
Explicit descriptions of the indecomposable
injective modules over Jategaonkar’s rings

Supplement to Theorem 4.24 ∗†

T. G. Kucera
Department of Mathematics

University of Manitoba

Winnipeg, Manitoba, Canada R3T 2N2

e-mail: Thomas.Kucera@UManitoba.CA

June 15, 2017

Abstract

In 1968–1969, A. V. Jategaonkar published his famous construc-
tions of left but not right noetherian rings that provided counterex-
amples to several important conjectures of that era. These examples,
and others like them, seemed to indicate that, in general, the task
of completely understanding the structure of indecomposable injec-
tive modules over one-sided noetherian rings was hopeless. In this
paper I show how to deduce by natural methods, directly from the
known description of these rings and their properties, explicit compu-
tational descriptions of the indecomposable injective left modules over
Jategaonkar’s rings. I use these explicit descriptions to answer some
simple structural questions about the indecomposables.

This short note provides a correct proof and supplementary mate-
rial to the original article, published in Communications in Algebra

∗AMS subject classifications: Primary 16D50; Secondary 16D70, 16S36, 16B70, 03C60.
†Keywords: injective modules, non-commutative noetherian rings, non-commutative

localization.
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The proof outline given of Theorem 4.24 in the original is entirely opaque
and certainly includes at least some errors in inequalities. A correct proof
is given, together with additional material that can be extracted from the
structural description.

I have left a lot of “empty” items in, in order to preserve numbering and
cross-references.

1 Descriptions of the rings

1.1 The ring R - a simple case

1.2 The rings Rα — the general case.

Now I describe the more complicated rings from [3]. It would be nice to
follow Jategaonkar’s description exactly, but unfortunately a choice that he
makes in order to make the exposition of his construction simpler (starting
the enumeration of indeterminates with x1 rather than with x0) would make
the description of my constructions unwieldy, with separate cases for finite
and infinite β . So with the minor change in the indexing of indeterminates,
I present Jategaonkar’s examples.

In [3, see especially Theorem 4.6], Jategaonkar shows the existence of
rings Rα , α an ordinal, with the following description and properties.

There is a division ring K ⊂ Rα and twisted polynomial extensions of K
inside Rα satisfying:

R̄β = K[xγ, ργ : γ < β ] for each β ≤ α .
Rβ = R̄β[xβ, ρβ] for each β < α .
Rα = R̄α .

where each ρβ: R̄β −→ K is a monomorphism, and multiplication in Rα is
determined by xβr = ρβ(r)xβ for any r in R̄β .

Elements of Rα can be expressed in an essentially unique way as a (finite)
sum of distinct standard monomials, where a standard monomial is a term
of the form a xn1

α1
. . . xnkαk for some k ≥ 0 , a ∈ K , α1 < · · · < αk < α ,

and ni > 0 . (For k = 0, a standard monomial is just some element of
K .) Jategaonkar shows that Rα is a principal left ideal domain and that the
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elements 1 +xβ , β < α , are right Rα-linearly independent. From these facts
follow most of the interesting and peculiar properties of the ring Rα .

Let Θ be the set of all monic standard monomials (including 1 ). The set
Θ can be ordered in order type ωα as follows. The least element is 1 , and
otherwise given two monic standard monomials, write them with common
variables as θ1 = xn1

α1
. . . xnkαk and θ2 = xm1

α1
. . . xmkαk , α1 < · · · < αk < α and

ni ≥ 0 , mi ≥ 0 . Then θ1 ≺ θ2 if and only if for some t , nl = ml for all
l , t < l ≤ k , and nt < mt . Consequently, each standard monomial has
a well defined degree which is an ordinal < ωα , and I define the degree of
a non-zero element of Rα to be the maximum of the degrees of its terms.
Note in particular that deg(1) = 0 and that deg(xβ) = ωβ . Note also that
any subsequence of a monic standard polynomial is again a member of Θ , in
particular initial and final segments (including the empty segment, taken to
be 1 ) of some θ ∈ Θ are again in Θ . For any θ ∈ Θ and a ∈ K , I define the
order of aθ to be −1 if θ = 1 , otherwise it is the largest index of a variable
occurring in θ . For θ ∈ Θ , θ = xn1

α1
. . . xnkαk , I let ρθ = ρn1

α1
◦ · · · ◦ ρnkαk , with

ρ∅ the identity map. I record a few simple but useful facts about degree and
order.

Lemma 1.1 1. The successor of θ in the order on Θ is x0θ .

2. Let 0 6= r, s ∈ Rα . Then1

deg(rs) = deg(s) + deg(r) .

