; 0i, and if l is any left
zero-divisor and r is any right zero-divisor, then l r ¼ 0.

Every right ideal of R is principal and two-sided; no non-trivial two-
sided ideal is finitely generated as a left ideal. These ideals are linearly
ordered by inclusion:

R . J . J2 . ' ' ' . Jo . 0

Note that as right ideals, Jn ¼ hhxnii and Jo ¼ hhh1; 0iii ¼ B+ 0. Every right
ideal is irreducible, and J and Jo are the only prime ideals. Note that
J ' Jo ¼ Jo whereas Jo ' J ¼ 0. It follows from all this that there are just two
indecomposable injective right R-modules: EðR=JÞ and EðR=JoÞ. (I will note
in passing that this latter fact can also be given a straightforward model-
theoretic explanation: The indecomposable injectives are in one-to-one
correspondence with the non-orthogonality classes of strongly regular
types.½5" Every strongly regular type is non-orthogonal to a type (in the
imaginary universe T eq) of rank oa for some a½9", and the biggest theory of
injectives has complete elimination of imaginaries.½8" The two 1-types of rank
oa are ‘‘annðvÞ ¼ J’’ , of rank o0 ¼ 1, and ‘‘annðvÞ ¼ Jo’’ of rank o1 ¼ o.)

For proving some of the above statements, and for following the
computations that will be presented in the next section, it is useful to have a
catalogue of factorizations in R, as follows: If d 6¼ 0 then

hb; 0i ¼ h0; d ihb; 0ih0; sðdÞ)1i
¼ h0; d ihbsðd Þ)1; 0i
¼ h1; 0ih0; bi

If rðdÞ 6¼ 0 then

hb; d ihb0; d 0i ¼ brðd 0Þ þ sðdÞb0 ) sðd 0Þb
rðdÞ

; d 0;

! "

hb; d i
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If d 6¼ 0 then

hb0; d 0ihb; d i ¼ hb; d i b0rðdÞ þ sðd 0Þb) brðd 0Þ
sðdÞ ; d 0

! "

and

h1; 0i ¼ hb; 0ih0; 1=bi ¼ h0; d ihsðd Þ)1; 0i

In general (because the image of s is fixed by r ),

h0; d ih1; 0i ¼ h1; 0 ih0; sðdÞi

1.2 The Rings Ra — The General Case

Now I describe the more complicated rings from½3". It would be nice to
follow Jategaonkar’s description exactly, but unfortunately a choice that he
makes in order to make the exposition of his construction simpler (starting
the enumeration of indeterminates with x1 rather than with x0) would make
the description of my constructions unwieldy, with separate cases for finite
and infinite b. So with the minor change in the indexing of indeterminates,
I present Jategaonkar’s examples.

In½3; see especially Theorem 4:6", Jategaonkar shows the existence of rings Ra,
a an ordinal, with the following description and properties.

There is a division ring K , Ra and twisted polynomial extensions of K
inside Ra satisfying:

!Rb ¼ K½xg; rg : g < b " for each b / a.

Rb ¼ !Rb½xb; rb" for each b < a.

Ra ¼ !Ra :

where each rb : !Rb )! K is a monomorphism, and multiplication in Ra is
determined by xbr ¼ rbðrÞxb for any r in !Rb.

Elements of Ra can be expressed in an essentially unique way as a
(finite) sum of distinct standard monomials, where a standard monomial is a
term of the form a xn1a1 ' ' ' x

nk
ak for some k ( 0, a 2 K, a1 < ' ' ' < ak < a, and

ni > 0. (For k ¼ 0, a standard monomial is just some element of K.)
Jategaonkar shows that Ra is a principal left ideal domain and that the
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elements 1þ xb, b < a, are right Ra-linearly independent. From these facts
follow most of the interesting and peculiar properties of the ring Ra.

LetY be the set of all monic standard monomials (including 1 ). The set
Y can be ordered in order type oa as follows. The least element is 1, and
otherwise given two monic standard monomials, write them with common
variables as y1 ¼ xn1a1 ' ' ' x

nk
ak and y2 ¼ xm1

a1 ' ' ' x
mk
ak , a1 < ' ' ' < ak < a and

ni ( 0, mi ( 0. Then y1 0 y2 if and only if for some t, nl ¼ ml for all l,
t < l / k, and nt < mt. Consequently, each standard monomial has a well
defined degree which is an ordinal< oa, and I define the degree of a non-zero
element of Ra to be the maximum of the degrees of its terms. Note in par-
ticular that degð1Þ ¼ 0 and that degðxbÞ ¼ ob. Note also that any sub-
sequence of a monic standard polynomial is again a member of Y, in
particular initial and final segments (including the empty segment, taken to
be 1 ) of some y 2 Y are again in Y. For any y 2 Y and a 2 K, I define the
order of ay to be )1 if y ¼ 1, otherwise it is the largest index of a variable
occurring in y. For y 2 Y, y ¼ xn1a1 ' ' ' x

nk
ak , I let ry ¼ rn1a1 1 ' ' ' 1 r

nk
ak , with r; the

identity map. I record a few simple but useful facts about degree and order.

Lemma 1.1. 1. The successor of y in the order on Y is x0y.

2. Let 0 6¼ r; s 2 Ra. Then1

degðrsÞ ¼ degðsÞ þ degðrÞ:

3. Let y0; y1 be standard monomials. Then

ordðy0y1Þ ¼ maxfordðy0Þ; ordðy1Þg:

4. Let y0; y be standard monomials. If ordðy0Þ < ordðyÞ then
yy0 ¼ ryðy0Þy.

Proof. The first three parts are obvious. The last part is proved by induction
on the order of y. If y 2 K there is nothing to prove. Otherwise y ¼ y0xnb with
ordðy0Þ < b. Then yy0 ¼ y0xnby0 ¼ y0rnbðy0Þxnb (since ordðy0Þ < b, y0 is in the
domain of rb), and then since rnbðy0Þ 2 K, by induction hypothesis the latter
equals ry0

#

rnbðy0Þ
$

y0xnb, that is, it equals ryðy0Þy. j

Let S ¼ f f 2 Ra : f has non zero constant termg. We see
from[3, Theorem 4.5] that S is easily seen to be a left Ore set in Ra and every

1Here ‘þ’ represents ordinal addition; the order of r and s on both sides is sig-
nificant, as neither operation is commutative.
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non-zero element r ofRa can be written in the form r ¼ sy, where s 2 S and
y 2 Y. In fact it follows immediately from the proof of ½3; Theorem 4:5" that y
is just the indeterminate part of the term of r of least degree. Let Ra ¼
ðRaÞS. Every non-zero element of Ra can be written as a sum of terms of
the form s)1y where s 2 S and y 2 Y.

Ra is a principal left ideal domain, every left ideal is generated by a
monic standard monomial, every left ideal is two sided, and the left ideals
are well-ordered by reverse inclusion. Thus Ra is left FBN and so the
indecomposable injective left Ra-modules are in one-to-one correspondence
with the prime ideals. A typical non zero left ideal is then Ray, with y 2 Y.
Then Ray0 . Ray1 if and only if y0 0 y1.

Considerably more can be read out of the analysis of the descending
sequence of left ideals in the proof of ½3; Theorem 4:6" than is stated in the
conclusion of the theorem. In fact we have that the Jacobson radical JðRaÞ
is the ideal J ¼ Rax0, and every left ideal is Jb for some b, so Jb is the b-th
ideal in the descending order just described. In particular, the prime ideals of
Ra are J; Jo ¼ Rax1; ' ' ' ; Jo

n ¼ Raxn; ' ' ' ; Jo
o ¼ Raxo; ' ' ' ; Jo

b ¼ Raxb; ' ' ' ;
Jo

a ¼ 0. (Once again the same model-theoretic explanation as in Sec. 1.1
could be used to show that these are exactly the prime ideals.)

For the purpose of developing explicit descriptions of the inde-
composable injectives, it will be useful to have descriptions of Ra=Raxb for
each b < a. Let Sb ¼ S \ !Rb. Then Sb is a left Ore set in !Rb. Clearly for any
s 2 S there is unique !s 2 Sb such that s) !s 2 Raxb; similarly for any r 2 Ra

there is a unique !r 2 !Rb such that r) !r 2 Raxb. Thus for any s)1r 2 Ra,
s)1r 2 !s)1!r ðRaxbÞ. SoRa=Raxb ffi ð !RbÞSb

. Here the action ofRa on theRa-
module ð !RbÞSb

can be thought of as ‘‘ordinary multiplication in Ra, fol-
lowed by setting to 0 any indeterminate xg, g ( b ’’. Furthermore, since by
construction !Rb is a left Ore domain (½3; Theorem 2:8"), we may consider ð !RbÞSb

to be embedded in the left quotient field Kb of !Rb.

