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Abstract

Suppose that T is an n×n stochastic matrix, and denote its directed graph
by D(T ). The function τ(T ) = 1

2 maxi,j=1,...,n{||(ei − ej)>T ||1} is known as a
coefficient of ergodicity for T , and measures the rate at which the iterates of a
Markov chain with transition matrix T converge to the stationary distribution
vector. Many Markov chains are equipped with an underlying combinatorial
structure that is described by a directed graph, and in view of that fact, we
consider the following problem: given a directed graph D, find τmin(D) ≡
min τ(T ), where the minimum is taken over all stochastic matrices T such
that D(T ) is a spanning subgraph of D.

In this paper, we characterise τmin(D) as the solution to a linear program-
ming problem. We then go on to provide an upper bound on τmin(D) in terms
of the maximum outdegree of D, and a lower bound on τmin(D) in terms of
the maximum indegree of D, characterising the equality cases in both bounds.
Connections are established between the equality case in the lower bound and
certain balanced incomplete block designs.

Keywords: Stochastic matrix; Directed graph; Coefficient of ergodicity.
AMS Classifications: 15B51, 05C50, 60J10.

1 Introduction and motivation

A square matrix T of order n is stochastic if it is entrywise nonnegative, and T1n =
1n, where 1n denotes the all ones vector in Rn. The class of stochastic matrices is
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much–studied, in large part because it is at the centre of the theory of discrete–
time Markov chains on finite state space. If the Markov chain under consideration
is time–homogeneous with transition matrix T, then the iterates of the chain, say
x(k), k = 0, 1, 2, . . . satisfy the relation x(k)> = x(0)>T k, where x(0) is an initial
distribution vector that is nonnegative and has entries summing to 1.

Suppose that T is primitive; its stationary distribution vector, say w, is the left
Perron vector of T normalised so that w>1n = 1. It then follows that x(k) → w
as k → ∞, regardless of the initial distribution vector x(0). How quickly do the
iterates of such a Markov chain converge to w? Since the Markov chain is a reali-
sation of the power method with iteration matrix T , it is clear that the asymptotic
rate of convergence is governed by the moduli of the non–Perron eigenvalues of T .
However, there are other measures of the rate of convergence that are considered in
the literature on Markov chains. In this paper we focus on the following quantity,
which is known as a coefficient of ergodicity: given an n × n stochastic matrix T ,
define the function τ(T ) via

τ(T ) = max
x>1=0,||x||1=1

||x>T ||1. (1)

(Here || · ||1 denotes the `1 norm of a row or column vector.) We note in passing that
there are other functions that serve as coefficients of ergodicity; see [5] for a survey
on that topic. A result of Seneta [10, section 2.5] shows that τ(T ) can be computed
explicitly as

τ(T ) =
1

2
max

i,j=1,...,n
||(ei − ej)

>T ||1, (2)

where for each k = 1, . . . , n, ek denotes the k–th standard unit basis vector in Rn.
From (2) we find that τ(PTQ) = τ(T ) for any n × n permutation matrices P and
Q. Further, it follows readily from (2) that τ(T ) ≤ 1 for any stochastic matrix T ,
and that τ(T ) < 1 if and only if T is scrambling – that is, for each pair of rows of
T , there is a position in which both rows have a positive entry.

Suppose that we have a nonnegative vector x whose entries sum to 1; from (1),
we see that ||x>T − w>||1 = ||(x − w)>T ||1 ≤ τ(T )||x> − w>||1. In particular,

if x 6= w, we have ||x>T−w>||1
||x>−w>||1 ≤ τ(T ). Further, if i and j are indices such that

1
2
||(ei − ej)

>T ||1 = τ(T ), and if we have y = w + ε(ei − ej) for a sufficiently small ε,
then y is a positive vector and

||y>T − w>||1
||y> − w>||1

=
||ε(ei − ej)

>T ||1
||ε(ei − ej)||1

=
1

2
||(ei − ej)

>T ||1 = τ(T ).

From these two observations, we find that

τ(T ) = max

{
||x>T − w>||1
||x> − w>||1

∣∣∣x is a positive vector, x>1n = 1, x 6= w

}
.

Consequently τ(T ) provides precise information on the relative improvement in the
distance to w that can be guaranteed to be observed in a single step of the Markov
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chain associated with T . Hence the function τ can be thought of as another measure
of the rate of convergence of the iterates of a Markov chain.

The function τ(T ) also serves as an upper bound on the modulus of any non–
Perron eigenvalue of T (see [10]), and so can be used as a proxy for the asymptotic
rate of convergence of the Markov chain in situations where the spectrum of T is dif-
ficult to compute or analyse. Further, in [11], Seneta shows how τ(T ) can play a role
in measuring the conditioning of the stationary distribution when T is perturbed; in
particular, small values of τ(T ) correspond to stationary distribution vectors that
are well conditioned. Finally, we note that the function τ plays a central role in
understanding the asymptotic behaviour of Markov chains that are time inhomo-
geneous (see [10, section 4.3]). The utility of τ in the context of inhomogeneous
Markov chains follows in part from the fact (readily deduced from (1)) that we have
τ(T1T2) ≤ τ(T1)τ(T2) whenever T1 and T2 are stochastic matrices of the same order.