3. Let θ0, θ1 be standard monomials. Then

ord(θ0θ1) = max{ord(θ0), ord(θ1)} .

4. Let θ0, θ be standard monomials. If ord(θ0) < ord(θ) then θθ0 =
ρθ(θ0)θ .

Proof: The first three parts are obvious. The last part is proved by induction
on the order of θ . If θ ∈ K there is nothing to prove. Otherwise θ = θ′xnβ
with ord(θ0) < β . Then θθ0 = θ′xnβθ0 = θ′ρnβ(θ0)xnβ (since ord(θ0) < β , θ0 is
in the domain of ρβ ), and then since ρnβ(θ0) ∈ K , by induction hypothesis

the latter equals ρθ′(ρ
n
β(θ0))θ′xnβ , that is, it equals ρθ(θ0)θ .

1Here ‘+’ represents ordinal addition; the order of r and s on both sides is significant,
as neither operation is commutative.
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Let S = { f ∈ Rα : f has non zero constant term } . S is easily seen to
be a left Ore set in Rα , [3, Theorem 4.5], and every non-zero element r of
Rα can be written in the form r = sθ , where s ∈ S and θ ∈ Θ. In fact
it follows immediately from the proof of [3, Theorem 4.5] that θ is just the
indeterminate part of the term of r of least degree. Let Rα = (Rα)S . Every
non-zero element of Rα can be written as a sum of terms of the form s−1θ
where s ∈ S and θ ∈ Θ .
Rα is a principal left ideal domain, every left ideal is generated by a monic

standard monomial, every left ideal is two sided, and the left ideals are well-
ordered by reverse inclusion. ThusRα is left FBN and so the indecomposable
injective left Rα-modules are in one-to-one correspondence with the prime
ideals. A typical non zero left ideal is then Rαθ , with θ ∈ Θ . Then Rαθ0 ⊃
Rαθ1 if and only if θ0 ≺ θ1 .

Considerably more can be read out of the analysis of the descending
sequence of left ideals in the proof of [3, Theorem 4.6] than is stated in the
conclusion of the theorem. In fact we have that the Jacobson radical J(Rα)
is the ideal J = Rαx0 , and every left ideal is Jβ for some β , so Jβ is the
β-th ideal in the descending order just described. In particular, the prime
ideals of Rα are J, Jω = Rαx1, . . . , J

ωn = Rαxn, . . . , J
ωω = Rαxω, . . . , J

ωβ =
Rαxβ, . . . , J

ωα = 0 . (Once again the same model-theoretic explanation as
in Section 1.1 could be used to show that these are exactly the prime ideals.)

For the purpose of developing explicit descriptions of the indecomposable
injectives, it will be useful to have descriptions of Rα/Rαxβ for each β < α .
Let Sβ = S ∩ R̄β . Then Sβ is a left Ore set in R̄β . Clearly for any s ∈ S
there is unique s̄ ∈ Sβ such that s − s̄ ∈ Rαxβ ; similarly for any r ∈ Rα

there is a unique r̄ ∈ R̄β such that r − r̄ ∈ Rαxβ . Thus for any s−1r ∈ Rα ,
s−1r ≡ s̄−1r̄ (Rαxβ) . So Rα/Rαxβ ∼= (R̄β)Sβ . Here the action of Rα on
the Rα-module (R̄β)Sβ can be thought of as “ordinary multiplication in Rα ,
followed by setting to 0 any indeterminate xγ , γ ≥ β ”. Furthermore, since
by construction R̄β is a left Ore domain ([3, Theorem 2.8]), we may consider
(R̄β)Sβ to be embedded in the left quotient field Kβ of R̄β .

2 The indecomposable injectives over R

Lemma 2.1 Any injective right R-module E is also an injective right D-
module and an injective right F [x]-module.

Lemma 2.2 If (ci)i∈I is F -linearly independent in C , and for each i ∈ I ,

4



ei is a solution in E(R/J) to v . 〈1, 0〉 = ci , then (ei)i∈I is F -linearly
independent in E .

Proof: Suppose that for some finite I ′ ⊂ I ,
∑

i∈I′ ei . 〈0, ai〉 = 0 where ai ∈
F . Then ei . 〈0, ai〉 〈1, 0〉 = ei . 〈1, 0〉 〈0, σ(ai)〉 = ci . 〈0, σ(ai)〉 = ciσ(ai) .
So certainly (in F ),

∑
i∈I′ ciσ(ai) = 0 ; thus in CF ,

∑
i∈I′ ci . ai = 0 . Thus

by assumption, ai = 0 for all i ∈ I ′ .