2 THE INDECOMPOSABLE INJECTIVES OVER R

I give explicit descriptions of the two indecomposable injective right
modules over the ring R of Jategaonkar. I start with EðR=JÞ. Remember
that part of the point is to see that the structure of EðR=JÞ can be deduced in
a fairly straightforward way from what we know about the ring. I first note
that R=J ffi F. In fact, hb; di 2J h0; rðdÞi, and the action of R on R=J is just
the action of the subring F of R on itself: for a 2 F, a ¼ h0; ai=J, so

a ·hb; di ¼ h0; aihb; di=J ¼ hsðaÞb; adi=J ¼ h0; adð0Þi=J;
that is, a ·hb; di ¼ arðdÞ.
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To construct the injective envelope, note the following: By Baer’s
Criterion we only need to be able to solve systems of equations in one
variable over R=J, and since R is a principal right ideal ring we only need to
be able to solve single equations. That is, the injective hull is the divisible
hull. Since EðR=JÞ is an essential extension of R=J, every element of EðR=JÞ
is obtained from some element of R=J by (not necessarily unique) division.
In fact, from the ideal structure of R we see that every non-zero element e of
EðR=JÞ satisfies some non-zero equation of the form e ·x

n ¼ r=J or
e ·h1; 0i ¼ r=J.

Since F ,!R, every right R-module is a right vector space over F, so we
can start by trying to specify an F-basis for EðR=JÞ, and by the previous
comments, we can take solutions to the equations v ·x

n ¼ 1 ( n ( 0 ) and v ·
h1; 0i ¼ 1 as a first attempt. Call these solutions X 0 ¼ 1, X)1, X)2, ' ' ' ;
X)1 respectively.

We can do better than this. D is a subring of R, F½x" / D. Also,
#

R=JðRÞ
$

D
ffi ðD=xDÞD.

Lemma 2.1. Any injective right R-module E is also an injective right D-module
and an injective right F½x"-module.

Proof. D and F½x" are principal ideal domains, so all that we have to check
is divisibility, and any equation v ·h0; di ¼ e over E, d 2 D (d 2 F½x") is D-
consistent (F½x"-consistent) . But h0; di is not a left zero-divisor in R, so this
equation is also R-consistent. Hence it has a solution in E. j

Hence EDðD=xDÞ is a direct summand (as a D-module) of ERðR=JÞ.
We know by a construction of Northcott½12" that EF½x"ðD=xDÞ can be given
an explicit description as a module of ‘‘inverse polynomials’’:

P1
i¼0 X

)iF
(as a right F-vector space) , with F½x"-scalar multiplication determined
from

X)i ·ax
j ¼ X)iþja if )iþ j / 0

0 otherwise

%

By the results of Matlis½10" the D (¼ F½x"hhxii) structure on this module is
given as follows: For any d 2 D, express d as a formal power series

P1
i¼0 aix

i

about 0 (possible since dð0Þ is always defined) , then given f ðX)1Þ 2 F½X)1",
multiply f ðX)1Þ by

P1
i¼0 aix

i according to the Northcott rule. This is well-
defined, as only degð f Þ þ 1 terms of the expansion of d can enter into the
computation in a non-trivial way. Alternatively, as computing the power
series expansion may be impractical, we can give a more computational
description of the operation (which will in fact be the only possible approach
in the case of the ringRa ). The element d 2 D can be written in the form pðxÞ

qðxÞ,
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a ratio of polynomials in F½x" in lowest form, and qð0Þ 6¼ 0. Then f ðX)1Þ ·d
¼ v if and only if f ðX)1Þ ·pðxÞ ¼ v ·qðxÞ. It is easy to see that the solution v
to this linear equation must be of degree less than or equal to
degð f ðX)1Þ ·pðxÞÞ, and that since qð0Þ 6¼ 0 there must be a unique solution,
which can be found by writing v in general form, multiplying out both sides
of the equation, and comparing coefficients.

How does R act on its D-submodule F½X)1"? This is easy to answer:
f ðX)1Þ ·hb; di ¼ f ðX)1Þ · hb; 0iþ f ðX)1Þ ·h0; di. The second term is just the
D-module action already described. Now f ðX)1Þ ·Jn ¼ 0 for some n 2 o,
and so since hb; 0i 2 Jo, f ðX)1Þ ·hb; 0i ¼ 0. That is, f ðX)1Þ ·hb; di ¼
f ðX)1Þ ·d.

Note now that for any a 2 F, v ·h1; 0i ¼ a is consistent. For
h1; 0ihb; di ¼ 0 iff hb; di 2 J iff a ·hb; di ¼ 0. I note in passing that e
solves v ·hb; 0i ¼ a iff e solves v · h1; 0i ¼ ab)1. What is the structure of the
family of all solutions to equations of the the form v ·h1; 0i ¼ a ?

Suppose that e is a solution to v · h1; 0i ¼ a. Note two products:

e ·hb; 0i ¼ e ·h1; 0ih0; bi ¼ ah0; bi ¼ ab

e ·h0; dih1; 0i ¼ e ·hsðdÞ; 0i ¼ e ·h1; 0ih0; sðdÞi ¼ ah0; sðdÞi ¼ asðdÞ

So, the F-subspace generated by e consists of solutions to the equa-
tions v · h1; 0i ¼ asð f Þ, f 2 F. But s makes F into an infinite dimensional
vector space over itself.

For the moment, let C denote F regarded as a right vector space over
itself via the action c ·a ¼ csðaÞ.

Lemma 2.2. If ðciÞi2I is F-linearly independent in C, and for each i 2 I, ei is
a solution in EðR=JÞ to v ·h1; 0i ¼ ci, then ðeiÞi2I is F-linearly independent
in E.

Proof. Suppose that for some finite I0 , I,
P

i2I0 ei ·h0; aii ¼ 0 where ai 2 F.
Then ei ·h0; aiih1; 0i ¼ ei ·h1; 0ih0; sðaiÞi ¼ ci ·h0; sðaiÞi ¼ cis ðaiÞ. So cer-
tainly (in F ),

P

i2I0 cisðaiÞ ¼ 0; thus in CF,
P

i2I0 ci ·ai ¼ 0. Thus by
assumption, ai ¼ 0 for all i 2 I0. j

Lemma 2.3. Let ðciÞi2I be an F-basis for CF, and for each i 2 I, let ei be a
solution in EðR=JÞ of v ·h1; 0i ¼ ci. If a 2 F, and e 2 E is a solution of
v ·h1; 0i ¼ a, then e is an F-linear combination of the ei’s modulo
f f 2 E : f ·J

n ¼ 0 for some ng.
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Proof. Since a 2 CF, we have a ¼
P

i2I0 ci ·ai for some finite I0 , I and
ai 2 F, (i 2 I0). Thus, in F, a ¼

P

i2I0 cisðaiÞ. Consider ê ¼
P

i2I0 ei ·h0; aii.
Now ê ·h1; 0i ¼

P

i2I0 ei ·h0; aiih1; 0i ¼
P

i2I0 ei ·h1; 0ih0; sðaiÞi ¼
P

i2I0 ci ·
h0; sðaiÞi ¼

P

i2I0 cisðaiÞ ¼ a. Thus e and ê are both solutions to v ·h1; 0i
¼ a, and so ðe) êÞ·h1; 0i ¼ 0, thus ðe) êÞ· Jn ¼ 0 for some n. j

Thus we see that the family of all solutions of equations of the form
v ·hb; 0i ¼ a, a 2 F, produces a copy (modulo the things annihilated by
powers of x) of CF. Our initial ‘‘guess’’ for the structure of EðR=JÞ as an
F-vector space included a single basis element X)1 to represent these
solutions. We see now that this was wrong, but it still suggests a natural
representation as a place holder for a copy of the infinite dimensional
F-space CF. We take as a canonical representation of a solution of v ·
h1; 0i ¼ a the element X)1a. The scalar multiplication is determined by the
two products computed earlier: for elements X)1a, a 2 F,

X)1a · hb; di ¼ X0abþ X)1asðdÞ:

Theorem 2.4. EðR=JÞ ffi F½X)1" + X)1F with R-action given by

ð f ðX)1Þ þ X)1aÞ ·hb; di ¼ f ðX)1Þ ·dþ X0abþ X)1asðdÞ

ðwith the scalar action of D on F½X)1" described earlierÞ.

