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ON THE KEMENY CONSTANT AND STATIONARY
DISTRIBUTION VECTOR FOR A MARKOV CHAIN*

STEVE KIRKLANDT

Abstract. Suppose that A is an irreducible stochastic matrix of order n, and denote its eigen-
values by 1,A2,...,A\n. The Kemeny constant, K(A) for the Markov chain associated with A is

defined as K(A) = Z?:g ﬁ, and can be interpreted as the mean first passage from an unknown
J

initial state to an unknown destination state in the Markov chain. Let w denote the stationary
distribution vector for A, and suppose that w; < we < --- < wyp. In this paper, we show that
K(A) > 377_1(F — 1)w;, and we characterise the matrices yielding equality in that bound. The
results are established using techniques from matrix theory and the theory of directed graphs.
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1. Introduction and preliminaries. A square entrywise nonnegative matrix
A of order n is called stochastic if A1 = 1, where 1 denotes the all-ones vector of the
appropriate order. Stochastic matrices are central to the theory of discrete time, time
homogeneous Markov chains on a finite state space. For instance, if the stochastic
matrix A is primitive, that is A™ has all positive entries for some m € N, then as is
well-known, the iterates of a Markov chain with transition matrix A converge to the
(unique) left Perron vector w of A, normalised so that w?'1 = 1. That eigenvector w,
which is known as the stationary distribution vector for the Markov chain, thus carries
information about the long—term behaviour of the Markov chain associated with A.
We remark that in the case that A is irreducible but not primitive (in other words,
the directed graph D of A is strongly connected and the greatest common divisor of
the lengths of the cycles in D exceeds 1) then A still has a stationary distribution
vector w, though the sequence of iterates of the corresponding Markov chain does not
converge to w in general. Instead, a weaker conclusion holds, namely that for any
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nonnegative vector x such that 71 = 1, we have

=

lim — T gk =T,
7=0

Thus, we see that even in this case, the stationary distribution vector w still carries

some long—term information about the associated Markov chain.

If one happens to be interested in the short—term properties of a Markov chain,
then the corresponding mean first passage times provide a useful collection of quanti-
ties for measuring the behaviour of a Markov chain over a shorter time scale. Recall
that for a Markov chain with an irreducible transition matrix of order n, the mean
first passage time p; ; from state ¢ to state j is the expected number of steps necessary
for the Markov chain to arrive at state j for the first time, given that it started in
state 7. Much is known about mean first passage times, and we refer the reader to [7]
for a discussion of that topic from matrix—theoretic and graph—theoretic perspectives.

In particular, a remarkable result of Kemeny asserts that for each i = 1,...,n, the
quantity
(1.1) ki = Z Hi,jW;

J=1,.m,j#i

is independent of the choice of the index ¢. Indeed, it turns out that if the eigenvalues

of our irreducible transition matrix A are given by 1, Aa,..., Ay, then
"1
(1.2) '“:Zux’ i=1,...,n.
j=2 /

The quantity on the right hand side of (I.2]) is known as the Kemeny constant for the
Markov chain associated with A, and throughout this paper we denote it by K(A).

The Kemeny constant admits several interpretations. From ([I) and the fact
that p;; = o-, @ = 1,...,n, we find that for each i = 1,...,n, K(A) + 1 can
be seen as the expected number of steps needed to arrive at a randomly chosen
destination state, starting from vertex i. Alternatively, it is observed in [§] that
K(A) =0, D i=1...m.j-i Wiltijw;; hence, one may view the Kemeny constant in
terms of the expected number of steps in a trip from a randomly chosen initial state
to a randomly chosen destination state. Finally, we note that a result of Hunter [5]
facilitates an interpretation of the Kemeny constant in terms of the so—called expected
time to mixing for the associated Markov chain. These various interpretations of the
Kemeny constant have led to its use as an indicator of the efficiency of certain vehicle
traffic networks (see [2} [3]), since in those models, low values of the Kemeny constant
correspond to low average travel times. In a related vein, results in [7, Section 5.3]
show that the Kemeny constant is correlated with the conditioning of the stationary
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distribution vector when A is perturbed, with small values of the Kemeny constant
corresponding to well-conditioned stationary distribution vectors.

In view of these last observations regarding low values of the Kemeny constant,
it is not surprising that there is interest in identifying stochastic matrices A such
that KC(A) is small (in some sense). For example it is known that for an irreducible
stochastic matrix A of order n, we have K(A) > 2L (see [5]), with equality holding
if and only if A is the adjacency matrix of a directed cycle of length n (see [6]). In
a related vein, in [6] a lower bound on K(A) is provided in terms of the length of a
longest cycle in the directed graph of A, and the matrices yielding equality in that

lower bound are characterised.