Lemma 2.3 Let (ci)i∈I be an F -basis for CF , and for each i ∈ I , let ei be
a solution in E(R/J) of v . 〈1, 0〉 = ci . If a ∈ F , and e ∈ E is a solution
of v . 〈1, 0〉 = a , then e is an F -linear combination of the ei’s modulo
{ f ∈ E : f . Jn = 0 for some n } .

Theorem 2.4 E(R/J) ∼= F [X−1]⊕X−∞F with R-action given by

(f(X−1) +X−∞a) . 〈b, d〉 = f(X−1) . d+X0ab+X−∞aσ(d)

(with the scalar action of D on F [X−1] described earlier).

Theorem 2.5 E(R/Jω) ∼= F (x) under the scalar action q . 〈b, d〉 = qd .

Note that E(R/J)/F [X−1] ∼=R E(R/Jω) .

3 Some applications of the explicit descrip-

tion

3.1 Series in E(R/J)

3.2 Endomorphism rings

Proposition 3.1 End(E(R/Jω)) = F (x) .

Lemma 3.2

EndD(E(R/J)) ∼=
(
F [[x]] F [[x]]F [x−1, x]]F (x)

0 F (x)

)
with the actions on F [x−1, x]] as described.
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Quite a few computations have been left out of the above discussion, and
the reader is warned that a detailed checking of these claims is, while routine,
quite tedious.

Now we have to identify theR-endomorphisms among theD-endomorphisms.
We represent an element of E(R/J) as a column vector with entries f(X−1)
and a , letting the endomorphism ring above act on these from the left by
ordinary matrix multiplication. Again, equally routine and tedious compu-
tations yield:

Lemma 3.3 The elements of EndD(E(R/J)) which are R-endomorphisms
are exactly those of the form (

ξ ζ
0 ξ(0)

)
.

Theorem 3.4 Let S = F [[x]]⊕F [x−1, x]] with F [x−1, x]] the (F [[x]], F (x))-
bimodule described earlier. Then S is a ring with multiplication

〈ξ, ζ〉 〈ξ′, ζ ′〉 = 〈ξξ′, ξ . ζ ′ + ζ . ξ′(0)〉 .

S is isomorphic to EndR(E(R/J)), acting on E(R/J) from the left according
to the rule

〈ξ, ζ〉 . (f(X−1) +X−∞a) = ξ . f(X−1) +X0ζ . a+X−∞ξ(0)a .

3.3 Elementary duals

Theorem 3.5 1. The elementary dual of the right R-module E(R/J) is
the flat indecomposable pure-injective left R-module P = F ⊕ F [[x]],
with the action of R given by 〈b, d〉 . 〈a, f〉 = 〈bρ(f) + σ(d)q, η(d)f〉 .

2. The elementary dual of the right R-module E(R/Jω) is the flat inde-
composable pure-injective left R-module F (X), with the action of R
given by 〈b, d〉 q = dq .
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3.4 The lattice of submodules

Lemma 3.6 S (E(R/Jω)) is isomorphic to the chain 1 + Z + 1 .

Lemma 3.7 The following is a maximal chain in S (E(R/J)) :

0 ⊂ X0F ⊂ . . . ⊂
∑

i<nX
−iF ⊂ . . . ⊂ F [X−1] ⊂ . . .

. . . ⊂ F [X−1] + 〈〈X−∞xz1〉〉 ⊂ . . . ⊂ E(R/J)

where n ∈ ω and z ∈ Z .

Lemma 3.8 For any n ∈ ω and z ∈ Z , the following five submodules form
a sublattice isomorphic to M3 in S (E(R/J)) :
〈〈X−n, X−∞xz1〉〉 ,

〈〈
X−(n+1), X−∞xz1

〉〉
,
〈〈
X−n, X−(n+1) +X−∞xz−1

1

〉〉
,〈〈

X−n, X−∞xz−1
1

〉〉
, and

〈〈
X−(n+1), X−∞xz−1

1

〉〉
.

3.5 Solutions to the exercises

4 The indecomposable injectives over Rα

We have already seen in section 1.2 that the ring Rα is left FBN and the
prime ideals are exactly the ideals Jω

β
= Rαxβ for β < α , and Jω

α
= 0 ,

(where J is the Jacobson radical of Rα ). Thus the indecomposable injectives
of Rα are precisely the injective envelopes E(Rα/Jω

β
) , β ≤ α . By methods

entirely similar to those outlined in detail in the previous section, we are led
to explicit descriptions of these modules. Of course these also provide explicit
descriptions of some indecomposable injective left Rα-modules, but it seems
that it is unlikely that we would be able to identify in some uniform way
all of the indecomposable injective left Rα-modules. Nonetheless, it seems
reasonable that we should be able to describe explicitly any ERα(Rα/I) where
we have reasonable descriptions of I and of Rα/I .