Proof. We have an independent check that the construction of the module E
of the theorem is correct by actually verifying the definition: (1) this is a
well-defined R-module action; (2) E is an essential extension of its R-sub-
module X0F ffi R=J; (3) E is a divisible right R-module. The fact that these
checks are entirely routine and mechanical supports the assertion that the
description given here is explicit. Of course, since part of the purpose of this
section is precisely to convince the reader that the computations are, indeed,
elementary, I present some of them.

1. The only thing that involves the slightest difficulty is checking the
scalar associative law. We calculate:

#

ð f ðX)1Þ þ X)1aÞ · hb; di
$

·hb
0; d 0i

¼
#

f ðX)1Þ ·dþ X0abþ X)1asðdÞ
$

·hb
0; d 0i

¼
#

f ðX)1Þ ·dþ X0ab
$

·d
0 þ X0asðdÞb0 þ X)1asðdÞsðd 0Þ

¼ f ðX)1Þ ·ðdd
0Þ þ X0

#

ab ·d
0 þ asðdÞb0

$

þ X)1asðdd 0Þ
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We observe that the term ab ·d
0 represents the usual action ofD on

the right on D=xD; that is, ab ·d
0 ¼ abrðd 0Þ. We now calculate:

#

f ðX)1Þ þ X)1aÞ · ðhb; dihb
0; d 0i

$

¼
#

f ðX)1Þ þ X)1a
$

· hsðdÞb
0 þ brðd 0Þ; dd 0i

¼ f ðX)1Þ ·ðdd
0Þ þ X0a

#

sðdÞb0 þ brðd 0Þ
$

þ X)1asðdd 0Þ
¼ f ðX)1Þ ·ðdd

0Þ þ X0
#

asðdÞb0 þ abrðd 0Þ
$

þ X)1asðdd 0Þ

2. If f ðX)1Þ 2 F½X)1" and degð f Þ ¼ n, then f ðX)1Þ ·h0; xni is a non-
zero element of X0F. If a 6¼ 0 then ð f ðX)1Þ þ X)1aÞ ·
h1; 0i ¼ X0a, a non-zero element of X0F.

3. We need to be able to solve v ·hb; di ¼ f ðX)1Þ þ X)1a whenever
this is consistent. If d 6¼ 0, then hb; di is not a left zero-divisor and
so v · hb; di ¼ e is consistent for any e 2 E. It is easy to verify that
if gðX)1Þ is any solution in F½X)1"D of the equation
v ·d ¼ f ðX)1Þ ) X0ab=sðdÞ, then gðX)1Þ þ X)1ða=sðdÞÞ solves
the given equation. If d ¼ 0 then hb; di is a left zero-divisor with
right annihilator J; therefore v ·hb; 0i ¼ f ðX)1Þ þ X)1a is
consistent iff a ¼ 0 and f ðX)1Þ ¼ X0c 2 F; as noted the equation
v ·hb; 0i ¼ c has a solution X)1ðc=bÞ. j

It should be noted in step (3) we could have just as easily found all the
solutions of the given equation; this is of course another test to recognize an
‘‘explicit’’ description of the module in question.

The structure of the other indecomposable injective over R is easy
to discern. I note that R=Jo ffi DD, so by lemma 2.1, ERðR=JoÞ #
EDðDÞ ¼ FðXÞD, the quotient field of D. The R-action on D is as fol-
lows: hb0; d 0i 2Jo h0; d 0i, and

#

h0; d 0i=Jo
$

·hb; di ¼ hsðd 0Þb; d 0di=Jo ¼
h0; d 0di=Jo. The D action on FðXÞ is just ordinary multiplication in
FðXÞ, and FðXÞ becomes a right R-module by the action q:hb; di ¼ qd.

An equation v ·hb; di ¼ q with q 2 FðXÞ is consistent iff d 6¼ 0. For if
d 6¼ 0, then hb; di is not a left zero-divisor in R, and so the equation is
consistent. On the other hand, if d ¼ 0 then the right annihilator of hb; di in
R is J; q ·J ¼ 0 iff q ¼ 0. Thus the only consistent equations are
v ·hb; di ¼ q, d 6¼ 0, and by the multiplication described these have solutions
in FðXÞ, namely v ¼ q=d.

Theorem 2.5. EðR=JoÞ ffi FðxÞ under the scalar action q ·hb; di ¼ qd. j

Note that EðR=JÞ=F½X)1" ffiR EðR=JoÞ.
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3 SOME APPLICATIONS OF THE EXPLICIT
DESCRIPTION

The true test of the success of an ‘‘explicit description’’ is that one
should be able to use that description—in a straightforward way—to learn
various interesting things about the module in question. I explore some of
these things in this section for the two modules constructed in the previous
section. It is clear that solving systems of equations should be a purely
mechanical task, and I leave this for the reader to verify for her/himself.

Exercise 3.1. Verify that the following system of linear equations over
EðR=JÞ is inconsistent.

u ·h1; 1iþ v · h0; xi ¼ X)2 þ X)1

u ·h0; xiþ v ·h1; x
2i ¼ X)1x1 þ X)1

Exercise 3.2. Find all solutions to the following system of linear equations
over EðR=JÞ.

u ·h0; xiþ v ·h1; 0i ¼ X)1

uþ v ·h1; 1i ¼ X 0 ) X)1

3.1 Series in EðR=JÞ

We try to understand the structure of a complicated module by
viewing it as the union of a continuous ascending chain of submodules, such
that the quotients of successive pairs of modules in the chain are uncom-
plicated in some way. I will look at several different series here.

The socle of a module is defined to be the sum of its simple sub-
modules. This can be extended to a series (socle series, Loewy series) as
follows: for any ordinal a, given socaðMÞ, socaþ1ðMÞ is the full inverse image
in M of socðM=socaðMÞÞ. It is easy to see that, for n < o,
socnðEðR=JÞÞ ¼

P

i<n X
)iF, and so socoðEðR=JÞÞ ¼ F½X)1". However, there

are no minimal submodules over F½X)1". For instance, hhX)1x1ii .
hhX)1x12ii . hhX)1x13ii . ' ' ' is an infinite proper descending chain of
submodules not contained in F½X)1" but whose intersection is (and all other
submodules which contain F½X)1" are part of a similar descending
sequence). Thus the socle series stabilizes at soco, and the socle series fails to
capture all the structure of EðR=JÞ.
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The fundamental series (see, e.g.,½4; Chapter 9:1") is defined only for
two-sided noetherian rings but we can try to follow through the definition
anyway and see what happens. The main failure is the failure of the
incomparability condition, and we can see the disastrous effect that
this has on any attempt to analyze the structure of E ¼ EðR=JÞ in this
way. We see that (in the notation of½4") F0ðEÞ ¼ f0g, O1ðEÞ ¼ AssðEÞ ¼
fJg, F1ðEÞ ¼ fe 2 E : rðeRÞ # Jg ¼ X0F, O2ðEÞ ¼ AssðE=F1Þ ¼ fJ; Jog,
F2ðEÞ ¼ fe 2 E : r

#

ðeRþ F1Þ=F1

$

# Jog ¼ E. Because Jo , J, all the
J-structure is lost after the first step. Note that Jo is a right second layer
link of Jo to J, the so called ‘‘undesirable case’’ of Jategaonkar’s ‘‘Main
Lemma’’, since Jo , J.

The elementary socle series is a first-order definable analogue of the
socle series. It was introduced by Herzog in½2; 10:2". It is defined by setting
soc0ðMÞ ¼ 0, and letting socaþ1ðMÞ be the sum of socaðMÞ and all the first
order definable subgroups N of M which are minimal with respect to the
property N 63 socaðMÞ, and making the series continuous at limit ordinals.
Each socaðMÞ is a submodule, in fact a definably closed submodule, of M. If
M is a totally transcendental module (equivalently a S-pure-injective mod-
ule), the elementary socle series is well-defined in M and exhausts M(½2;7").
Every injective right module over a (right) noetherian ring is totally trans-
cendental, and the definable subgroups are just the solution sets of finite
homogeneous systems of linear equations. So it is easy to see that

soc0ðEÞ ¼ 0f g

socnðEÞ ¼
X

i<n

X)iF

socoðEÞ ¼ F½X)1"

socoþ1ðEÞ ¼ E

While there are no minimal proper submodules over F½X)1", the only
definable subgroup over F½X)1" is E itself. It is interesting to note that in this
case, at least, the elementary socle series seems to be quite well behaved:
socnþ1ðEÞ=socnðEÞ ffi F, and the structure inherited from E is just that of a
right F-vector space. socoþ1ðEÞ=socoðEÞ ffi F as well, but this time F inherits
the right s-structure, i.e., what we apparently have here is the D-module BD.
But more structure than that is definable on BD: notice that the equation v ·
h0; di ¼ X)1a (for d 6¼ 0) has the unique solution v ¼ X)1

#

a=sðdÞ
$

modulo
socoðEÞ. Thus in fact s extends (in a definable way) to an action making F a
right FðxÞ-vector space. This is just another way of describing the fact
already mentioned that EðR=JÞ=F½X)1" ffiR EðR=JoÞ.
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3.2 Endomorphism Rings

Given the descriptions of EðR=JÞ and EðR=JoÞ, it is routine to find
descriptions of their endomorphism rings.