Given a stochastic matrix T of order n, the directed graph of T , which we denote
by D(T ), has vertices labelled 1, . . . , n, with an arc i → j for all ordered pairs (i, j)
such that ti,j > 0. The directed graph of T carries important information; for ex-
ample the irreducibility or primitivity of T , as well as the classification of the states
of the corresponding Markov chain as either essential or transient, can all be deter-
mined from this directed graph. In some applications of Markov chains (for instance,
in the traffic and emission models of [3] and [4]), the directed graph of the corre-
sponding transition matrix is specified by the phenomenon being modelled. In view
of this fact, there is merit in bringing the directed graph into consideration when
analysing the properties of stochastic matrices. Existing research in this direction
includes: a bound on the modulus of the non–Perron eigenvalues of T in terms of the
length of the shortest cycle in D(T ) ([6]); computation of the smallest possible Ke-
meny constant over the class of stochastic matrices T such that D(T ) is subordinate
to a given directed graph ([7]); and minimisation of the largest entry in the station-
ary distribution, again when D(T ) is subordinate to a given directed graph ([8]). In
this paper, we continue this line of investigation by addressing the following prob-
lem. Let D be a directed graph on n vertices such that each vertex has outdegree
at least 1; find min{τ(T )|T is stochastic and D(T ) is a spanning subgraph of D}.
(Evidently this question is only interesting if the class of matrices over which we
minimise τ includes at least one scrambling stochastic matrix.)

In fact we will focus our attention on a slightly larger class of matrices, namely
the rectangular nonnegative matrices with all row sums equal to 1. If M is n ×m
and nonnegative with M1m = 1n, we define τ(M) via the expression

τ(M) =
1

2
max

i,j=1,...,n
||(ei − ej)

>M ||1. (3)

Evidently (3) agrees with both (1) and (2) in the case that n = m. Observe that for
any triple of indices i, j, l we have 1

2
|mi,l − mj,l| = 1

2
(mi,l + mj,l) − min{mi,l, mj,l}.
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From this it follows that τ(M) can be rewritten as follows:

τ(M) = max
i,j=1,...,n

{
1−

m∑
l=1

min{mi,l, mj,l}

}
.

We note that for the case that M is square, this last expression for τ(M) appears in
[10]. From this extended definition of τ to the rectangular case, we see that if n ≥ 3
and M happens to have two equal rows, then we may delete one of those rows and
maintain the same value of τ.

Let A be an n×m (0, 1) matrix. We say that A has a scrambling pattern if, for
each pair of indices i, j with 1 ≤ i, j ≤ n, e>i AA>ej ≥ 1. Clearly this is equivalent
to the condition that every pair of rows of A has a 1 in a common position. In
particular note that if such a matrix A has a scrambling pattern, then it contains
at least one 1 in each row. Denote the set of n ×m real matrices by Rn×m. For a
(0, 1) matrix A ∈ Rn×m with a scrambling pattern, we define S(A) as follows:

S(A) = {M ∈ Rn×m|0 ≤ M ≤ A, M1n = 1m},

where the inequalities on M hold entrywise. The main quantity of interest in this
paper is then defined as

τmin(A) = min{τ(M)|M ∈ S(A)}. (4)

In particular, note that if D is a directed graph whose n×n adjacency matrix A has
a scrambling pattern, then S(A) = {T |T is stochastic and D(T ) ⊆ D} (here we use
D(T ) ⊆ D to denote the fact that D(T ) is a spanning subgraph of D). Consequently,
we find that min{τ(T )|T is stochastic and D(T ) ⊆ D} = τmin(A).

In this paper, we observe that τmin(A) can be computed as the solution to a
certain linear programming problem. We then go on to establish upper and lower
bounds on τmin(A) in terms of the number of rows of A, in terms of the row sums of
A, and in terms of the column sums of A, characterising the equality cases for each.
One of those equality cases turns out to have an intriguing connection with certain
balanced incomplete block designs.

Throughout the paper, we make use of basic material from the theory of non-
negative matrices, Markov chains, and combinatorial matrix theory. We refer the
reader to [10] for background on the former two topics, and to [2] for background
on the latter.

2 Preliminaries

In this section, we collect a few simple results that will be useful in some of our
later development. We begin with a little notation and terminology. For an integer
k ∈ N, we will use Jk and Ik to denote the k×k all ones matrix and identity matrix,
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respectively, while 1k and 0k will denote the all ones vector and zero vector in Rk,
respectively. The subscripts will be suppressed when they can be readily determined
from the context. Given a vector x ∈ Rn, we let diag(x) denote the diagonal matrix
such that for each i = 1, . . . , n, the i–th diagonal entry is xi. For an n×m nonnegative
matrix M , and for each i = 1, . . . , n, we denote the support of row i, that is, the
set of indices l such that mi,l > 0, by supp(i), while for each i, j = 1, . . . , n, Si,j will
be used to denote supp(i)∩ supp(j). Suppose that M has constant row sums. Then
the entries of (ei − ej)

>M sum to 0, and it is straightforward to determine that

1

2
||(ei − ej)

>M ||1 =
m∑

l=1

max{mi,l −mj,l, 0} =
m∑

l=1

max{mj,l −mi,l, 0}.

The following lemma will be used in the sequel.

Lemma 2.1. Let A be a (0, 1) matrix, partitioned as A =
[

A1 A2

]
. If A1 has at

least one 1 in each row, then τmin(A) ≤ τmin(A1).

Proof. Consider a matrix M1 ∈ S(A1) such that τ(M1) = τmin(A1). Since the matrix
M =

[
M1 0

]
∈ S(A), we find that τmin(A) ≤ τ(M) = τ(M1) = τmin(A1).

Our next preliminary result yields a simplification for the case that one column
of our matrix dominates another.

Lemma 2.2. Suppose that A is an n×m (0, 1) matrix of scrambling pattern, written
as A =

[
B x

]
, where B is n × (m − 1). Suppose further that for some 1 ≤ j ≤

m− 1, Bej ≥ x. Then τmin(A) = τmin(B).