In this paper, we continue in a similar spirit by investigating how the long-term
information carried by the stationary distribution vector for an irreducible stochastic
matrix A is reflected in the short—term information embedded in the Kemeny con-
stant. Specifically, in our main result (Theorem below), we prove that if A is an
n x n irreducible stochastic matrix with stationary distribution vector w, and if the
entries of w are in nondecreasing order, then KC(A) > 377, (j — 1)w;. Our second
key result (Theorem 37 below) explicitly characterises the matrices yielding equality
in the bound of Theorem We observe here that the equality characterisation
given in Theorem [B7] facilitates the construction of optimal (in terms of the Kemeny
constant) transition matrices exhibiting specified long—term properties (in terms of
the stationary distribution).

Throughout the sequel, we assume familiarity with basic results on stochastic
matrices and Markov chains, as well as on directed graphs. The interested reader is
referred to [I1] for background on the former and [I] for background on the latter.

2. A lower bound on the Kemeny constant in terms of the stationary
distribution. In order to establish Theorem 2.2 we require a few technical observa-
tions. To fix ideas, suppose that we have an irreducible stochastic matrix A of order n
with stationary distribution vector w. We write A in partitioned form by partitioning
off the last row and column of A:

A T | (I-17)1
—w (I-T) [1-ZLw"(I-T)1 |’

Wp,

where w is formed from w by deleting its last entry. (We note in passing that neces-
sarily both (I — 7)1 and w? (I — T) are entrywise nonnegative vectors.) Continuing
with this notation, it is well-known that the mean first passage times into vertex n
are given by p;, = el (I —T)7'1,i=1,...,n—1 (see [L1]). Further, the matrix

S=T+ m([—T)lET(I—T),
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which is called a stochastic complement [9], is known to be irreducible and stochastic,

with the vector ;——7 as its stationary distribution vector. It turns out that KC(A)
and IC(S) are connected: from the proof of Theorem 6.5.1 in [7], we find that

wyw! (I -T)"'1
1—w, '

(2.1) K(A) = K(5) +

The following technical result will be useful in establishing Theorem Recall
that a square, entrywise nonnegative matrix is substochastic if each of its row sums is
bounded above by 1.

LEMMA 2.1. Let T be a substochastic matriz of order k whose spectral radius is
less than 1. Then

(2.2) trace(I —T)™" > k.

Equality holds in Z2) if and only if T is nilpotent.

Proof. We proceed by induction on k, and note that the result is readily estab-
lished when k& = 1. Suppose now that the result holds for some k € N, and that T is
of order k + 1. We partition out the last row and column of T as

Ti1 | ti2
ta1 | t2,2

Using the partitioned form of the inverse [4], we find that

I-T)"'=
(I-T11) ' +6(I—Ti1) ‘oo (I —T11) ! | S(I—T11) M0
(Stg,l(l — Tl,l)_l | 1) ’
where § = 1 . Hence, we have

1—too—to1(I—T1,1) 1t1,2

1
1—too—to1(I—Ti1) 1o

trace(I —T)~" > trace((I — T1,1)~") +

Applying the induction hypothesis, we find readily that trace(I —T)~! >k + 1.

Further, if trace(I—T)~! = k+1, then necessarily we have trace((I-T11)"') =k
and ty a+to1(I—T1 1) 12 = 0. Again invoking the induction hypothesis, we find that
T, is nilpotent; that fact, combined with the condition to o +to1(I —T11) tt12=0
now readily yields that 7" must be nilpotent. Finally, if T" is nilpotent, then equality
must hold in (22)). O
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Here is one of the main results of this paper.

THEOREM 2.2. Suppose that A is an irreducible stochastic matrixz of order n, that
w s the stationary distribution vector of A, and that w; < wg < --- < w,. Then

(2.3) KA) = 320 = Dy,

Denote the leading (n — 1) x (n — 1) principal submatriz of A by T, and the leading
(n — 1)-subvector of w by w. Equality holds in Z3)) if and only the following hold:

i) T is nilpotent; and

i) W' (I =T)"'1 =37 (n— j)w;.

Proof. We proceed by induction on n, and note that the case that n = 2 is readily
established.

Suppose now that the statements hold for some n — 1 with n — 1 > 2, and that
A is of order n. We note that from the hypothesis, A can be written as

A T (I-17)1
| 2wt -T) | 1- 2wt -T) |’

Observe that I — A can be factored as I — A = XY, where

I-T ]
X:[—winET(I—T) and Y:[I|71].