Proposition 3.3. EndðEðR=JoÞÞ ¼ FðxÞ. j

The endomorphism ring of EðR=JÞ is another matter entirely. As a D-
module, EðR=JÞ is the injective module EðD=xDÞ + EðDÞ. Then
EndðEðR=JÞDÞ can be thought of as a generalized 24 2 matrix ring. We
analyze the components of this matrix ring as follows: We have

EndðEðD=xDÞÞ ffi End
#

F½X)1"D
$

ffi F½½x""

where F½½x"" has the natural (Northcott) action on F½X)1". Also
EndðEðDÞÞ ffi EndðFðxÞDÞ ffi FðxÞ. Clearly HomDðEðDÞ;EðD=xDÞÞ ¼ 0. The
only tricky piece to describe in a useful way is

M ¼ HomDðEðDÞ;EðD=xDÞÞ ¼ HomDðFðxÞ;F½X)1"Þ ;

which is quite big. One convenient way of representing M is as the group
F½x)1; x"" of formal Laurent series over F. We have to show how to make this
into an ðF½½x"";FðxÞÞ-bimodule, and explain how the elements of M act as
homomorphisms. Given a formal Laurent series z ¼

P

j(n0 x
jbj we define

j : FðxÞ )! F½X)1" as follows: For k such that k ( 0 and k ( n0, let
ek ¼

P

n0/j/k X
j)kbj 2 F½X)1". For any u 2 FðxÞ there is n ( 0 such that

xnu 2 D. Define jðuÞ ¼ en ·ðxnuÞ, where ‘‘·’’ is the usual scalar action of D on
F½X)1". I leave it to the reader to check that the definition of j does not
depend on the choice of n (sufficiently large) and that j is a homomorphism.
Furthermore, if c is any homomorphism, we can see that c is induced from
the Laurent series x defined as follows: x ¼

P

j(n0 x
jbj where cð1Þ ¼

P

n0/ j/0 X
jbj, and for k > 0, bk is the coefficient of X0 in cð 1

xk
Þ. The left

F½½x""-action on M is just ordinary multiplication of power series. The right
FðxÞ-action is also straightforward: if q 2 FðxÞ then xnq 2 D for some n 2 o.
Now any element of D can be written as a formal power series,
xnq ¼

P

i(0 aix
i. Thus for any formal Laurent series z ¼

P

j(n0 x
jbj,

z ·q ¼ z
1

xn

& '

·ðx
nqÞ ¼

X

j(n0
xj)nbj

 !

X

i(0
xiai

 !

:
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So we obtain the following:

Lemma 3.4.

EndDðEðR=JÞÞ ffi
F½½x"" F½½x""F½x)1; x""FðxÞ
0 FðxÞ

& '

with the actions on F½x)1; x"" as described. j

Quite a few computations have been left out of the above discussion,
and the reader is warned that a detailed checking of these claims is, while
routine, quite tedious.

Now we have to identify the R-endomorphisms among the D-endo-
morphisms. We represent an element of EðR=JÞ as a column vector with
entries f ðX)1Þ and a, letting the endomorphism ring above act on these from
the left by ordinary matrix multiplication. Again, equally routine and
tedious computations yield:

Lemma 3.5. The elements of EndDðEðR=JÞÞ which are R-endomorphisms are
exactly those of the form

x z
0 xð0Þ

& '

:

So we see that EndRðEðR=JÞÞ is again a trivial extension.

Theorem 3.6. Let S ¼ F½½x"" + F½x)1; x"" with F½x)1; x"" the ðF½½x"";FðxÞÞ-
bimodule described earlier. Then S is a ring with multiplication

hx; zihx0; z0i ¼ hxx0; x ·z
0 þ z ·x

0ð0Þi :

S is isomorphic to EndRðEðR=JÞÞ, acting on EðR=JÞ from the left according to
the rule

hx; zi ·ð f ðX
)1Þ þ X)1aÞ ¼ x · f ðX

)1Þ þ X0z ·aþ X)1xð0Þa: j

3.3 Elementary Duals

Prest½13; 8:4" ðsee also½14" and Herzog½2"Þ, introduced a concept of
elementary duality between right and left modules which lives on the lattice
of positive primitive formulas of the languages of right and left R-modules.
In some sufficiently well-behaved cases, this extends to a duality between the
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left and right indecomposable pure-injective modules. This duality makes
indecomposable injective right modules correspond to indecomposable
pure-injective flat left modules.½2; Cor: 9:6" In this case the elementary duals of
the indecomposable injective right R-modules are easy to construct. One
simply considers the rather uncomplicated set of elementary invariants (pp-
pairs) in each injective. Once again, although deriving the structure of the
duals is quite lengthy, once a description has been produced, it is straight-
forward to check that the answer is correct by performing the proper
computations.

For all matters relating to the model theory of modules, I refer the
reader to½13".

In the following, let Z be the natural map of D ¼ F½x"ðxÞ into F½½x"",
that is, ZðdÞ is the representation of d 2 D as a formal power series.
Extending the earlier use of the symbol, r also represents evaluation at 0 for
elements of F½½x"", that is, rð f Þ is the constant term of f 2 F½½x"".

Theorem 3.7. 1. The elementary dual of the right R-module EðR=JÞ is the flat
indecomposable pure-injective left R-module P ¼ F+ F½½x"", with the action of
R given by hb; di:ha; f i ¼ hbrð f Þ þ sðdÞq; ZðdÞf i.

2. The elementary dual of the right R-module EðR=JoÞ is the flat
indecomposable pure-injective left R-module FðXÞ, with the action
of R given by hb; diq ¼ dq.

Proof. I first have to verify that RP is indeed a left R-module under the
scalar multiplication described. As usual, the only minor difficulty is in
checking the scalar associative law:

ðhb; dihb0; d 0iÞ ·hq; f i
¼ hbrðd 0Þ þ b0sðdÞ; dd 0i ·hq; f i

¼
D

ðbrðd 0Þ þ b0sðdÞÞrð f Þ þ sðdd 0Þq; Zðdd 0Þf
E

¼
(

brðd 0Þrð f Þ þ b0sðdÞrð f Þ þ sðdÞsðd 0Þq; ZðdÞZðd 0Þf i

hb; di ·ðhb
0; d 0i ·hb

0; d 0iÞ
¼ hb; di ·hb

0rð f Þ þ sðd 0Þq; Zðd 0Þf i

¼
D

brðZðd 0Þf Þ þ sðdÞðb0rð f Þ þ sðd 0ÞqÞ; ZðdÞðZðd 0 Þf Þ
E

¼ hbrðd 0Þrð f Þ þ sðdÞb0rð f Þ þ sðdÞsðd 0Þq; ZðdÞZðd 0 Þf i

Observe that rðZðd 0ÞÞ ¼ rðd 0Þ.
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Next we verify that P is flat. There are natural characterizations of
flatness in terms of solution sets to systems of linear equations
½13; 14:6; 14:8", but at least in this case a characterization in terms of tensors
allows us to use the information that we have available most efficiently.
Now RP is flat if and only if the natural homomorphism I5R P )! P is
a monomorphism for every finitely generated right ideal I ½15; Prop: 10:6".
Since the right ideals of R are all principal, all that needs to be checked
is that

h0; xni ·hq; f i ¼ 0¼)h0; xni5 hq; f i ¼ 0

and that

h1; 0i ·hq; f i ¼ 0¼)h1; 0i5 hq; f i ¼ 0 :

If 0 ¼ h0; xni · hq; f i ¼ hx1nq; xnf i, then clearly hq; f i ¼ 0. If 0 ¼ h1; 0i ·
hq; f i ¼ hrð f Þ; 0i, then f ¼ xf 0 and hq; f i ¼ h0; xih qx1 ; f

0i. Thus h1; 0i5
hq; f i ¼ h1; 0i5 h0; xi ·h

q
x1
; f 0i ¼ h1; 0ih0; xi5 h qx1 ; f

0i ¼ 05 h qx1 ; f
0i ¼ 0.