For each monic standard monomial θ ∈ Θ , θ = xn1
α1
. . . xnkαk , let θ−1 denote

the formal expression X−nkαk
. . . X−n1

α1
(an “inverse standard monomial”). (For

θ = 1 let θ−1 denote 1 as well.) The order of θ−1 is the order of θ . It is
intended that in each indecomposable E(Rα/Rαxβ) , aθ−1 will represent a
canonical solution to a consistent equation θ . v = a , where θ ≥ xβ and
a ∈ Kβ .

The first (and major) task will be to describe E(Rα/J) .
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4.1 The “biggest” indecomposable E(Rα/J)

Using the maps ρθ , θ ∈ Θ , K may be made into a vector space over itself since
each ρθ restricts to a proper embedding of K into itself. Let Kθ denote the left
K-vector space with underlying set K and scalar action a . k = ρθ(a)k. Let
E0 be the K-vector space ⊕θ∈ΘKθθ

−1 . The elements of E0 have a naturally
defined degree inherited from the degree defined on Rα . I will show that E0

is in fact the underlying K-vector space of E(Rα/J) . Note that since Rα is
a domain, any equation r . v = a with a ∈ Rα/J and r 6= 0 is consistent.

Lemma 4.1 Let θ and η be standard monomials, and let a ∈ Rα/J ∼= K .
Let e be any solution in E(Rα/J) to θ . v = a . Then:

1. η . a = ηa if deg(η) = 0 and η . a = 0 if deg(η) > 0 .

2. If ord(η) < ord(θ) then η . e is a solution to θ . v = ρθ(η)a .

3. If ord(η) = ord(θ) , say η = η̂xmγ and θ = θ̂xnγ , and m ≤ n then

η . e = η̂ . ê , where ê is a solution to θ̂xn−mγ . v = a .

4. if ord(η) = ord(θ) as in (iii) and m > n or if ord(η) > ord(θ) , then
η . e = 0 .

Proof:

1. η ∈ K if deg(η) = 0 and η ∈ J if deg(η) > 0 .

2. Let η . e = f . Then θ . f = θ . (η . e) = (θ . η) . e = (ρθ(η)θ) . e ,
by Lemma 1.1, which equals ρθ(η) . (θ . e) = ρθ(η) . a = ρθ(η)a , by
part 1.

3. Let ê = xmγ . e . Then θ̂xn−mγ . ê = θ̂xn−mγ . (xmγ . e) = (θ̂xn−mγ xmγ ) .
e = θ . e = a , and η . e = η̂xmγ . e = η̂ . (xmγ . e) = η̂ . ê .

4. If ord(η) = ord(θ) and m > n then η . e = η̂xmγ . e = η̂xm−nγ . (xnγ . e) ,

and xnγ . e is a solution to θ̂ . v = a with ord(θ̂) < ord(η̂xm−nγ ) , so
we can assume without loss of generality that ord(η) > ord(θ) . Thus
ηθ = ρη(θ)η by Lemma 1.1. Let f = η . e . Then ρη(θ) . f = ρη(θ) .
(η . e) = (ρη(θ)η) . e = (ηθ) . e = η . (θ . e) = η . a = 0 , by part 1.
But ρη(θ) is invertible, so f = 0 .

8



Corollary 4.2 If ord(η) = ord(θ) and m < n then η . e is a solution to
θ̂xn−mγ . v = ρθ̂(ρ

n−m
γ (η̂))a .

Proof: By part 3 and part 2, since if m < n then ord(η̂) < ord(θ̂xn−mγ ) .

With the intent that aθ−1 is supposed to represent a canonical solution
to the (consistent) equation θ . v = a , I define an action of the standard
monomials on the inverse standard monomials by recursion on the order of
η .

Definition 4.3

η . aθ−1 =


ρθ(η)aθ−1 ord(η) = −1 or ord(η) < ord(θ) ,

η̂ . aXm−n
γ θ̂−1 ord(η) = ord(θ) , η = η̂xmγ and θ = θ̂xnγ ,m ≤ n ,

0 ord(η) = ord(θ) ,m > n , or ord(η) > ord(θ) .

Then I extend this to an action of Rα on E0 by distributivity. It follows
immediately from Lemma 4.1 that this multiplication respects the intended
interpretation of the inverse monomials.

Corollary 4.4 In the second case of the definition, if ord(η) = ord(θ) and
m < n then

η . aθ−1 = ρθ̂(ρ
n−m
γ (η̂))aXm−n

γ θ̂−1 .