Since XY is a full-rank factorisation of A, the eigenvalues of Y X coincide with the
nonzero eigenvalues of I — A; it now follows from ([2)) that K(A4) = trace((Y X)) =
trace((I = T) + 3-1w" (I = T))™") = trace((I = T)~") =w" (I - T)"'1.

Next, we consider the following stochastic complement:

1
S=T+———(I-T)1w (I -T),
wl (I — T)l( ) ( )
which is irreducible, stochastic, and has 171w w as its stationary distribution vector.
From (2.1)), we have K(A) = K(S) + %ﬁ

We now consider two cases: a) @' (I —T)~' < Y%, (n — j)w;; and b) w" (I —
)~ >3 (n = jluw;.

a) Since K(A) = trace((I —T)~') —wT (I — T)~'1, we find that K(A) > trace((I —
7)) =271 (n—j)w;. Applying LemmalZT} we have K(A) > n—1-3""_, (n—j)w; =

Z?:1(j — Duwj.
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b) Since KL(A4) = K(S) + M, we see that

1—wp

K(4) > K(S) + 7 f’;n >0 )y,

Applying the induction hypothesis to S, we find that

n—1 n—1
1 . 1 .
K(S) 2 T 3= wy =n =2 = g > (n =~ Dy,
j=1 j=1
Consequently, we have
1 n—1 w n
K(A) >n—-2-— — Z(n—j—l)wj—i—li Z( — Jw;
n =1 n =1
n n
=n—1-3% (n—ju; =) (i~ Du
Jj=1 Jj=1

In either case, we find that (23)) holds.

Next we consider the characterisation of the matrices yielding equality in (2.3)).
From cases a) and b) above, we find that equality holds in ([2.3) if only if ¢trace((I —
TyY)=n—-landw (I -T)"' =37 ,(n— j)w;. From Lemma ZT} we see that
trace((I —T)™1') = n — 1 precisely when T is nilpotent. The desired characterisation
of equality in (Z3) now follows. O

REMARK 2.3. Suppose that v € R” is a nonnegative vector, that v71 = 1, and
that the entries of v are in nondecreasing order. Suppose further that for some index g
with 1 <ip < n—1, we have v;, < v;,+1. Form ? from v by replacing the entries of v in
positions g and ip 4+ 1 by Wr% in both positions. A straightforward computation
reveals that Y7, (j—1)v; = Y7y (j—1);+—5—2 > 37", (j—1)0;. It now follows
that over the class of nonnegative vectors v in R™ whose entries are in nondecreasing
order and sum to 1, the function f(v) = 2?21 (7 —1)v; is uniquely minimised when all
of the entries in v are equal —i.e., when v = %1 —and that the minimum value attained
is f (%1) = an In particular, suppose that A is an irreducible stochastic matrix of
order n having stationary vector w with entries in nondecreasing order. Applying
Theorem and the preceding observation, we find that K£(4) > f(w) > ”T_l, thus
yielding an alternate proof of the inequality K(A) > 21 established in [5]. Further,
this line of reasoning also shows that if (A) = "771, then necessarily w = %1.
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REMARK 2.4. Suppose that B is an irreducible nonnegative matrix of order n,
and let x and y denote right and left Perron vectors of B, respectively, normalised so
that yT2 = 1. Let the Perron value of B be A1, and denote the remaining eigenvalues
of B by As,...,A,. Letting X denote the diagonal matrix whose diagonal entries are
the corresponding entries of x, it is straightforward to verify that the matrix A =
)\%X_IBX is irreducible, stochastic, and has the vector [ T1Y1 XoY2 ccc TplYn ]
as its stationary distribution vector. If we suppose that the rows and columns of B
have been simultaneously permuted so that z1y1 < x2ys < --- < x,Y,, then applying
Theorem 22 to A, we obtain the following (modest) generalisation of ([Z3)):

n n
A1
Z DR
Jj=1

3. A characterisation of the equality case in (23). While Theorem [2Z.2] pro-
vides a characterisation of the matrices yielding equality (23], that characterisation
is somewhat opaque, since it is framed in terms of (I — T)~!. Evidently, it is far
preferable to have a characterisation of the equality case in (23] that is expressed
directly in terms of the matrix A. We devote the this section to establishing just such
a characterisation.

Our next technical result concerns nilpotent substochastic matrices.

LEMMA 3.1. Let T be a nilpotent substochastic matrix of order r, and let x € R"
be a positive vector such that ©1 < xg < -+ < x,. Suppose that (I — T)_ll >0 and
2T(I—T)>0T, let H= (I —T)7', and let A denote the directed graph of T. Then
for 1 <14,7 <r, we have

0, if there is no walk from i to j in A
1, ifi < j and there is a walk from i to j in A
(3.1) hi; < fi<i J J
! L ifi=]

=L ifi > j and there is a walk from i to j in A.