Next I verify that P is pure-injective. Since RP is flat and R is right
noetherian, it follows by½13; 14:17" that every pp-definable subgroup of P has
the form LP for some finitely generated right ideal L of R. Thus the pp-
definable subgroups of RP are exactly 0 , h1; 0iP , ' ' ' , h0; xniP , ' ' ' ,
h0; x2iP , h0; xiP , P. Thus the only infinite consistent descending chains
of congruences are essentially those of the form fh0; xni j v)
hqi;

P

i<n aix
ii : n < og, for some sequence ðaiÞi<o in F; and this has solu-

tions hq;
P

i<o aixii for any q 2 F. Thus RP is pure-injective.
Now I have to verify that RP is indecomposable. For this it suffices to

show that it is pure-uniform, that is, that any two non-zero elements are
linked by a non-trivial pp relation. That is, if 0 6¼ p; p0 2 P, there is a pp-
formula jðu; vÞ such that P 6 j½p; p0" ^ :j½p; 0". There are, unfortunately,
five cases to consider. Let p ¼ hq; f i and p0 ¼ hq0; f 0i. For the cases where at
least one of f or f 0 is non-zero, let axm and a0xm

0
be the first non-zero term of

f, f 0 respectively. Let t0 be such that q0 can be written in the form
q0 ¼ r0=ðx1t

0
s0Þ, x1 6 j r0, x1 6 j s0. Then p and p0 are linked by one of the

following four formulas jðu; vÞ:

1. 9u1v1w½u ¼ h0; axmi ·u1 ^ v ¼ h0; a0xm0 i ·v1 ^ h0; xi ·w ¼ u1 ) v1"
2. 9u1v1w½u ¼ h0; axmi ·u1 ^ v ¼ h0; a0xm0 i ·v1 ^ h1; 0i ·w ¼ u1 ) v1"
3. 9u1v1½u ¼ h0; axmi ·u1 ^ v ¼ h0; a0xm0 i ·v1 ^ 0 ¼ u1 ) v1"
4. 9u1½u ¼ h0; axmi ·u1 ^ hx1tq0; 0i ·u1 ¼ h0; xti ·v"
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I leave it to the reader to sort out the various possibilities. Finally, if both
f and f 0 are 0, chose t, r, and s for q in the same way as t0, etc., were chosen
for q0. Then p and p0 are linked by

5. h0; xts)1ðsÞs)1ðr0Þi ·u ¼ h0; xt0s)1ðs0Þs)1ðrÞi ·v.

Finally, all that remains is to check the elementary invariants for RP,
cf.½2". (The elementary invariants measure the index of one definable subgroup
in another. The dual invariants of the dual module are equal to the invariants
of the original.) The non-trivial invariants for EðR=JÞ are of the forms

½ðv · h0; x
nþ1i ¼ 0Þ = ðv ·h0; x

ni ¼ 0Þ" ; ðn < oÞ;

½ðv · h1; 0i ¼ 0Þ = ðv ·h0; x
ni ¼ 0Þ" ; ðn < oÞ;

and

½ðv ¼ vÞ = ðv ·h1; 0i ¼ 0Þ":

Each of these is easily seen to be infinite. The corresponding dual invariants
are then those of the forms

½ðh0; xni j vÞ = ðh0; xnþ1i j vÞ" ; ðn < oÞ;

½ðh0; xni j vÞ = ðh1; 0i j vÞ" ; ðn < oÞ;

and

½ðh1; 0i j vÞ = ðv ¼ 0Þ":

By the flatness of RP and the fact that all right ideals of R are principal,
these are the only invariants that we need to check.

Consider any hb; di 2 R. If d 6¼ 0 then for some n 2 o, ZðdÞ ¼ xnd 0,
x 6 j d 0. Then hb; diP ¼ F+ xnF½½x"". Furthermore, if b 6¼ 0, then
hb; 0iP ¼ F+ 0. Thus all the dual invariants are seen to be infinite in RP.

The computations required to check the second part of the theorem
are trivial by comparison, and are left to the reader. j

3.4 The Lattice of Submodules

The indecomposable injective EðR=JÞÞ has quite a complicated lattice
of submodules, which I will not attempt to describe completely. But the
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explicit description is strong enough to allow us to discover a few interesting
things about the lattice of submodules fairly easily. For a module M, I let
S Mð Þ denote the lattice of submodules of M.

Lemma 3.8. S EðR=JoÞð Þ is isomorphic to the chain 1þZþ 1.

Proof. The algebraic structure on EðR=JoÞ is just that of FðxÞD, where
D ¼ F½x"hhxii. The D-submodules are just

0 , ' ' ' , x2D , xD , D , ð1=xÞD , ' ' ' , EðR=JoÞ: j

Note that F½X)1" , EðR=JÞ is uniserial with submodule lattice iso-
morphic to oþ 1 and recall that EðR=JÞ=F½X)1" is isomorphic to EðR=JoÞ.
So I have:

Lemma 3.9. The following is a maximal chain in S EðR=JÞð Þ:

0 , X0F , ' ' ' ,
X

i<n

X)iF , ' ' ' , F½X)1" , ' ' '

' ' ' , F½X)1" þ hhX)1xz1ii , ' ' ' , EðR=JÞ

where n 2 o and z 2 Z. j

However, and in spite of the fact that EðR=JÞ is the injective envelope
of a uniserial module over a uniserial ring, S EðR=JÞð Þ is quite complicated.
For instance another maximal chain is

0 , X0F , ' ' ' , hhX)1xz1ii , ' ' ' , X0Fþ X)1F ,
' ' ' ,

X

i<n

X)iFþ X)1F , ' ' ' , EðR=JÞ :

The reader should then discern a sublattice isomorphic to 1þ ððoþ 1Þ 4
ð1þZþ 1ÞÞ lurking in the background. But although the maximal chains of
this sublattice are maximal in S EðR=JÞð Þ there is a lot more to this lattice. In
fact S EðR=JÞð Þ is not distributive: I leave it to the reader to verify that the
five submodules hhX)1x1ii, hhX)1; X)1x1ii, hhX)1 þ X)1ii, hhX)1ii, and
hhX)1; X)1ii form an M3 in S EðR=JÞð Þ. There are of course similar patterns
for each X)n and each X)1xz1:

Lemma 3.10. For any n 2 o and z 2 Z, the following five submodules form a
sublattice isomorphic to M3 in S EðR=JÞð Þ:

hhX)n; X)1xz1ii, hhX)ðnþ1Þ; X)1xz1ii, hhX)n; X)ðnþ1Þ þ X)1xz)11 ii,
hhX)n; X)1xz)11 ii, and hhX)ðnþ1Þ; X)1xz)11 ii. j
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3.5 Solutions to the Exercises

Solution 3.1. ðRemember that these are right modules!Þ It is enough to find a
right annihilator of the coefficient matrix which is not a right annihilator of
the constants:

h1; 1i h0; xi
h0; xi h1; x2i

) *

h)x1; )x2i
h1; xi

) *

¼ 0
0

) *

X)2 þ X)1 X)1x1 þ X)1
+ , h)x1; )x2i

h1; xi

) *

6¼ ½0"

Solution 3.2.

u ¼ X0 1

x1
þ 2) c

& '

þ X)1
1

x1
þ 1

& '

þ X)1
1

x1

& '

v ¼ X0c) X)1
1

x1
þ 1

& '

) X)1
1

x1
þ 1

& '

ðc 2 FÞ

4 THE INDECOMPOSABLE INJECTIVES OVER Ra

We have already seen in Sec. 1.2 that the ring Ra is left FBN and the prime
ideals are exactly the ideals Jo

b ¼ Raxb for b < a, and Jo
a ¼ 0, (where J is

the Jacobson radical of Ra ). Thus the indecomposable injectives of Ra are
precisely the injective envelopes EðRa=Jo

b
) , b / a. By methods entirely

similar to those outlined in detail in the previous section, we are led to
explicit descriptions of these modules. Of course these also provide explicit
descriptions of some indecomposable injective left Ra-modules, but it seems
that it is unlikely that we would be able to identify in some uniform way all
of the indecomposable injective left Ra-modules. Nonetheless, it seems
reasonable that we should be able to describe explicitly any ERaðRa=IÞ where
we have reasonable descriptions of I and of Ra=I.