Note that the condition “ord(η) = −1” must be included in the first clause of
the definition as in this case there simply is no ‘γ’; this is in accordance with
the θ-component of E0 being the K-vector space Kθ . The only thing that
remains in order to see that E0 is an Rα-module is to verify the associativity
of the operation just defined.

Lemma 4.5 The action of Rα on E0 is associative, and hence makes E0

into a left Rα-module.

Proof: Take standard monomials η0 = η̂0x
l
δ and η1 = η̂1x

m
γ , and inverse

standard monomial aθ−1 = aX−nβ θ̂−1 . We need to verify that η0 . (η1 .
aθ−1) = (η0η1) . aθ−1 . We have to consider a variety of cases depending on

9



the ordering of { β, γ, δ } , and, where appropriate, the comparisons among
the exponents l , m , and n . In any case where δ or γ is greater than β , or
one of them equals β and the corresponding exponent is greater than n , both
sides of the associative law are eaily seen to reduce to 0 . I leave it to the
reader to verify that the various degenerate subcases arising from the order
of η0 or of η1 being −1 , or possibilities like m− n = 0 in case (2), are either
trivial or handled correctly by the following computations. So we assume as
induction hypothesis that

η′0 . (η′1 . aθ−1) = (η′0η
′
1) . aθ−1

for all aθ−1 , whenever ord(η′0) ≤ ord(η0) and ord(η′1) ≤ ord(η1) , with at
least one of the inequalities being strict.
Case 1 (δ, γ < β)

η0 . (η1 . aθ−1) = η0 . ρθ(η1)aθ−1 (since γ < β )
= ρθ(η0)ρθ(η1)aθ−1 (since δ < β )
= ρθ(η0η1)aθ−1

= (η0η1) . aθ−1

the latter since the order of the standard form of η0η1 is less than β by Lemma
1.1.
Case 2 (δ < γ = β)

η0 . (η1 . aθ−1) = η0 . (η̂1 . aXm−n
β θ̂−1) (clause 2 of the definition)

= (η0η̂1) . aXm−n
β θ̂−1 (induction hypothesis)

(η0η1) . aθ−1 = (η0η̂1x
m
β ) . aθ−1

= (η0η̂1) . aXm−n
β θ̂−1 (clause 2 of the definition)

the latter since the order of the standard form of η0η̂1 is less than β .
Case 3 (γ < δ = β)

η0 . (η1 . aθ−1) = η0 . ρθ(η1)aθ−1 (since γ < β )

= η̂0 . ρθ(η1)aX l−n
β θ̂−1 (clause 2 of the definition)

(η0η1) . aθ−1 = (η̂0x
l
βη1) . aθ−1

= (η̂0ρ
l
β(η1)xlβ) . aθ−1 (since γ < β )

= η̂0 . (ρlβ(η1)xlβ . aθ−1) (induction hypothesis)

= η̂0 . (ρlβ(η1) . aX l−n
β θ̂−1) (clause 2 of the definition)

= η̂0 . ρθ̂
(
ρn−lβ (ρlβ(η1))

)
aX l−n

β θ̂−1 (clause 1 of the definition)

= η̂0 . ρθ(η1)aX l−n
β θ̂−1
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Case 4 (δ = γ = β)

η0 . (η1 . aθ−1) = η0 . (η̂1 . aXm−n
β θ̂−1) (clause 2 of the definition)

= (η0η̂1) . aXm−n
β θ̂−1 (induction hypothesis)

= ρη0(η̂1)η0 . aXm−n
β θ̂−1 (since ord(η̂1) < ord(η0) )

= ρη0(η̂1)η̂0 . aX l+m−n
β θ̂−1 (clause 2 of the definition)

(η0η1) . aθ−1 = (η0η̂1x
m
β ) . aθ−1

= (ρη0(η̂1)η0x
m
β ) . aθ−1 (since ord(η̂1) < ord(η0) )

= (ρη0(η̂1)η̂0x
l+m
β ) . aθ−1

= ρη0(η̂1)η̂0 . aX l+m−n
β θ̂−1 (clause 2 of the definition)

Now I begin to consider the task of solving linear equations in E0 . In
particular I will show that for s ∈ S and for any e ∈ E0 , the equation s.v = e
has a unique solution in E0 . Thus E0 is in fact an Rα-module. I will also
develop the tools for finding all solutions to division problems.

Lemma 4.6 Scalar multiplication cannot increase the degree. More pre-
cisely, let η, θ ∈ Θ . Then

1. deg(η . θ−1) ≤ deg(θ−1) .

2. If ord(η) = −1 or ord(η) < ord(θ) then deg(η . θ−1) = deg(θ−1) .

3. If ord(η) ≥ 0 and ord(η) ≥ ord(θ) then deg(η . θ−1) < deg(θ−1) .

4. If deg(η) > deg(θ) , then η . θ−1 = 0 .

Proof: Immediate by the definition of multiplication.