Proof. We first claim that for any 1 <4,5 < r h; ; < 1. To establish the claim,
we proceed by induction on r. For the case r = 2, we have either

0 a
T =
o)

0 0
=[i o)

where b < 7L. In either case, (3.I)) follows readily.

where a < 1, or
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Suppose now that the claim holds for some r — 1 > 2, and that T is of order r.
Evidently each diagonal entry of H is 1, so suppose that we have distinct indices 1, j,
and consider h; ;. If there is no walk from ¢ to j in A, then certainly h; ; = 0. Next,
suppose that there is a walk from 7 to 7 in A, and that the longest such walk has
length at most r — 2. Then there is a proper principal submatrix of T, say T, such that
hi,; is equal to an appropriate entry of (I — T)_l. In that case, we find that h; ; <1
from the induction hypothesis. Finally, suppose that the longest walk from ¢ to j in
A has length » — 1. Then

hij =Y tiiel (I—T) "e;,
l

where the sum is taken over indices [ such that ¢;; > 0, and in addition, the longest
walk from ! to j has length at most » — 2. From the cases already considered, we
find that e (I —T)~'e; < 1 for each such [, and since y_,_, t;; < 1, we deduce that
h;,; < 1. This completes the proof of the claim.

Next, we claim that h;; < i—f for 4,5 = 1,...,r. To establish this claim, we
consider the matrix U = X 17T X, where X = diag(z) is the diagonal matrix whose
diagonal entries are the corresponding entries of x. It is readily verified that U is
nilpotent and substochastic, with (I —U)1 > 0 and 27 (I — U) > 0. Applying our
earlier claim to U, we see that (I — U);Z1 <1fori,j=1,...,r. This last now readily
yields that h; ; < i—’ fori,j=1,...,r.

Finally, with both claims in hand, it is straightforward to verify that (BI]) holds. O

Recall that a directed graph on n vertices is a transitive tournament if its ad-
jacency matrix is permutationally similar to the n x n (0,1) matrix with 1s on and
above the first superdiagonal, and Os elsewhere. Much is known about tournaments
in general (and transitive tournaments in particular); we refer the interested reader
to the classic book of Moon [10] for background material. It is known that each tran-
sitive tournament on n > 2 vertices has a unique Hamilton path, and that in fact
each transitive tournament is uniquely identified by its Hamilton path.

Lemma [3.J] enables us to establish the following.

COROLLARY 3.2. Let T,H and x be as in Lemma [31], and let D denote the
directed graph of H. If ™ (I =T)~'1 = 377_,(r +1—j)z;, then
i) D is formed from a transitive tournament by adding a loop at each vertex; and
i) foralli,j=1,...,r,
, ifi+H jinD
ifi<jandi— jin D

0
(3.2) hij =141
z ifi>jandi— j in D.
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Proof. Let B denote the adjacency matrix of D and let U,V denote the strictly
upper triangular part and the lower triangular part of B, respectively (observe that
V has 1s on the diagonal). Let L denote the lower triangular matrix with 1s on and
below the main diagonal, and 0s elsewhere. Since T is nilpotent, D has no cycles of
length greater than 1. Hence, we find that B+ BT < L+ L*. Consequently, we have
UT+V)+ (U +VT) < L+ LT. Tt now follows that the lower triangular matrix
UT + V satisfies UT +V < L. From Lemma [B.1], it follows that H < U + X'V X,
where X = diag(x). Since V < L — UT, we thus find that H < U + X~ 'VX <
U+ XN L-UDX

Observe now that 2" H1 < z"U1+1"(L-U")X1 =1"Lx = Y7_, (r+1—j)z;.
In particular, since 27 H1 = Z;Zl(r + 1 — j)z;, it must be the case that H =
U+ XWX and V=L —UT. Conditions i) and ii) now follow readily. O

Consider a directed graph on r vertices formed from a transitive tournament by
adding a loop at each vertex. Recalling that any transitive tournament is uniquely
specified by its Hamilton path, we introduce the following notation. Given a permuta-

tion 41,...,%, of the numbers 1,...,r, we let D(iy,...,%,) denote the directed graph
formed from the transitive tournament with Hamilton path iy — i — --- — i,
by adding a loop at each vertex. Further, given a positive vector x € R” with
1 < - < ap, we let H(x,D(i1,...,i.)) be the r X r matrix such that for each
p,gq=1,...,m,
P 0, . if pA qin D(i1,...,14,)
P {min{L i—} if p—qin D(i1,...,i).