For each monic standard monomial y 2 Y, y ¼ xn1a1 ' ' ' x
nk
ak , let y)1

denote the formal expression X)nkak ' ' 'X)n1a1 (an ‘‘inverse standard mono-
mial’’). (For y ¼ 1 let y)1 denote 1 as well.) The order of y)1 is the order of
y. It is intended that in each indecomposable EðRa=Raxb) , ay)1 will
represent a canonical solution to a consistent equation y ·v ¼ a, where y (
xb and a 2 Kb.

The first (and major) task will be to describe EðRa=JÞ.
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4.1 The ‘‘Biggest’’ Indecomposable EðRa=JÞ

Using the maps ry, y 2 Y, K may be made into a vector space over
itself since each ry restricts to a proper embedding of K into itself. Let Ky
denote the left K-vector space with underlying set K and scalar action
a ·k ¼ ryðaÞk. Let E0 be the K-vector space +y2YKyy)1. The elements of E0

have a naturally defined degree inherited from the degree defined on Ra. I
will show that E0 is in fact the underlying K-vector space of EðRa=JÞ. Note
that since Ra is a domain, any equation r ·v ¼ a with a 2 Ra=J and r 6¼ 0 is
consistent.

Lemma 4.1. Let y and Z be standard monomials, and let a 2 Ra=J ffi K. Let e
be any solution in EðRa=JÞ to y ·v ¼ a. Then:

1: Z ·a ¼ Za if degðZÞ ¼ 0 and Z ·a ¼ 0 if degðZÞ > 0.
2: If ordðZÞ < ordðyÞ then Z ·e is a solution to y ·v ¼ ryðZÞa.
3: If ordðZÞ ¼ ordðyÞ, say Z ¼ Ẑxmg and y ¼ ŷxng , and m / n then

Z ·e ¼ Ẑ · ê, where ê is a solution to ŷxn)mg ·v ¼ a.
4: if ordðZÞ ¼ ordðyÞ as in (iii) and m > n or if ordðZÞ > ordðyÞ, then

Z ·e ¼ 0.

Proof.

1. Z 2 K if degðZÞ ¼ 0 and Z 2 J if degðZÞ > 0.
2. Let Z ·e ¼ f. Then y · f ¼ y ·ðZ ·eÞ ¼ ðy ·ZÞ ·e ¼ ðryðZÞyÞ ·e, by

Lemma 1.1, which equals ryðZÞ ·ðy ·eÞ ¼ ryðZÞ ·a ¼ ryðZÞa, by
part 1.

3. Let ê ¼ xmg ·e. Then ŷxn)mg · ê ¼ ŷxn)mg · ðxmg ·eÞ ¼ ðŷxn)mg xmg Þ ·e ¼
y ·e ¼ a, and Z ·e ¼ Ẑxmg ·e ¼ Ẑ · ðxmg ·eÞ ¼ Ẑ · ê.

4. If ordðZÞ ¼ ordðyÞ and m > n then Z ·e ¼ Ẑxmg ·e ¼
Ẑxm)ng · ðxng ·eÞ, and xng ·e is a solution to ŷ ·v ¼ a with
ordðŷÞ < ordðẐxm)ng Þ, so we can assume without loss of generality
that ordðZÞ > ordðyÞ. Thus Zy ¼ rZðyÞZ by Lemma 1.1. Let
f ¼ Z ·e. Then rZðyÞ · f ¼ rZðyÞ ·ðZ ·eÞ ¼ ðrZðyÞZÞ ·e ¼ ðZyÞ ·
e ¼ Z ·ðy ·eÞ ¼ Z ·a ¼ 0, by part 1. But rZðyÞ is invertible, so
f ¼ 0. j

Corollary 4.2. If ordðZÞ ¼ ordðyÞ and m < n then Z ·e is a solution to
ŷxn)mg ·v ¼ rŷðr

n)m
g ðẐÞÞa.

Proof. By part 3 and part 2, since if m < n then ordðẐÞ < ordðŷxn)mg Þ. j

With the intent that ay)1 is supposed to represent a canonical solution
to the (consistent) equation y ·v ¼ a, I define an action of the standard
monomials on the inverse standard monomials by recursion on the order of Z.
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Definition 4.3.

Z ·ay
)1

¼
ryðZÞay)1 ordðZÞ ¼ )1 or ordðZÞ < ordðyÞ,
Ẑ ·aX

m)n
g ŷ)1 ordðZÞ ¼ ordðyÞ; Z ¼ Ẑxmg and y ¼ ŷxng ;m / n ;

0 ordðZÞ ¼ ordðyÞ;m > n ; or ordðZÞ > ordðyÞ :

8

<

:

Then I extend this to an action of Ra on E0 by distributivity. It follows
immediately from Lemma 4.1 that this multiplication respects the intended
interpretation of the inverse monomials.

Corollary 4.4. In the second case of the definition, if ordðZÞ ¼ ordðyÞ and m <
n then

Z ·ay
)1 ¼ rŷðr

n)m
g ðẐÞÞaXm)n

g ŷ)1 : j

Note that the condition ‘‘ordðZÞ ¼ )1’’ must be included in the first clause
of the definition as in this case there simply is no ‘g’; this is in accordance
with the y-component of E0 being the K-vector space Ky. The only thing that
remains in order to see that E0 is an Ra-module is to verify the associativity
of the operation just defined.

Lemma 4.5. The action of Ra on E0 is associative, and hence makes E0 into a
left Ra-module.

Proof. Take standard monomials Z0 ¼ Ẑ0xld and Z1 ¼ Ẑ1xmg , and inverse
standard monomial ay)1 ¼ aX)nb ŷ)1. We need to verify that
Z0 · ðZ1 ·ay

)1Þ ¼ ðZ0Z1Þ ·ay
)1. We have to consider a variety of cases

depending on the ordering of b; g; df g, and, where appropriate, the com-
parisons among the exponents l, m, and n. In any case where d or g is greater
than b, or one of them equals b and the corresponding exponent is greater
than n, both sides of the associative law are eaily seen to reduce to 0. I leave
it to the reader to verify that the various degenerate subcases arising from
the order of Z0 or of Z1 being )1, or possibilities like m) n ¼ 0 in case (2),
are either trivial or handled correctly by the following computations. So we
assume as induction hypothesis that

Z00 ·ðZ
0
1 ·ay

)1Þ ¼ ðZ00Z
0
1Þ ·ay

)1

for all ay)1, whenever ordðZ00Þ / ordðZ0Þ and ordðZ01Þ / ordðZ1Þ, with at
least one of the inequalities being strict.
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Case 1 ðd; g < bÞ

Z0 · ðZ1 ·ay
)1Þ ¼ Z0 ·ryðZ1Þay

)1 (since g < b)

¼ ryðZ0ÞryðZ1Þay)1 (since d < b)

¼ ryðZ0Z1Þay)1

¼ ðZ0Z1Þ ·ay
)1

the latter since the order of the standard form of Z0Z1 is less than b by
Lemma 1.1.

Case 2 ðd < g ¼ bÞ

Z0 · ðZ1 ·ay
)1Þ ¼ Z0 ·ðẐ1 ·aX

m)n
b ŷ)1Þ (clause 2 of the definition)

¼ ðZ0Ẑ1Þ ·aX
m)n
b ŷ)1 (induction hypothesis)

ðZ0Z1Þ ·ay
)1 ¼ ðZ0Ẑ1xmb Þ ·ay

)1

¼ ðZ0Ẑ1Þ ·aX
m)n
b ŷ)1 (clause 2 of the definition)

the latter since the order of the standard form of Z0Ẑ1 is less than b.