Lemma 4.7 For any s ∈ S the unique solution to s.v = 0 in E0 is v = 0 .

Proof: Since s has a non-zero constant term s0, it follows from Lemma 4.6
that if e0 is the term of e of largest degree, then s0 . e0 is the term of s . e
of largest degree; that is, if e 6= 0 then s . e 6= 0 .

Lemma 4.8 If 0 6= e with a0θ
−1
0 being the term of e of largest degree, then

ann(e) = 〈〈x0θ0〉〉 .
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Proof: If aθ−1 is any other term of e then already θ0 . aθ−1 = 0 by Lemma
4.6. Clearly x0θ0 . aθ−1

0 = 0 . On the other hand, if r . e = 0 we can write
r in the form sθ1 with s ∈ S and θ1 ∈ Θ . Then sθ1 . e = 0 implies that
θ1 . e = 0 by Lemma 4.7. Clearly if θ1 � θ0 then θ1 . aθ−1

0 6= 0 by the
definition of multiplication; and so by Lemma 4.6 θ1 . e 6= 0 . Thus θ1 � θ0 ,
that is, θ1 ∈ 〈〈x0θ0〉〉 .

Lemma 4.9 For η ∈ Θ , the solutions in E0 to the equation η . v = 0 are
exactly the elements of

∑
θ<ηKθθ

−1 , that is, the elements of lesser degree
than η .

Proof: Obvious.

Lemma 4.10 To solve all equations of the form r . v = e ( r ∈ Rα , e ∈ E0 )
in E0 it suffices to be able to solve all equations of the forms s . v = aθ−1

and η . v = aθ−1 , where s ∈ S , θ ∈ Θ , η ∈ Θ , and the situations a = 0 ,
θ = 1 are allowed.

Proof: If e 6= 0 , express e as a sum of terms e =
∑

i<n aiθ
−1
i . Clearly if we

have solutions to each equation r . v = aiθ
−1
i then we get a solution to the

original equation as a sum of these. Any r ∈ Rα can be written in the form
r = sη where s ∈ S and η ∈ Θ . Thus r . v = e if and only if s . (η . v) = e .
So if we can solve s . w = e and η . v = w , then we can solve r . v = e .
Combining the two reductions yields the Lemma.

Lemma 4.11 Every equation of the form η . v = aθ−1 , η ∈ Θ , has a
solution in E0 ; in particular a canonical solution (when a 6= 0 ) is found
as follows: Write aθ−1 = aX−nγ θ̂−1 and split up the standard form of η
as η = η0x

m
γ η1 (with any of η0 = 1 , m = 0 and η1 = 1 allowed). Then

v = [ρθ(η0)]−1aη−1
1 X−n−mγ θ̂−1 is a solution.

Proof: Since aθ−1 is a solution to θ . v = a , η . v = aθ−1 implies that
(θη) . v = a . Simple computations from the definition of multiplication give
the standard form of (θη)−1 as above.

Note that the formula given simplifies considerably if ord(η) < ord(θ) :
a solution is v = [ρθ(η)]−1aθ−1 . We get all solutions to η . v = aθ−1 by
combining the above with Lemma 4.9. Note that the degree of any solution
is the degree of θη .
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Lemma 4.12 Every equation of the form s . v = aθ−1 , s ∈ S , has a
solution in E0, and the degree of the solution is deg(θ) .

Proof: I prove this by induction on deg(θ) . If deg(θ) = 0 then aθ−1 = a ∈
K ; write s = s0 +s1 where s0 ∈ K and s1 /∈ S ; then s.v = a has the solution
v = s−1

0 a .
So assume that deg(θ) ≥ 1 (so that ord(θ) ≥ 0 ) and that s . v = aθ−1

0

has a solution in E0 for all s ∈ S and all aθ0 , θ0 ∈ Θ , of degree less than
deg(θ) . Write s = s0 + s1 where s0 is the sum of all terms of s of order
less than ord(θ) ; hence every term of s1 has order ≥ ord(θ) or s1 = 0 .
Clearly s0 ∈ S . Let c = [ρθ(s0)]−1a . Let e = aθ−1 − s . cθ−1 . Then
e = aθ−1 − s0 . cθ−1 − s1 . cθ−1 = aθ−1 − ρθ(s0)cθ−1 − s1 . cθ−1 (since the
order of each term of s0 is less than the order of θ−1 ), and this is then equal
to aθ−1 − aθ−1 − s1 . cθ−1 = −s1 . cθ−1 . Notice that if s1 = 0 then we are
done. Otherwise, the order of each term of s1 is greater than the order of
θ0 so by Lemma 4.6 the degree of each term of e = −s1 . cθ−1 is less than
the degree of θ . Hence by Lemma 4.10 and the induction hypothesis, the
equation s . w = e has a solution e0 in E0, of degree less than deg(θ) . Then
s . (cθ−1 + e0) = s . cθ−1 + s . e0 = s . cθ−1 + e = s . cθ−1 + aθ−1 − s .
cθ−1 = aθ−1 . Clearly deg(cθ−1 + e0) = deg(θ) .