Evidently H(x, D(i1,...,i,)) is a matrix of the type appearing in (32).
Our next technical result is straightforward.

LEMMA 3.3. Suppose that P is an upper triangular matriz of order r with 1s on
the main diagonal, and let z be a positive vector in R”. Suppose further that P is an
inverse M—matriz such that P11 > 0,27 P~ > 07. Denote P’s leading and trailing
principal submatrices of order r—1 by P and P, respectively, and denote the subvectors
formed from z by deleting its last and first entries by Z and Z, respectwely Then P
and P are inverse M-matrices; further, we have P 1 >0, _TP >0T, P 11>0
and TP~ > 0T,

Proof. Write P as
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so that
——1 —1
P,1 _ P —P u
o 1

Since P is an inverse M-matrix, so is P; further, P lu > 0. Since zT P~ > 07, we
——1 N —1

find that ZZP ~ > 07, and since P~'1 > 0, we have P 1 > P u > 0. A similar

argument establishes the desired conclusions for P and z. O

Next, we investigate some useful properties of the matrix H(x, D(i1,...,iy)).

PROPOSITION 3.4. Suppose that r > 3 and that x € R" is a positive vector whose
entries are in nondecreasing order. Suppose that i1,...,1, i a permutation of the
numbers 1,...,r. Let H = H(x,D(i1,...,i.)), and suppose that H is an inverse
M-matriz such that H 11 >0 and x"H~' > 0. Then one of the following holds:

a) ziy, <xp <o <y
b) xil Z xig 2 Tt Z xi,.;

c) there is an index k with 2 < k < r — 1 such that z;, > x;, > -+ > x;, and
Ly, < xik+1 S e S Tj,.

Proof. We proceed by induction on r, and begin with the case that r = 3.
Observe that there are six possible cases for the list of integers i1, 2,%3, namely:
1,2,3; 2,1,3; 3,1,2; 3,2,1; 1,3,2; and 2,3,1. Since z; < z2 < x3, we find that in
each of the first four of these cases satisfies one of a), b) and c¢). For the fifth case,

we have
1 1 1
H=|(0 1 0
0 i—i 1
Hence,

1 _(M) —1

z3
H'=1|o0 1 0
0 —L 1

Since H~'1 > 0, then necessarily z2 = x3; hence, 1 < 3 = 22, so that a) is satisfied.
Similarly, for the sixth case, we have

1 00

H= |2 1 1|,
T2
o0 1
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so that

H—l — _ xy(z3—x2) -1

23

01

x3

Since z7H~! > 07, it must be the case that xs = x3; hence, x2 = x3 > x1, so that
b) is satisfied. This completes the analysis for the case that r = 3.

Henceforth, we suppose that » > 4 and that the induction hypothesis holds for
matrices of order r — 1. Form T from z by deleting its i,—th entry, and form Z
from x by deleting its i;—th entry. Applying Lemma [3.3] it follows that the matrices
H=H(z, D(i,...,i,_1)) and H = H(Z, D(is, . .. ,i,)) both satisfy the hypotheses of
our proposition. Thus, the induction hypothesis applies to both H and H. Applying
the induction hypothesis to H, we see that either i) z;, < z;, < -+ < @y, _,; ii)
Xiy > Ty > -+ > x;,_,; or iii) there is an index k with 2 < k < r — 2 such that
Ty > Ty 2> 2wy, and xyy, < Ty, <o STy

If i) holds and z;,_, < =;_, then a) holds. If i) holds and z; _, > x;., then
applying the induction hypothesis to H, we find that necessarily it is the case that

Ti, = Tiy = --- = x;._,. But then there is a permutation matrix () so that
1 1 1 - 1 v
1 .- 1 Q;L
i
00 1 - 1| 2=
QHQ" =| . , R I
0 0 0 1 zﬁ_‘“
L0 0 0 0 1
where v = min{1, ifr }. Hence,
1
-1 0 272 ~
0o 1 -1 0 0
0 1 0 0
QH'Q" = : : :
o -~ 0 1 -1 0
o o0 --- 0 1 —zl#
|0 0 o --- 0 1 ]

Since H™'1 > 0, we find that v < Z*=. Since z;, < 2;,, we have v < 1, so it must be
i
that case that v = i— We now deduce that x;, = x;,. Thus, b) holds.
i1
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If ii) holds, then b) or ¢) holds, according as we have z; _, > x; or z; _, < x;,,
respectively.