Case 3 ðg < d ¼ bÞ

Z0 · ðZ1 ·ay
)1Þ ¼ Z0 ·ryðZ1Þay

)1 (since g < b)

¼ Ẑ0 ·ryðZ1ÞaX
l)n
b ŷ)1 (clause 2 of the definition)

ðZ0Z1Þ·ay
)1¼ðẐ0xlbZ1Þ·ay

)1

¼ðẐ0rlbðZ1Þx
l
bÞ·ay

)1 (since g<b)

¼ Ẑ0 ·ðr
l
bðZ1Þx

l
b ·ay

)1Þ (inductionhypothesis)

¼ Ẑ0 ·ðr
l
bðZ1Þ·aX

l)n
b ŷ)1Þ (clause 2of thedefinition)

¼ Ẑ0 ·rŷ
-

rn)lb ðrlbðZ1Þ
$

.

aXl)n
b ŷ)1 (clause1of thedefinition)

¼ Ẑ0 ·ryðZ1ÞaX
l)n
b ŷ)1
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Case 4 ðd ¼ g ¼ bÞ

Z0 ·ðZ1 ·ay
)1Þ ¼ Z0 ·ðẐ1 ·aX

m)n
b ŷ)1Þ (clause 2 of the definition)

¼ ðZ0Ẑ1Þ ·aX
m)n
b ŷ)1 (induction hypothesis)

¼ rZ0ðẐ1ÞZ0 ·aX
m)n
b ŷ)1 ðsince ordðẐ1Þ < ordðZ0ÞÞ

¼ rZ0ðẐ1ÞẐ0 ·aX
lþm)n
b ŷ)1 (clause 2 of the definition)

ðZ0Z1Þ ·ay
)1 ¼ ðZ0Ẑ1xmb Þ ·ay

)1

¼ ðrZ0ðẐ1ÞZ0x
m
b Þ ·ay

)1 ðsince ordðẐ1Þ < ordðZ0ÞÞ

¼ ðrZ0ðẐ1ÞẐ0x
lþm
b Þ ·ay

)1

¼ rZ0ðẐ1ÞẐ0 ·aX
lþm)n
b ŷ)1 (clause 2 of the definition)

j

Now I begin to consider the task of solving linear equations in E0. In
particular I will show that for s 2 S and for any e 2 E0, the equation s:v ¼ e
has a unique solution in E0. Thus E0 is in fact an Ra-module. I will also
develop the tools for finding all solutions to division problems.

Lemma 4.6. Scalar multiplication cannot increase the degree. More precisely,
let Z; y 2 Y. Then

1. degðZ ·y
)1Þ / degðy)1Þ.

2. If ordðZÞ ¼ )1 or ordðZÞ < ordðyÞ then degðZ ·y
)1Þ ¼ degðy)1Þ.

3. If ordðZÞ ( 0 and ordðZÞ ( ordðyÞ then degðZ ·y
)1Þ < degðy)1Þ.

4. If degðZÞ > degðyÞ, then Z ·y
)1 ¼ 0.

Proof. Immediate by the definition of multiplication. j

Lemma 4.7. For any s 2 S the unique solution to s:v ¼ 0 in E0 is v ¼ 0.

Proof. Since s has a non-zero constant term s0, it follows from Lemma 4.6
that if e0 is the term of e of largest degree, then s0 ·e0 is the term of s ·e of
largest degree; that is, if e 6¼ 0 then s ·e 6¼ 0. j

Lemma 4.8. If 0 6¼ e with a0y)10 being the term of e of largest degree, then
annðeÞ ¼ hhx0y0ii.

Proof. If ay)1 is any other term of e then already y0 ·ay
)1 ¼ 0 by Lemma

4.6. Clearly x0y0 ·ay
)1
0 ¼ 0. On the other hand, if r ·e ¼ 0 we can write r in

the form sy1 with s 2 S and y1 2 Y. Then sy1 ·e ¼ 0 implies that y1 ·e ¼ 0 by
Lemma 4.7. Clearly if y1 7 y0 then y1 ·ay

)1
0 6¼ 0 by the definition of multi-
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plication; and so by Lemma 4.6 y1 ·e 6¼ 0. Thus y1 8 y0, that is,
y1 2 hhx0y0ii. j

Lemma 4.9. For Z 2 Y, the solutions in E0 to the equation Z ·v ¼ 0 are exactly
the elements of

P

y<Z Kyy)1, that is, the elements of lesser degree than Z.

Proof. Obvious. j

Lemma 4.10. To solve all equations of the form r ·v ¼ e ð r 2 Ra, e 2 E0Þ in E0

it suffices to be able to solve all equations of the forms s ·v ¼ ay)1 and
Z ·v ¼ ay)1, where s 2 S, y 2 Y, Z 2 Y, and the situations a ¼ 0, y ¼ 1 are
allowed.

Proof. If e 6¼ 0, express e as a sum of terms e ¼
P

i<n aiy
)1
i . Clearly if we

have solutions to each equation r ·v ¼ aiy)1i then we get a solution to the
original equation as a sum of these. Any r 2 Ra can be written in the form
r ¼ sZ where s 2 S and Z 2 Y. Thus r ·v ¼ e if and only if s ·ðZ ·vÞ ¼ e. So if
we can solve s ·w ¼ e and Z ·v ¼ w, then we can solve r ·v ¼ e. Combining the
two reductions yields the Lemma. j

Lemma 4.11. Every equation of the form Z ·v ¼ ay)1, Z 2 Y, has a solution in
E0; in particular a canonical solution ðwhen a 6¼ 0Þ is found as follows: Write
ay)1 ¼ aX)ng ŷ)1 and split up the standard form of Z as Z ¼ Z0xmg Z1 ðwith any
of Z0 ¼ 1, m ¼ 0 and Z1 ¼ 1 allowedÞ. Then v ¼ ½ryðZ0Þ"

)1aZ)11 X)n)mg ŷ)1 is a
solution.

Proof. Since ay)1 is a solution to y ·v ¼ a, Z ·v ¼ ay)1 implies that
ðyZÞ ·v ¼ a. Simple computations from the definition of multiplication give
the standard form of ðyZÞ)1 as above. j

Note that the formula given simplifies considerably if ordðZÞ < ordðyÞ:
a solution is v ¼ ½ryðZÞ"

)1ay)1. We get all solutions to Z ·v ¼ ay)1 by com-
bining the above with Lemma 4.9. Note that the degree of any solution is the
degree of yZ.

Lemma 4.12. Every equation of the form s ·v ¼ ay)1, s 2 S, has a solution in
E0, and the degree of the solution is degðyÞ.

Proof. I prove this by induction on degðyÞ. If degðyÞ ¼ 0 then ay)1 ¼ a 2 K;
write s ¼ s0 þ s1 where s0 2 K and s1 =2 S; then s·v ¼ a has the solution
v ¼ s)10 a.

So assume that degðyÞ ( 1 (so that ordðyÞ ( 0 ) and that s ·v ¼ ay)10

has a solution in E0 for all s 2 S and all ay0, y0 2 Y, of degree less
than degðyÞ. Write s ¼ s0 þ s1 where s0 is the sum of all terms of s of
order less than ordðyÞ; hence every term of s1 has order ( ordðyÞ or
s1 ¼ 0. Clearly s0 2 S. Let c ¼ ½ryðs0Þ"

)1a. Let e ¼ ay)1 ) s ·cy
)1. Then
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e ¼ ay)1 ) s0 ·cy
)1 ) s1 ·cy

)1 ¼ ay)1 ) ryðs0Þcy)1 ) s1 ·cy
)1 (since the

order of each term of s0 is less than the order of y)1), and this is then equal
to ay)1 ) ay)1 ) s1 ·cy

)1 ¼ )s1 ·cy
)1. Notice that if s1 ¼ 0 then we are

done. Otherwise, the order of each term of s1 is greater than the order of y0
so by Lemma 4.6 the degree of each term of e ¼ )s1 ·cy

)1 is less than the
degree of y. Hence by Lemma 4.10 and the induction hypothesis,
the equation s ·w ¼ e has a solution e0 in E0, of degree less than degðyÞ. Then
s ·ðcy

)1 þ e0Þ ¼ s ·cy
)1 þ s ·e0 ¼ s ·cy

)1 þ e ¼ s ·cy
)1 þ ay)1 ) s ·cy

)1 ¼
ay)1. Clearly degðcy)1 þ e0Þ ¼ degðyÞ. j

Note that the proofs of the preceding lemmas actually give an algo-
rithm for solving any equation r ·v ¼ e in the Ra-module E0. However the
obvious restrictions on the allowable degrees of terms in the answer give an
easier method of computing solutions. Write down a formal sum with
undetermined coefficients of the finitely many monomials that could actually
appear in a solution and are not annihilated by r; multiply formally by r;
solve by comparing coefficients to the representation of e as a inverse
polynomial. Unfortunately this more efficient method of solving equations
does not yield an efficient proof of the desired result following. For to use
this method to prove the main theorem, we would be need to be able to
show that the systems of linear equations over K arising by comparing
coefficients are always consistent.

Corollary 4.13. E0 is a divisible Ra-module. j

Now it is trivial to see that E0 is an essential extension, and hence the
injective envelope, of Ra=J.

Lemma 4.14. E0 is an essential extension of Ra=J.