Proof. From Lemma 2.1 we find that τmin(A) ≤ τmin(B). Consider a matrix M ∈
S(A) such that τ(M) = τmin(A). Without loss of generality, we take j = 1, and
write M as M =

[
u M v

]
, where u and v are vectors in Rn. Next, we construct

the matrix
[

u + v M 0
]
≡

[
M̂ 0

]
. By hypothesis, we have Be1 ≥ x ≥ v,

so that the zero–nonzero pattern of v is contained in that of Be1. Observing that
1 = M1 = u + v + M1 = M̂1, we find further that 0 ≤ M̂ ≤ B. Hence M̂ ∈ S(B).

For each pair of indices p and q with 1 ≤ p, q ≤ m, we have

|(up + vp)− (uq + vq)| ≤ |up − uq|+ |vp − vq|,

from which it follows that τ(
[

M̂ 0
]
) = τ(M̂) ≤ τ(M). Consequently, we find

that τmin(B) ≤ τ
([

M̂ 0
])

≤ τ(M) = τmin(A). The conclusion now follows.

We now provide a parallel result for the case that one row dominates another.

Lemma 2.3. Suppose that A is an n ×m (0, 1) matrix with a scrambling pattern.
Suppose that for some 2 ≤ j ≤ n, e>1 A ≥ e>j A. Then τmin(A) = τmin(B), where B is
the matrix constructed from A by deleting its first row.
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Proof. Without loss of generality, we assume that e>1 A ≥ e>2 A. First, select M ∈
S(B) such that τ(M) = τmin(B). Letting

M̂ =

[
e>1 M

M

]
,

it follows readily that M̂ ∈ S(A), and that τ(M̂) = τ(M). Hence τmin(A) ≤ τmin(B).
Next, select M ∈ S(A) such that τ(M) = τmin(A), and let M0 be the matrix
constructed from M by deleting its first row. Evidently τ(M) ≥ τ(M0), and we now
find readily that τmin(A) = τ(M) ≥ τ(M0) ≥ τmin(B).

In view of Lemmas 2.2 and 2.3, we see that in order to find τmin(A) for a (0, 1)
matrix A, there is no loss of generality in assuming that no column of A dominates
another entrywise, and that no row of A dominates another entrywise. We will have
occasion to make that assumption in the sections that follow.

3 Bounds on τmin

Suppose that A is an n×m (0, 1) matrix with a scrambling pattern, and note that
the task of computing τmin(A) is equivalent to that of solving the following optimi-
sation problem:

minimise :
1

2
max{||e>i T − e>j T ||1|1 ≤ i < j ≤ n} (5)

subject to : T ∈ S(A).

Using standard techniques outlined in [1, section 1.2.2], the problem (5) can be con-
verted into a linear programming problem in standard form; the linear programme
has 1>A1 + 1 variables and 1>A1 + n +

∑
1≤i<j≤n 2|Si,j | constraint equalities and

inequalities. Thus, in principal, when A is given, τmin(A) can be computed by using
standard linear programming techniques. However, as noted in [1, section 1.2.2], for
a linear programming problem having p variables and q constraints, the complexity
of computing a solution (via interior point methods) is of order p2q. In particular, if
some |Si,j| is sufficiently large, the number of constraints may be exponential in m.
The possibility that the computational complexity of finding τmin(A) is exponential
in m motivates us to investigate other avenues for gaining insight into τmin. For
this reason, in this section we focus on finding readily computable upper and lower
bounds on τmin.

While we will not pursue the linear programming viewpoint on τmin any further
in this paper, that viewpoint does yield one interesting fact. A standard result (see
[1, section 4.2]) asserts that the family of solutions to a feasible linear programming
problem forms a convex set. Consequently, the following is immediate.
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Proposition 3.1. Suppose that A is an n × m (0, 1) matrix with a scrambling
pattern. Then the set

{M ∈ S(A)|τ(M) = τmin(A)}

is convex.

3.1 Bounds via the number of rows

Suppose that k ∈ N with k ≥ 2. We recursively define the following k ×
(

k
2

)
matrix

A(k) as follows: A(2) = 12,

A(k + 1) =

[
1>k 0>

(k
2)

Ik A(k)

]
, k ∈ N.

So, for example when k = 5 we have

A(5) =


1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

 .

Observe that each column of A(k) contains exactly two 1s, and that each pair of
distinct rows of A(k) have supports that intersect in exactly one element. Label the
columns of A(k) in lexicographic order as (1, 2), (1, 3), . . . , (1, k), (2, 3), (2, 4), . . . ,
(2, k), . . . , (k − 1, k), and observe that for any i, j with 1 ≤ i < j ≤ k, e>i A(k) and
e>j A(k) have a single 1 in a common position, namely the position corresponding to
column indexed by the ordered pair (i, j).

Our initial goal in this subsection is to establish an attainable upper bound on
τmin(A) in terms of the number of rows in A. We do so via a sequence of helpful
results. We begin our discussion with a claim that for an n×m (0, 1) matrix A with
a scrambling pattern, there is no loss of generality in assuming that each column of
A contains at least two 1s. To see the claim, suppose that Aej has at most one 1.
If it happens that Aej = 0, then by Lemma 2.2,we have τmin(A) = τmin(Ã) where Ã
is formed from A by deleting its j–th column. On the other hand, if Aej has just
one 1, with Aej = ei, say, then either there is an l 6= j such that ai,l = 1, or we have
e>i A = e>j . In the former case, we have Ael ≥ Aej, and again by Lemma 2.2 we may
delete the j–th column from A without changing the value of τmin. In the latter case,
since A has a scrambling pattern, and since the only nonzero entry of row i is in
column j, it must be the case that some (in fact every) row of A dominates its i–th
row. But then Aej has at least two 1s, contrary to our hypothesis. This establishes
the claim.