Finally, suppose that iii) holds. Observe that it cannot be the case that x; _, >
x;,, otherwise we have a contradiction to the fact that the induction hypothesis applies
to H. Hence, it must be the case that z;, _, < z; , so that ¢) holds. O

-1 =

Having unearthed some of the structure of the matrix H(x, D(é1,...,4,)), we next
consider its inverse.

LEMMA 3.5. Suppose that n > 4 and that x € R is a positive vector whose
entries are in nondecreasing order. Suppose that i1,...,i,—1 1S a permutation of
the numbers 1,...,n — 1, and consider H = H(z, D(i1,...,in_1)). Write H 1 as
H'1=I-T.

a) Suppose that x;, < x;, <---<uwm; _,. Then for each p,q=1,...,n—1, we have

1, ifg=p+1
w0, ifa#FptL

b) Suppose that x;, > xiy > -+ > x;,_,. Then for each p,q=1,...,n— 1, we have

Ty .
B
e 0, ifq#p+1.

¢) Suppose that there is an index k with 2 < k <mn — 2 such that x;, > x;, > -+ > x4,
and x;,, < T4y, < < x4, ;. Then for each p,q=1,...,k, we have

Zq .
t {7%% ifg=p+1
o, ifq#p+1,

and for each p,q==Fk,...,n — 1, we have

e L a=ptl
w0 fa#Fp+l

Further, for eachp=k+1,....n—1 and g =1,...,k, we have t
forl=1,... k, we have

= 0. Finally,

ip,lq

1, ifl=k
0, Zf Ligyq 2 Ligg1
o — ) Ty .
Liyyiggr = %, if T, > @,
i

1
Tigyr “Tigqq

o ) TR TR TR
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and forl=1,....k, j=k+2,...,n—1, we have

0, if Ty, > x5 Or Ty, > T
Tip—Ti;_, .
o if wy, > wy > @i, 2> Xy,
iy = Fipgq :
tii; = w0 WE 2w 2wy, 2T,
Sl Bl S5 ifx, > @, >, > @
xil ) (2 15 — 1j—1 — 241
Xi, —XT; .
rr— if wy, > wip > @i, > T,

Proof. a) From the hypothesis, we find that h;, ;; > 0 whenever 1 <1 <j <n — 1.
Further, for such [ and j, we have h;, ;; = min{1, i—f} = 1. It now follows readily
1
that ¢;,5,,, =1,1=1,...,n — 2 while the remaining entries of T" are zero.
b) The proof in this part follows by an argument analogous to that presented for
part a).

c) Let P be the permutation matrix P = | e;, | e | ei,_, |,and consider PTHP

which we partition as
H | H
0 |Hy |’

where Hy, Hy are k x k and (n —k — 1) x (n — k — 1), respectively. Since z;,,, <
<o < m; _,, we see that Hs is a matrix of the type described in part a), and since
Zi > -+ > xy,, Hy1 is a matrix of the type described in part b); consequently, the

PTHP =

desired expressions for t;,,, follow readily for the cases p,q = 1,...,k and p,q =
k+1,...,n — 1. Evidently, we also have ¢;,;, = 0 foreach p = k+1,...,n—1
and ¢ = 1,...,k. It remains only to determine ¢; ;; when [ = 1,...,k and j =

k+1,...,n—1.
Note that for l=1,...,k,j=k+1,...,n— 1, we have

Tr—177 71
til’ij:el Hl HH2 €j—k-

Observe also that foreach I =1,...,k—1, elTHl_1 = elT - %eﬁrl, while efol =
ez. Further, for each j = k+2,...,n — 1, H;lej_k =ej_k — €j_k—1, while H;lel =

e1. Finally, note that for [ =1,...,k, j=k+1,...,n—1, hy j_ = min{l, %}
We now consider the case j =k + 1. Foreach I =1,... &k, we have

= elTHflﬁHglel = elTHflﬁel

B {e;{ﬁel, if 1=k

(ef — Iil“eﬁ_l)ﬁel, if l=1,...,k—1

Iil

t

U0k 41
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1, if l=k
. 23 Ty . 3 .
mm{l,%}—;—fmm{l,%}, if 1=1,...,k—1.
i i 41
Recalling that x;, > x4, for [ =1,...,k — 1, it now follows that for each such I,
0, if l‘il+1 Z l‘ik+1
. T; X; . Z; Tig 7 Tig gy : . )
mm{l,ﬂ}—ﬂmm{l,ﬂ = P if @, >y
Ti Ti Lipq Tig g~ Tip gy .
T, 1f xil ink+1 inlJrl'
The desired expressions for ¢;, ;,,,,/ = 1,...,k are now established from the consid-

erations above.