Proof. Let 0 6¼ e 2 E0 and let k0y)10 be the term of e of highest degree. Then
if ky)1 is any other term of e, y0 ·ky

)1 ¼ 0. Hence y0 ·e ¼ y0 ·k0y
)1
0 ¼ k0, a

non-zero element of Ra=J. j

Theorem 4.15. E0 is the injective envelope of Ra=J. j

Exercise 4.16. Find all solutions to the following system of linear equations
over EðRa=JÞ.

x0 ·uþ x1 ·v ¼ X)11

uþ ðx0 þ x1Þ ·v ¼ 1þ X)11

A detailed solution is available from the author.

INDECOMPOSABLES OVER JATEGAONKAR’S RINGS 6049

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
1
9
 
6
 
J
a
n
u
a
r
y
 
2
0
1
0



4.2 All the Other Indecomposable Injectives

Now the descriptions of all the EðRa=RaxbÞ, 0 < b < a, follow in a
similar manner. The reader should note the similarities to the commutative
ring constructions in½6", in particular the appearance in the descriptions of
the quotient fields Kb, taken over successively larger subdomains ofRa. This
is an indication that in spite of the many peculiarities exhibited by both the
ring and its indecomposable injectives, the EðRa=RaxbÞ are in many ways
quite well behaved injective modules.

First note that since Ra is an Ore domain, it has a quotient skew field
Ka, and this quotient field is, as a left Ra-module, the injective envelope of Ra.

Theorem 4.17. The injective envelope of Ra is the quotient skew field of Ra.

Proof. Ka is clearly an essential extension of Ra, and as already noted, it
suffices to check divisibility. But this is obvious. j

So for the moment, I let b be any ordinal, 0 < b < a. I begin, as in the
previous section, by considering the effects of monomial scalar multi-
plication on the solutions to monomial equations.

Note that since Kb is clearly an essential extension of itsRa-submodule
Ra=Raxb, we might as well asssume that the constants of these equations are
in Kb. So consider an equation y ·v ¼ a with y 2 Y and a 2 Kb. Split the
standard monomial y into two (possibly empty) parts, y ¼ y0y1 with y0 2 !Rb
and y1 2 Raxb. Then any solution to y ·v ¼ a is also a solution to y1 ·v ¼
ð1=y0Þa and conversely. So we might as well assume that y 9 xb. (The reader
should be careful in the sequel about the distinction between reciprocals in
Kb such as ð1=y0Þ above, and the formal inverse monomials that will be
introduced later; in this context y)11 will be one such.)

Lemma 4.18. Let y and Z be standard monomials, y 9 xb, and let a 2 Kb. Let
e be any solution in EðRa=RaxbÞ to y ·v ¼ a. Then:

1. Z ·a ¼ Za if Z 0 xb and Z ·a ¼ 0 if Z 9 xb.
2. If ordðZÞ < ordðyÞ then Z ·e is a solution to y ·v ¼ ryðZÞa.
3. If ordðZÞ ¼ ordðyÞ, ðand so Z 9 xbÞ, say Z ¼ Ẑxmg and y ¼ ŷxng ,

and m / n then Z ·e ¼ Ẑ · ê, where ê is a solution to ŷxn)mg ·v ¼ a.
4. If ordðZÞ ¼ ordðyÞ as in (3) and m > n or if ordðZÞ > ordðyÞ, (and

so ordðZÞ > ordðxbÞ), then Z ·e ¼ 0.

Proof. The same as the proof of lemma 4.1. j

Definition 4.19. Let Yb ¼ fy 2 Y : no xg ; g < b occurs in yg ðand so
1 2 YbÞ. For y 2 Yb, let K

b
y be the Kb-vector space on Kb with scalar action

t)1r ·k ¼ ½ryðtÞ"
)1ryðrÞk, for 0 6¼ t; r 2 !Rb.
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Let Eb ¼ +y2YbK
b
yy
)1.

Define an action of Ra on Eb as before:

Z ·ay
)1

¼
ryðZÞay)1 ordðZÞ < ordðyÞ ;
Ẑ ·aX

m)n
b ŷ)1 ordðZÞ ¼ ordðyÞ ; Z ¼ Ẑxmg and y ¼ ŷxng ;m / n ;

0 ordðZÞ ¼ ordðyÞ ;m > n ; or ordðZÞ > ordðyÞ .

8

<

:

Lemma 4.20.

1: Eb is a left Ra-module.
2: Eb is a divisible left Ra-module.
3: Eb is an essential extension of Kb.

Proof. These follow for exactly the same reasons as before. j

Theorem 4.21. Eb is the injective envelope of Ra=Raxb. j

Note that if I had allowed b ¼ a above, we would have Yb ¼ 1f g, so
naming EðRaÞ as Ea is consistent with Definition 4.19.

4.3 Applications

For the most part, I leave it to the reader to explore possible appli-
cations of these descriptions. Computational problems such as solving
systems of linear equations, while daunting, are feasible. Extracting more
useful algebraic (or model-theoretic) information is of course more of a
challenge. In these examples once again, the (algebraic) socle series stabilizes
after only o steps, whereas the elementary socle series quite naturally cor-
responds to the structure of the description.

Proposition 4.22 (socle series).

1. socnðE0Þ ¼
P

m<n Kxm
0
X)m0 .

2. For all g ( o, socgðE0Þ ¼
P

m<o Kxm
0
X)m0 .

Proof. The key point is that r0 : K ! K is an embedding of a field into K,
whereas for b > 0, rb : !Rb ! K is an embedding of a domain not a field into
K. So, for instance, the minimal submodules over soc1ðE0Þ ¼ K are of the
form Kþ r0½K"aX)10 for some a 2 K. For b 2 r0½K"a if and only if b ¼ da for
some d 2 r0½K"; and since r0½K" is a subfield, d)1 2 r0½K" so d)1b ¼ a and
a 2 r0½K"b. On the other hand, ðr1ðx0ÞÞ

)1 is not in the image of r1 and so
hhX)11 ii, hhr1ðx0ÞX)11 ii, hhr1ðx20ÞX)11 ii, ' ' ' form an infinite descending chain of
submodules with intersection K, but no one of them is contained in
socoðE0Þ. j
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Proposition 4.23 ðelementary socle seriesÞ. socdðE0Þ ¼
P

y;degðyÞ<d Kyy)1 for
d / oa.

In particular, for g < a, soco
gðE0Þ ¼

P

y;y0xg Kyy)1.

Proof. The definable subgroups are determined by Lemma 4.9. j

I will investigate only one application of substance. We saw in Sec. 2
that the ‘‘uncomplicated’’ indecomposable ðEðR=JoÞÞ was a homomorphic
image of the ‘‘complicated’’ one ðEðR=JÞÞ. This ‘‘layering’’ of the inde-
composables is one of the interesting and peculiar features of the example.
This sort of structure is displayed beautifully in the general case.

Theorem 4.24. Let 0 < b < a. Then for each g, b / g < a, E0=soco
bðE0Þ has

an infinite direct sum of copies of Eg as a direct summand.

Proof. First note that Ab ¼
P

y;y9xb Kyy)1 is a set of representatives of the
cosets of soco

bðE0Þ in E0. Scalar multiplication on Ab is then just ordinary
scalar multiplication on E0, setting to 0 any term of degree less than degðxbÞ.
Since Ra is hereditary, Ab is injective. So it suffices to find linearly inde-
pendent elements of Ab with annihilator Raxg for any g, b / g < a.

In fact, for fixed g, the set fX)1g y)1 : y 0 xb g will do. For in E0,
r ·X

)1
g y)1 either has order that of xg, or order less that that of xb. So in Ab,

r ·X
)1
g y)1 ¼ 0 if and only if r 2 Raxg. Furthermore, if r ·X

)1
g y)1 is not zero

in Ab, the product retains a term in X)1g y)1 in Ab. So no non-trivial linear
combination of such things can be zero. For the same reason, the elements
chosen for different g’s are independent from each other. j

I have avoided giving the complete decomposition of E0=soco
bðE0Þ as

a direct sum of indecomposables. This is in part due to difficulties presented
by the fine details of the construction of Jategaonkar’s ring Ra. Clearly the
map rb extends to an embedding of Kb into K. This makes K into a left
vector space over Kb. What is the dimension of this space? It is clear that if
f ai : i 2 I g is a basis for K over Kb then f aiX)1b : i 2 I g is also a linearly
independent set of elements of Ab with annihilator Raxb. So the determi-
nation of the actual multiplicity of Eb in Ab (or of any Eg, g ( b ) depends on
specific details of the construction of Ra. However it appears that with the
appropriate choices in the initial conditions of the construction of Ra, we
can guarantee that the multiplicity of each Eg, b / g / a, in Ab is Raj j. Of
course, results similar to Theorem 4.24 hold for each Eb.
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