Lemma 3.1. Suppose that A is an n ×m (0, 1) matrix with a scrambling pattern.
Then τmin(A) ≤ n−2

n−1
.
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Proof. From Lemma 2.2 and 2.3, we may assume without loss of generality that no
row of A dominates another, and that no column of A dominates another; from the
claim preceding this lemma, we may assume that each column of A contains at least
two 1s.

For each pair of indices i, j with 1 ≤ i < j ≤ m, let e(i,j) be the vector in

R(n
2) having a 1 in the position corresponding to (i, j), and 0s elsewhere. For 1 ≤

i < j ≤ m, we then define the set Σ(i, j) = {l|Ael ≥ A(n)e(i,j)}; observe that
this set is not empty. Now let B be the

(
n
2

)
× m (0, 1) matrix such that for each

1 ≤ i < j ≤ n, 1 ≤ l ≤ m, the entry of B in row (i, j) and column l is 1 if l ∈ Σ(i, j)
and 0 otherwise. Note that each row of B contains at least one 1, and so the
diagonal matrix D = diag(B1) is nonsingular. Next, we consider the n×m matrix
M = 1

n−1
A(n)D−1B. Evidently M is nonnegative and M1 = 1

n−1
A(n)1 = 1. Note

that for each 1 ≤ l ≤ m, Mel is a linear combination of the columns of the form
A(n)e(i,j) where the pairs (i, j) all have the property that l ∈ Σ(i, j). In particular,
Mel ≤ Ael for each such l, and we thus deduce that M ∈ S(A).

Now τ(M) ≤ τ( 1
n−1

A(n))τ(D−1B) ≤ τ( 1
n−1

A(n)). Further, we observe that each

nonzero entry of 1
n−1

A(n) is 1
n−1

, and that for each 1 ≤ i < j ≤ n, 1
n−1

e>i A(n)e(i,j) =
1

n−1
e>j A(n)e(i,j) = 1

n−1
. We thus find that τ( 1

n−1
A(n)) = n−2

n−1
, from which the con-

clusion follows.

The following result will turn out to be quite useful. We will revisit some of its
consequences in subsections 3.3 and 3.4

Proposition 3.2. Suppose that A is a n×m (0, 1) matrix with scrambling pattern.
Fix an index i between 1 and n, and let B be the submatrix of A on rows 1, . . . , n
and columns indexed by supp(i). Suppose that there is a collection of l rows of B
such that in the corresponding l × |supp(i)| submatrix of B, each column contains
at least c 0s. Then τmin(A) ≥ c

l
.

Proof. Without loss of generality we suppose that i = 1, supp(i) = {1, . . . , p}, and
that the l rows in the hypothesis are rows 2, . . . , l + 1. Suppose that M ∈ S(A). Fix
an index i with 2 ≤ i ≤ l+1. Since the entries of (e1− el)

>M sum to zero, it follows
that 1

2
||(e1 − el)

>M ||1 coincides with the sum of the positive entries of the vector
(e1 − el)

>M. It now follows that for each i = 2, . . . , l + 1,

1

2
||(e1 − ei)

>M ||1 ≥
∑

j=1,...,p,ai,j=0

m1,j.

Consequently, we have

lτ(M) ≥
l+1∑
i=2

1

2
||(e1 − ei)

>M ||1 ≥
l+1∑
i=2

∑
j=1,...,p,ai,j=0

m1,j

=

p∑
j=1

∑
i=2,...,l+1,ai,j=0

m1,j ≥ c

p∑
j=1

m1,j = c.
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The conclusion now follows.

Proposition 3.2 is used to establish the following result.

Corollary 3.1. Suppose that A is an n×m (0, 1) matrix with a scrambling pattern.
Fix an index i between 1 and n, and suppose that for each l ∈ supp(i), Ael contains
at most two 1s. Then τmin(A) = n−2

n−1
.

Proof. Evidently there is a (n−1)×|supp(i)| submatrix of A having at least n−2 0s in
each column that satisfies the hypotheses of Proposition 3.2. Hence τmin(A) ≥ n−2

n−1
,

and since τmin(A) ≤ n−2
n−1

by Lemma 3.1, the conclusion follows.

The following technical result will assist in the proof of Theorem 3.1 below.

Lemma 3.2. Let A be an n×m (0, 1) matrix with scrambling pattern and suppose
that for each i = 1, . . . , n, there is an l ∈ supp(i) such that Ael contains at least
three 1s. Then τmin(A) ≤ n−3

n−2
.

Proof. Consider i = 1, and without loss of generality, we take supp(1) = {1, . . . , q}.
By permuting rows 2, . . . , n and columns 1, . . . , q if necessary, we find that for some
1 ≤ p ≤ q, the submatrix of A on its first q columns has the form

1>p 1>q−p

1r1 ∗ . . . ∗ ∗ ∗
0r2 1r2 . . . ∗ ∗ ∗
...

. . .
...

...
0rp 0rp . . . 0rp 1rp ∗

 ,

where r1 ≥ 2 and rj ≥ 1, j = 2, . . . , p. (Here the ∗ entries correspond to positions
for which the entries in A do not need to be specified for the purposes of the proof.)
Next we note that it suffices to consider the case that p = q, for if p < q, we may
zero out the entries in the first row of A in positions p+1, . . . , q to generate a matrix
Ã such that τmin(A) ≤ τmin(Ã). As this zeroing out process only affects entries in
the first row of A, we deduce that Ã also has a scrambling pattern.

So, taking p equal to q, we find that n − 1 =
∑q

j=1 rj ≥ 2 + (q − 1), so that
q ≤ n− 2. A similar argument applies to the cases i = 2, . . . , n, and it follows that
A dominates a (0, 1) matrix B such that
i) B has a scrambling pattern and
ii) e>i B1 ≤ n− 2, i = 1, . . . , n.
Since B ≤ A, we have S(B) ⊆ S(A), and hence τmin(A) ≤ τmin(B).