Next we consider the case that k +2 < j <n — 1. Note that ¢;, ;; = e{ﬁej,k =
he it — Bt = min{l, ””—x;u} - min{l, ””—%} —0.1f1<1<Fk—1, then

ZX; ~
_ T ti+1 T
bigiy = (el - €l+1) H(ej—r —e€j—k-1)

2

) Ti, ) Ti Tip, . Ti . Ti;_q
(3.3) =min{1l,—2 s —minq1, —=— ¢ — —* [ min{ 1, —2 $ —minq 1, —=— .
iy Ly Ly Ligiq Ligiq

If 25, , > ay or x;,,, > x;;, we find from @.3) that #;, ;; = 0. For the remaining

cases, we find that

BT oy >y, >, >
zil bl ZL"L]' - xll - xlj,1 - xlprl
iy = Fipyq ;
b zy it @, > @y > x,, 22, g
R A . .
—= if @y, > @, > @i, > x4,
Zj.—XT4 .
o, if @y, >m, 2w, 22,

REMARK 3.6. Here we maintain the notation and terminology of Lemma
It is readily verified that if we are in either case a) or case b) of that lemma, then
(I-T)1>0and 27 (I —T) > 0T. Our goal in this remark is to establish that in case
¢) we also have (I —T)1 > 0 and 27 (I — T) > 07.

So, suppose that we are in case ¢) of Lemma Letting P be the permutation

matrix | e;, | | €i,_, |, we find that
H{'| —-H'HH;!
(I=T)=P|—; i T pr.
2
Hence,
7T = H{'1—-H'HH; "1

En—k—1
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and so we deduce that (I — 7)1 > 0 if and only if Hfll — HflﬁHgll > (. Since
H;'1 =e, 11, we see that (I — T)1 > 0 if and only if

(3.4) Hi'(1—Hey_g_1) > 0.

If it happens that z; _, > x;,, then Hep o1 = 1, and certainly (34 holds. On the
other hand, if there is an index j between 1 and k£ — 1 such that z;,,, <w;,_, <z,
then

xin—l
Tiq

Lip_q

Hep 1= T
1

In that case, we find that

Hfl(l — ﬁen_k_l) = Fij_q ,

and again ([3.4) holds.
Similarly, we have

H{' | -H{'HH]!

(I -T)=2TP PT = [ z; el | 27 }PT,

o | H'
where 27 = [ @y, -+ @, | HflﬁHglf[ Tip oy Tin_y | Hy'. Consequently,
2T (I = T) > 07 if and only if
(35) [ Ty e Ty, } H;lﬁHgl — [ xik-H SR 7 S ] H;l > OT.

Proceeding analogously as above, we find that the left hand side of B3 is the zero
vector if ¢;; > x;, ,. On the other hand, if there is an index p between 0 and n—k —2
such that z;,, ., > x; > x4, , then the left side of (3.3) is given by

[ 0O --- 0 (Zik+p+1 - Z’Ll) (Zik+p+2 - Zik+p+1) T (xin—l - xin—2) } .
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Again we see that (83 holds.

At last we can present the main result of this section, the characterisation of
matrices yielding equality in (23]

THEOREM 3.7. Suppose that A is an irreducible stochastic matrix of order n
with stationary distribution vector w. Suppose further that the entries of w are in
nondecreasing order, and form W from w by deleting its last entry. We have K(A) =
Z?Zl(j — D)w; if and only if there is a permutation of the numbers 1,...,n— 1, say
i1, --,0n—1, such that one of the following holds:

T (I-7)1
a) wy, <w;, <~ <w;, , and A= THT(I-T) [ 1= 2w (I -1 , where
T is as given in Lemma[33 a) (taking @ for x in that lemma); i
[ T (I-7)1 ]
b) wy, > w;, > >w;,_, and A= W) | 1= 1w (I T , where

T is as given in Lemma[ZA b) (taking @ for x in that lemma,);

c) n >4 and there is an index k with 2 < k < n — 2 such that w;;, > w;, > -+ > w;,
and wy, < wg,, <o <wg,_,, and

(I-T)1
Lw"(1-1)[1-Lw"(1-T)

n

Y

where T is as given in Lemmal[33 ¢) (taking w for x in that lemma).

T | (I-T)1
LoT(1-1)[1-Lw"(1-T)1
K(A) = >75_,(j — Dw;. From Theorem 22} we find that necessarily 7' is nilpotent
andw! (I —T) 11 = Z?Zl(n — j)w;. Applying Corollary B2} we find that there are
indices i1, . .., i, such that (I-T)~! = H(w, D(i1,...,in_1)). Since (I—T)~" satisfies
the hypotheses of Proposition B4 we find that either i) w;, < w;, <--- <wj;, _,, or
il) wy > wiy >+ > w;, _,, or iii) there is an index k with 2 < k < mn — 2 such that

Wiy > Wiy, > - 2> wyy, and wy, < wy,,, < - < wg,_,. Applying Lemma [3.5 now

Proof. Write A as A = , and suppose that

yields the desired expressions for the entries of T" in each of the three cases of interest.