Note that the proofs of the preceding lemmas actually give an algorithm
for solving any equation r . v = e in the Rα-module E0 . However the
obvious restrictions on the allowable degrees of terms in the answer give
an easier method of computing solutions. Write down a formal sum with
undetermined coefficients of the finitely many monomials that could actually
appear in a solution and are not annihilated by r ; multiply formally by
r ; solve by comparing coefficients to the representation of e as a inverse
polynomial. Unfortunately this more efficient method of solving equations
does not yield an efficient proof of the desired result following. For to use
this method to prove the main theorem, we would be need to be able to show
that the systems of linear equations over K arising by comparing coefficients
are always consistent.

Corollary 4.13 E0 is a divisible Rα-module.

Now it is trivial to see that E0 is an essential extension, and hence the
injective envelope, of Rα/J .

Lemma 4.14 E0 is an essential extension of Rα/J .
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Proof: Let 0 6= e ∈ E0 and let k0θ
−1
0 be the term of e of highest degree. Then

if kθ−1 is any other term of e , θ0 . kθ−1 = 0 . Hence θ0 . e = θ0 . k0θ
−1
0 = k0 ,

a non-zero element of Rα/J .

Theorem 4.15 E0 is the injective envelope of Rα/J .

Exercise 4.16 Find all solutions to the following system of linear equations
over E(Rα/J) .

x0 . u + x1 . v = X−1
1

u + (x0 + x1) . v = 1 +X−1
1

4.2 All the other indecomposable injectives

Now the descriptions of all the E(Rα/Rαxβ) , 0 < β < α , follow in a similar
manner. The reader should note the similarities to the commutative ring
constructions in [6], in particular the appearance in the descriptions of the
quotient fields Kβ , taken over successively larger subdomains of Rα . This
is an indication that in spite of the many peculiarities exhibited by both the
ring and its indecomposable injectives, the E(Rα/Rαxβ) are in many ways
quite well behaved injective modules.

First note that since Rα is an Ore domain, it has a quotient skew field
Kα , and this quotient field is, as a left Rα-module, the injective envelope of
Rα .

Theorem 4.17 The injective envelope of Rα is the quotient skew field of
Rα .

Proof: Kα is clearly an essential extension of Rα , and as already noted, it
suffices to check divisibility. But this is obvious.

So for the moment, I let β be any ordinal, 0 < β < α . I begin, as in the
previous section, by considering the effects of monomial scalar multiplication
on the solutions to monomial equations.

Note that since Kβ is clearly an essential extension of its Rα-submodule
Rα/Rαxβ , we might as well asssume that the constants of these equations
are in Kβ . So consider an equation θ . v = a with θ ∈ Θ and a ∈ Kβ . Split
the standard monomial θ into two (possibly empty) parts, θ = θ0θ1 with
θ0 ∈ R̄β and θ1 ∈ Rαxβ . Then any solution to θ . v = a is also a solution to
θ1 . v = (1/θ0)a and conversely. So we might as well assume that θ � xβ .

14



(The reader should be careful in the sequel about the distinction between
reciprocals in Kβ such as (1/θ0) above, and the formal inverse monomials
that will be introduced later; in this context θ−1

1 will be one such.)

Lemma 4.18 Let θ and η be standard monomials, θ � xβ , and let a ∈ Kβ .
Let e be any solution in E(Rα/Rαxβ) to θ . v = a . Then:

1. η . a = ηa if η ≺ xβ and η . a = 0 if η � xβ .

2. If ord(η) < ord(θ) then η . e is a solution to θ . v = ρθ(η)a .

3. If ord(η) = ord(θ) , (and so η � xβ ), say η = η̂xmγ and θ = θ̂xnγ , and

m ≤ n then η . e = η̂ . ê , where ê is a solution to θ̂xn−mγ . v = a .

4. if ord(η) = ord(θ) as in (iii) and m > n or if ord(η) > ord(θ) , (and
so ord(η) > ord(xβ) ), then η . e = 0 .

Proof: The same as the proof of lemma 4.1.