Let D = diag(B1), and consider M = D−1B. Note that M ∈ S(B) and that
each nonzero entry of M is bounded below by 1

n−2
. Select indices 1 ≤ i < j ≤ n,

and note that

1

2
||(ei − ej)

>M ||1 = 1−
∑
l∈Si,j

min{mi,l, mj,l} ≤ 1− 1

n− 2
.
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Hence we have n−3
n−2

≥ τmin(B) ≥ τmin(A), as desired.

Here is one of the main results in this subsection. It follows directly from Lemma
3.1, Corollary 3.1 and Lemma 3.2.

Theorem 3.1. Let A be an n×m (0, 1) matrix with scrambling pattern. Then

τmin(A) ≤ n− 2

n− 1
. (6)

Equality holds in (6) if and only if there is an index i = 1, . . . , n, such that for each
l ∈ supp(i), Ael contains at most two 1s.

We now provide a lower bound to complement Theorem 3.1.

Theorem 3.2. Let A be an n×m (0, 1) matrix with scrambling pattern. If A does
not contain an all–ones column, then

τmin(A) ≥ 1

n− 1
. (7)

Equality holds in (7) if and only if A contains a n×n submatrix that, up to row and
column permutations, has the form Jn − In.

Proof. Let B be the submatrix of A on the columns in supp(1). Since each column
of A (and hence B) contains at least one 0, it follows from Proposition 3.2 that
τmin(A) ≥ 1

n−1
.

Suppose now that equality holds in (7). Again referring to Proposition 3.2, we

find that if B̂ is an l × |supp(1)| submatrix of B having a 0 in each column, then

necessarily l = n − 1 (and B̂ = B). Evidently a similar observation applies to the
submatrix of A on the columns in supp(i), for each i = 1, . . . , n. Next, we examine
the structure of A, and we note that it suffices to consider the case that no row of A
dominates another, and no column of A dominates another. Permuting the columns
of A if necessary, it follows that the first row of A can be written as

[
0>l1 1>m−l1

]
,

for some 1 ≤ l1 ≤ m−1. Since column l1 +1 contains a zero outside of the first row,
it follows that (again, permuting rows and columns if necessary) the first two rows
of A can be written as [

0>l1 1>l2 1>m−l1−l2

∗ 0>l2 1>m−l1−l2

]
,

for some 1 ≤ l2 ≤ m− l1−1. (Here the star represents entries yet to be determined.)
Continuing in this way, we find that for each i ≤ n− 1, e>i A has the form[

∗ 0>li 1>m−l1−...−li−1

]
,
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for some 1 ≤ l2 ≤ m− l1 − . . .− li−1 − 1. Similarly, we find that e>n A =
[
∗ 0>ln

]
.

Consequently, we see that A has the form
0 . . . 0 1 . . . 1 . . . 1 . . . 1
∗ . . . ∗ 0 . . . 0 1 . . . 1 . . . 1 . . . 1
...

. . .
...

∗ . . . ∗ ∗ . . . ∗ 0 . . . 0 1 . . . 1
∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗ 0 . . . 0

 . (8)

Next, we note that all of the star entries on the bottom row must be 1s, otherwise
the last column of A dominates some other column. Now considering the second
last row of A, we see again that all of the star entries must be 1s, otherwise one
column of A dominates another. Continuing, we find that all of the star entries in
(8) must be 1s. We now find readily that some submatrix of A can be permuted to
the form Jn − In.

Finally, if A contains Jn − In as a submatrix, we find from Lemma 2.1 that
τmin(A) ≤ τmin(Jn − In) = 1

n−1
, so that equality holds in (7).

Suppose that T is a n × n stochastic matrix with zero diagonal, and label the
eigenvalues of T as 1 ≡ λ1, λ2, . . . , λn. In [6] it is shown that maxj=2,...,n |λj| ≥ 1

n−1
.

Since τ(T ) ≥ maxj=2,...,n |λj|, we see that for any such T, τ(T ) ≥ 1
n−1

. This provides
an alternate proof of (7) in the special case that A is n× n and has zero diagonal.

3.2 A bound via the maximum row sum

Here is a bound on τmin(A) based on the row sums of A.

Proposition 3.3. Let A be an n ×m (0, 1) matrix with a scrambling pattern, and
let p = A1. Then

τmin(A) ≤ max
1≤i<j≤n

{
1− |Si,j|

max{pi, pj}

}
. (9)

Proof. Let D = diag(p), and observe that the matrix M = D−1A ∈ S(A). Since
τmin(A) ≤ τ(M), (9) follows immediately.

We have the following consequence of Proposition 3.3.

Corollary 3.2. Suppose that D is a directed graph on vertices 1, . . . , n. For each
i = 1, . . . , n, denote the outdegree of vertex i by pi, and for each 1 ≤ i < j ≤ n, let
σ(i, j) denote the number of vertices k such that i → k and j → k in D. Then there
is a stochastic matrix T of order n having eigenvalues 1, λ2, . . . , λn such that:
i) D(T ) is a spanning subgraph of D; and

ii) max{|λ2|, . . . , |λn|} ≤ max1≤i<j≤n

{
1− |σ(i,j)|

max{pi,pj}

}
.
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Proof. Denote the adjacency matrix of D by A, and select a matrix T ∈ S(A)
such that τ(T ) = τmin(A). Since T ∈ S(A), i) holds. Let the non–Perron eigen-
values of T be λ2, . . . , λn, and recall that, as noted in section 1, τ(T ) is an upper
bound on the modulus of any non–Perron eigenvalue of T . Hence we find that
max{|λ2|, . . . , |λn|} ≤ τ(T ) = τmin(A), while from Proposition 3.3 we find that

τmin(A) ≤ max1≤i<j≤n

{
1− |σ(i,j)|

max{pi,pj}

}
. Conclusion ii) now follows.