Conversely, suppose that the permutation i,...,7, and matrix T are as in
T | (I-T)1
oT(1-17)|1-Lw"(1-17)1
mark we have that (I — 7)1 > 0 and W' (I — T) > 07, so that A is nonneg-
ative. It now follows that A is stochastic with stationary distribution vector w.
Observe that T is nilpotent. Further, from Lemma B8] it follows that (I —T)~! =
H(w,D(i1,...,in—1)); a straightforward computation shows that w’ (I — T)~'1 =

the statement, and that A = . From Re-
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ETH(E’ D(ir, ... ip-1))1 = Z;-L:l(n — j)w;, and so from Theorem we find that
K(A) =>""_,(j — 1)wj, as desired. O

j=1

REMARK 3.8. Let A be an irreducible stochastic matrix of order n. As we saw
in Section [l necessarily K(A) > an Suppose now that equality holds in that bound
— le., that £(A) = "T_l From Remark 23] necessarily the stationary distribution
vector of A must be %1, and evidently equality must also hold in (Z3]). Applying
Theorem [B7, it now follows that there is a permutation of the integers 1,...,n — 1,
say i1,...,in—1, such that a; ; ., =1, p=1,...,n — 2, while all remaining entries of
the leading (n— 1) x (n — 1) principal submatrix of A are zeros. Using the fact that A
is stochastic with stationary distribution vector %1, we find readily that a;, ,, =1,
an,;, = 1, and all remaining entries of the last row and column of A are zeros.
Consequently, our matrix A is in fact the (0, 1) adjacency matrix of the directed cycle
of length n given by n — i1 — io — .-+ — 4,1 — n. This line of reasoning yields an
alternate proof of the characterisation (established in [6]) of the irreducible stochastic

matrices A of order n such that K(A4) = 271,

The following example gives a particular instance of the class of matrices appear-
ing in Theorem [B7] ¢).

ExXAMPLE 3.9. Suppose that n > 4 and fix an index k& with 2 < k < n — 2.
Suppose that we have a positive vector w € R™ whose entries sum to 1, and whose

entries are in nondecreasing order. We consider the permutation of 1,...,n —1 given
byu=k+1-0,1l=1,...,k,i;=3,j=k+1,...,n—1. Below we exhibit the matrix
of Theorem 37 ¢) that arises from the permutation 41, ...,%,—1:
0o 0o - 0 1 0 = 0 0
5_; 0 .. 0 Ww;;,wl 0 .. 0 0
o ... Y1 g | BeTWea 0 . 0 0
W Wi

0 0 0 0 1 0 0

0 O 0 0 0 1 0

0 0 e 0 0 0 e 0 1

0 .. 0 Wi Wr41— Wk W42~ Wk+1 .. Wn-_1—Wn-—2 Wn —Wn—1
(3.6)

Observe then that for any n > 4, and any positive vector w as above, there are
at least n — 1 distinct matrices yielding equality in (Z3]), namely the n — 3 matrices
described in ([B:6) (one for each k between 2 and n — 2) as well as the two matrices
arising from the constructions in Theorem [B7] a) and b). If it happens that w has
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distinct entries, it is readily verified that these n — 1 matrices are the only ones to
yield equality in (23]

Our final example illustrates Theorem [3.7] ¢) for a case in which w has repeated
entries.

EXAMPLE 3.10. Suppose that w is a positive vector in R such that w?1 = 1.
Suppose further that w is in nondecreasing order, with the extra conditions that

wy = wa, wg = wy and wg = wig. Next we consider the indices i1, ...,%19 given by
[i1 -+ d0]=[9 10 3 1 2 4 5 7 6 8].
The stochastic matrix A (which yields equality in (23] for the vector w) that arises
from Theorem [B7] ¢) with the sequence i1, ...,41¢ is given by:
0o 1 0 0 0 0 0 0 0 0 0 i
0 0 0 1 0 0 0 0 0 0 0
g—; 0 O Ww;;”l 0 0 0 0 0 0 0
0 0 O 0 1 0 0 0 0 0 0
0 0 O 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 O 0 0 0 0 0 0 O 1
0 0 O 0 0 0 0 0 0 1 0
R I
L 0 0 O 0 0 0 0 0 &”—191 0 wlilu—:lw" |
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