Definition 4.19 Let Θβ = { θ ∈ Θ : no xγ , γ < β occurs in θ } (and so 1 ∈
Θβ ). For θ ∈ Θβ , let Kβ

θ be the Kβ-vector space on Kβ with scalar action
t−1r . k = [ρθ(t)]

−1ρθ(r)k , for 0 6= t, r ∈ R̄β .

Let Eβ =
⊕

θ∈Θβ
Kβ
θ θ
−1 .

Define an action of Rα on Eβ as before:

η . aθ−1 =


ρθ(η)aθ−1 ord(η) < ord(θ) ,

η̂ . aXm−n
β θ̂−1 ord(η) = ord(θ) , η = η̂xmγ and θ = θ̂xnγ ,m ≤ n ,

0 ord(η) = ord(θ) ,m > n , or ord(η) > ord(θ) .

Lemma 4.20 1. Eβ is a left Rα-module.

2. Eβ is a divisible left Rα-module.

3. Eβ is an essential extension of Kβ .

Proof: These follow for exactly the same reasons as before. .

Theorem 4.21 Eβ is the injective envelope of Rα/Rαxβ .

Note that if I had allowed β = α above, we would have Θβ = { 1 }, so
naming E(Rα) as Eα is consistent with Definition 4.19.
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4.3 Applications

For the most part, I leave it to the reader to explore possible applications
of these descriptions. Computational problems such as solving systems of
linear equations, while daunting, are feasible. Extracting more useful alge-
braic (or model-theoretic) information is of course more of a challenge. In
these examples once again, the (algebraic) socle series stabilizes after only ω
steps, whereas the elementary socle series quite naturally corresponds to the
structure of the description.

Proposition 4.22 (socle series)

1. socn(E0) =
∑

m<nKxm0
X−m0 .

2. For all γ ≥ ω , socγ(E0) =
∑

m<ωKxm0
X−m0 .

Proof: The key point is that ρ0 : K → K is an embedding of a field into K ,
whereas for β > 0 , ρβ : R̄β → K is an embedding of a domain not a field into
K . So, for instance, the minimal submodules over soc1(E0) = K are of the
form K + ρ0[K]aX−1

0 for some a ∈ K . For b ∈ ρ0[K]a if and only if b = da
for some d ∈ ρ0[K] ; and since ρ0[K] is a subfield, d−1 ∈ ρ0[K] so d−1b = a
and a ∈ ρ0[K]b . On the other hand, (ρ1(x0))−1 is not in the image of ρ1 and
so
〈〈
X−1

1

〉〉
,
〈〈
ρ1(x0)X−1

1

〉〉
,
〈〈
ρ1(x2

0)X−1
1

〉〉
,. . . form an infinite descending

chain of submodules with intersection K , but no one of them is contained in
socω(E0) .

Proposition 4.23 (elementary socle series) socδ(E0) =
∑

θ,deg(θ)<δKθθ
−1

for δ ≤ ωα .
In particular, for γ < α , socω

γ
(E0) =

∑
θ,θ≺xγ Kθθ

−1 .

Proof: The definable subgroups are determined by Lemma 4.9.
I will investigate only one application of substance. We saw in Section

2 that the “uncomplicated” indecomposable (E(R/Jω)) was a homomorphic
image of the “complicated” one (E(R/J)). This “layering” of the indecom-
posables is one of the interesting and peculiar features of the example. This
sort of structure is displayed beautifully in the general case.

Theorem 4.24 Let 0 < β < α . Then for each γ , β ≤ γ < α , E0/socω
β
(E0)

has an infinite direct sum of copies of Eγ as a direct summand.
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Proof: First note that Aβ =
∑

θ,θ�xβ Kθθ
−1 is a set of representatives of the

cosets of socω
β
(E0) in E0 . The scalar multiplication of Rα on Aβ is then

just ordinary scalar multiplication on E0 , followed by setting to 0 any term
of degree less than deg(xβ) . Since Rα is hereditary, E0/socω

β
(E0) ∼= Aβ is

injective. So it suffices to find Rα-linearly independent elements of Aβ with
annihilator Rαxγ for any γ , β ≤ γ < α .

In fact, for fixed γ , the set BXγ
−1 will do, where B is a basis for Kxγ as

a left K vector space. For in E0 , r . aXγ
−1 either has order that of xγ , or

order −1 . So in Aβ , r . aXγ
−1 = 0 if and only if r ∈ Rαxγ .

Furthermore, if r . aXγ
−1 = 0 6= 0 in Aβ, the product is of the form

a′Xγ
−1 in Aβ .

So no non-trivial linear combination of such things can be zero. For the
same reason, the elements chosen for different γ’s are independent from each
other.
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