Next we present the main result of this subsection.

Theorem 3.3. Let A be an n×m (0, 1) matrix with a scrambling pattern, let p = A1,
and set p = max{pi|i = 1, . . . , n}. Then

τmin(A) ≤ 1− 1

p
. (10)

Equality holds in (10) if and only if there is an index i between 1 and n such that:
i) pi = p, and
ii) for each l ∈ supp(i), there is an index j between 1 and n such that Si,j = {l}.

Proof. The upper bound (10) follows immediately from Proposition 3.3.
To address the case of equality in (10), suppose first that there is an index

i satisfying conditions i) and ii). Without loss of generality we take i = 1 and
supp(i) = {1, . . . , p}. Let B be the submatrix of A on columns 1, . . . , p. From i)
and ii), it follows that for each l between 1 and p, there is an index j such that
e>j B = e>j . Hence, there is a collection of p rows of B such that the corresponding
submatrix of B is (up to row and column permutations) Ip. From Proposition 3.2
we find that τmin(A) ≥ p−1

p
, and thus it must be the case that τmin(A) = p−1

p
.

For the converse implication, suppose now that for each i between 1 and n, either
condition i) or condition ii) fails to hold. Then in particular, for each i such that
pi = p, there is an index l ∈ supp(i) such that for every j between 1 and n, either
l /∈ Si,j or |Si,j| ≥ 2. Fixing such an index i, we see that there is an index l ∈ supp(i)
such that for each j with 1 ≤ j ≤ n and j 6= i, either aj,l = 0, or there is an index

lj 6= l such that ai,lj = aj,lj = 1. Consequently, the matrix Â = A − eie
>
l is a (0, 1)

matrix with a scrambling pattern; clearly τmin(A) ≤ τmin(Â), and the i–th row sum

of Â is p−1. Iterating the procedure if necessary, it follows that we may successively
zero out 1s from A in order to produce a matrix Ã with a scrambling pattern whose
maximum row sum is at most p− 1. But then we have τmin(A) ≤ τmin(Ã) ≤ 1− 1

p−1
,

so that strict inequality holds in (10).

Our results above enable us to address the problem of finding τmin(A) for any
(0, 1) matrix A with four rows.

Example 3.1. In this example we identify the values of τmin for matrices of scram-
bling pattern having just four rows. Suppose that A is a 4 × m (0, 1) matrix of
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scrambling pattern, and that m ≥ 2. We assume that no column of A is equal to
14, otherwise τmin(A) = 0. Without loss of generality, we assume henceforth that no
row of A dominates another, and that no column of A dominates another.

From the assumption that no column of A dominates another, and that no
column of A is 14, we find that each column of A contains either two or three 1s.
Hence each column of A is a member of either the set

V1 =




0
0
1
1

 ,


0
1
0
1

 ,


0
1
1
0

 ,


1
0
0
1

 ,


1
0
1
0

 ,


1
1
0
0




or the set

V2 =




0
1
1
1

 ,


1
0
1
1

 ,


1
1
0
1

 ,


1
1
1
0


 .

If A contains no columns from V2, then, up to row and column permutations,
necessarily A is given by

A1 =


0 0 0 1 1 1
0 1 1 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0

 .

Observing that this A satisfies conditions i) and ii) of Theorem 3.3, we see that
τmin(A1) = 2

3
.

If A contains just one column from V2, we find that, up to row and column
permutations, A is given by

A2 =


0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0

 .

Again appealing to Theorem 3.3 we see that τmin(A2) = 2
3
.

If A contains two or three columns from V2, we find the up to row and column
permutations, A is given by either

A3 =


0 1 1
1 0 1
1 1 0
1 1 0


or

A4 =


0 1 1
1 0 1
1 1 0
1 1 1

 ,
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respectively. From Theorem 3.3 it follows that τmin(A3) = 1
2

and τmin(A4) = 1
2
.

Finally, if A has four columns from V2, then it contains J4 − I4 as a submatrix,
and appealing to Theorem 3.2 again, we have τmin(A) = 1

3
.

3.3 A bound via the maximum column sum

This subsection contains an application of Proposition 3.2 that leads to a lower
bound on τmin whose equality case has an interesting characterisation.

Theorem 3.4. Let A be an n×m (0, 1) matrix of scrambling pattern, and suppose
that each column of A contains at least c 0s. Then

τmin(A) ≥ c

n− 1
. (11)

Equality holds in (11) if and only if there is a diagonal matrix D of order m with
nonnegative diagonal entries such that ADA> = c

n−1
I + (1 − c

n−1
)J. In particular,

if equality holds in (11), then A has exactly c 0s in each column that corresponds to
a positive diagonal entry in D.

Proof. The lower bound on (11) follows immediately from Proposition 3.2.
In order to establish the characterisation of equality, suppose first that equality

holds in (11), and let M be a matrix in S(A) such that τ(M) = c
n−1

. Suppose

without loss of generality that 1
2
||(e1 − e2)

>M ||1 = c
n−1

. We then have

c

n− 1
≥ 1

n− 1

n∑
i=2

1

2
||(e1 − ei)

>M ||1 ≥
1

n− 1

n∑
i=2

∑
l3mi,l=0

m1,l,

where the second inequality follows from the fact that for each 2 ≤ i ≤ n, 1
2
||(e1 −

ei)
>M ||1 is equal to the sum of the nonnegative entries in the vector (e1 − ei)

>M .
Further, from the hypothesis, for each 1 ≤ l ≤ m, there are at least c indices i such
that mi,l = 0, and consequently, we find that

∑n
i=2

∑
l3mi,l=0 m1,l ≥ c

∑
l∈supp(1) m1,l.

Assembling these observations, we have

c

n− 1
≥ 1

n− 1

n∑
i=2

1

2
||(e1 − ei)

>M ||1 ≥
1

n− 1

n∑
i=2

∑
l3mi,l=0

m1,l ≥
c

n− 1

∑
l∈supp(1)

m1,l

=
c

n− 1
.

We thus deduce that for each i = 2, . . . , n, 1
2
||(e1 − ei)

>M ||1 = c
n−1

, and it now

follows that for any pair of indices p, q with 1 ≤ p < q ≤ n, we have 1
2
||(ep −

eq)
>M ||1 = c

n−1
. Indeed, it must also be the case that for each such p and q,

1

2
||(ep − eq)

>M ||1 =
∑

l3mq,l=0

mp,l. (12)
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From (12) and the fact that for each p 6= q, 1
2
||(ep − eq)

>M ||1 is equal to the sum
of the nonnegative entries in the vector (e1 − ei)

>M, we see that for each pair of
distinct indices p, q,∑

l3mq,l=0

mp,l =
∑

l3mp,l≥mq,l

(mp,l −mq,l) =
∑

l3mq,l=0

mp,l +
∑

l3mp,l≥mq,l>0

(mp,l −mq,l),

and hence ∑
l3mp,l≥mq,l>0

(mp,l −mq,l) = 0. (13)

Next we claim that in each column of M , all of the positive entries are equal.
To see the claim, suppose to the contrary that for some triple of indices p, q, l, we
have mp,l > mq,l > 0. But then we have mp,l ≥ mq,l > 0 and (mp,l−mq,l) > 0, which
contradicts (13). Consequently, in each column of M, all of the positive entries are
equal, as claimed.

Hence M can be written as AD for some diagonal matrix D with nonnegative
entries. Further, since 1

2
||(ep−eq)

>M ||1 = 1−
∑m

l=1 min{mp,l, mq,l} = 1−e>p MA>eq,
it follows that e>p MA>eq = 1 − c

n−1
whenever p 6= q. Observing that e>p MA>ep =∑m

l=1 mp,l = 1 for each p = 1, . . . , n, we thus find that MA> = ADA> = c
n−1

I +(1−
c

n−1
)J. Finally, we note that since 1>ADA> = (n−c)1>, and since 1>A ≤ (n−c)1>

by hypothesis, we have that

(n− c)1> = 1>ADA> ≤ (n− c)1>DA> = (n− c)(AD1)> = (n− c)1>.

It now follows that necessarily we must have 1>Ael = (n− c)el whenever dl > 0.
Conversely, if there is a nonnegative and diagonal matrix D such that ADA> =

c
n−1

I + (1− c
n−1

)J, we find readily that the matrix AD is in S(A). Further, for each

pair of distinct indices p and q, we find that 1
2
||(ep− eq)

>AD||1 = 1− e>p ADA>eq =
c

n−1
. Hence τmin(A) ≤ τ(AD) = c

n−1
, so that equality holds in (11).

3.4 Mock designs

Suppose that A is an n×m (0, 1) matrix with at least c ≥ 1 0s in each column. If
there is a diagonal matrix D having nonnegative diagonal entries such that ADA> =

c
n−1

I+(1− c
n−1

)J, then we say that the pair (A, D) is a mock design. The motivation
for this term is as follows. Suppose that A is the incidence matrix of a balanced
incomplete block design with parameters (v, k, λ), where v = n, k = n − c and

λ = m(n−c)(n−c−1)
n(n−1)

(we refer the reader to [9, section 6.2] for background on block

designs). Set r = λ(n−1)
n−1−c

= m(n−c)
n

. Then AA> = (r − λ)I + λJ, so that taking

D = 1
r
Im, we find that ADA> = c

n−1
I + (1− c

n−1
)J. Thus, any balanced incomplete

block design gives rise to a mock design. In this section we explore some of the
properties of mock designs.

Given a p×q (0, 1) matrix A, we let comp(A) be the
(

p
2

)
×q matrix whose rows are

given by e>i A ◦ e>j A, written in lexicographic order, where ◦ denotes the Hadamard
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product. Our next result yields some insight into the relationship between A and D
when the pair (A, D) is a mock design.

Proposition 3.4. Let A be an n ×m (0, 1) matrix with c ≥ 1 0s in each column.
Suppose that for some nonnegative diagonal matrix D0, the pair (A, D0) is a mock
design, and let ∆ = {D|(A, D) is a mock design}. Then ∆ is a convex set. Further,
D is an extreme point of ∆ if and only if:
i) [

A
comp(A)

]
(D1) =

[
1n

(1− c
n−1

)1(n
2)

]
; and

ii) letting P = {j|dj > 0}, the submatrix of[
A

comp(A)

]
on the columns indexed by P is of full column rank.

Proof. Observing that we can write ∆ as

∆ =

{
diag(x)

∣∣∣∣∣x ≥ 0,

[
A

comp(A)

]
x =

[
1n

(1− c
n−1

)1(n
2)

]}
,

it is now straightforward to determine that ∆ is a convex set.
Let x ≥ 0 be a vector such that diag(x) ∈ ∆, and let P = {j|xj > 0}. If diag(x)

is an extreme point of ∆, then certainly the submatrix of[
A

comp(A)

]
on the columns indexed by P has nullity zero, otherwise we can find a nonzero null
vector y of [

A
comp(A)

]
such that diag(x + y), diag(x− y) ∈ ∆. But then in that case, diag(x) = 1

2
diag(x +

y) + 1
2
diag(x − y), contrary to our assumption that diag(x) is an extreme point of

∆.
Conversely, suppose that the submatrix S of[

A
comp(A)

]
on the columns indexed by P has full column rank, and suppose that x is a vec-
tor such that diag(x) ∈ ∆. Write x as x =

∑r
j=1 αjy(j), where αj > 0, j =

1, . . . , r,
∑r

j=1 αj = 1, and diag(y(j)) ∈ ∆, for j = 1, . . . , r. Note that necessar-
ily, each vector y(j) has support contained in P . Fix an index j, and let z be the
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subvector of y(j) on the rows indexed by P. We have Sz =

[
1n

(1− c
n−1

)1(n
2)

]
, and

since S has full column rank, it must be the case that zi = xi for each i ∈ P. It now
follows that y(j) = x for each j = 1, . . . , r, so that x is an extreme point of ∆.

Example 3.2. Here is an example of an 8×24 (0, 1) matrix A with three 0s in each
column:

A =



0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0
1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 1 1
1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0
0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1 0
1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1


.

Letting d be the vector given by

d =
1

35

[
3 3 3 3 6 3 1 4 1 4 1 2 2 2 3 2 1 1 3 1 3 2 1 1

]>
,

a computation shows that Adiag(d)A> = 3
7
I + 4

7
J ; hence (A, diag(d)) is a mock

design. Further, it can be verified that the matrix[
A

comp(A)

]
has full column rank. Thus it follows from Proposition 3.4 that the set ∆ =
{D|(A, D) is a mock design} consists of a single element, namely diag(d).

Example 3.3. We consider the 6× 18 matrix A given by

A =


1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0
1 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1
1 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 1 1

 ,

and observe that A has three 0s in each column. Our goal here is to find the ex-
treme points of the polytope ∆ = {D|D is diagonal and (A, D) is a mock design}.
In order to do so, we first consider the vectors c1, . . . , c4 given respectively as follows:
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1

5

[
1 0 1 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1

]>
,

1

5

[
1 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0

]>
,

1

5

[
0 1 1 1 1 0 1 0 1 1 0 0 0 1 0 1 0 1

]>
,

1

5

[
1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0

]>
.

Applying Proposition 3.4, it can be verified that for each j = 1, . . . , 4, diag(cj) is an
extreme point of ∆.

Note that the positive vector x given below is a solution to the linear system[
A

comp(A)

]
x =

[
16

3
5
115

]
:

x =
1

20

[
3 3 3 3 2 2 2 2 4 1 1 1 1 4 2 2 2 2

]>
.

Further, it turns out that the null space of

[
A

comp(A)

]
is spanned by the columns

of the matrix

Z =



−1 −1 −1
1 1 0
1 0 1
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1
0 0 0
1 1 1
−1 −1 0
−1 0 −1
1 0 0
0 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1



.

Hence, ∆ can be described as ∆ = {diag(y)|y ≥ 0, y = Zu + x for some u ∈ R3}.
In particular, if u is such that Zu + x ≥ 0, then by considering the 10–th through
13–th entries of the inequality Zu + x ≥ 0, we find that

u1 + u2 ≤
1

20
, u1 + u3 ≤

1

20
, u1 + u2 + u3 ≥ − 1

20
and u1 ≥ − 1

20
. (14)
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Let C be the 18× 4 matrix whose columns are (in order) c1, . . . , c4, and suppose
that we have a vector u ∈ R3 such that Zu + x ≥ 0. Solving the linear system
Cv = Zu + x, we find that

v1

v2

v3

v4

 =


−5 −5 0
−5 0 −5
5 5 5
5 0 0


 u1

u2

u3

 +
1

4


1
1
1
1

 .

From the inequalities (14) we find that vj ≥ 0, j = 1, . . . , 4, and it is readily seen
that

∑4
j=1 vj = 1. Hence, for any u such that Zu + x ≥ 0, we may write Zu + x as

a convex combination of the vectors c1, . . . , c4. We now deduce that ∆ is the convex
hull of the matrices diag(c1), . . . , diag(c4).

It is straightforward to see that an n×m (0, 1) matrix A with exactly one 0 in each
column, and no row (respectively, column) dominated by another row (respectively,
column), can be brought to the form Jn − In by row and column permutations, in
which case (A, 1

n−1
In) is a mock design. Our next goal is to consider (0, 1) matrices

having two 0s in each column that lead to mock designs. To that end, we consider
the sequence of n×

(
n
2

)
matrices B(n) constructed iteratively as follows:

B(3) = I3, B(l + 1) =

[
0>l 1>

(l
2)

Jl − Il B(l)

]
, l ≥ 3.

Suppose that n ≥ 3, and that A is a (0, 1) matrix with n rows having two 0s in each
column. We note that necessarily the columns of A must be selected from those of
B(n).

Lemma 3.3. For each l ≥ 3, the
(

l+1
2

)
×

(
l
2

)
matrix

[
B(l)

comp(B(l))

]
has rank

(
l
2

)
.

Proof. We proceed by induction on l and note that the case l = 3 is readily estab-
lished. Suppose that the assertion holds for some l ≥ 3, and observe that

[
B(l + 1)

comp(B(l + 1))

]
=


0>l 1>

(l
2)

Jl − Il B(l)
0 B(l)

comp(Jl − Il) comp(B(l))

 .

Let

[
x
y

]
be a null vector for

[
B(l + 1)

comp(B(l + 1))

]
. Then (Jl− Il)x+B(l)y = 0 and

B(l)y = 0; since l ≥ 3, Jl − Il is nonsingular, so we find that x = 0. But then y is a

null vector for

[
B(l)

comp(B(l))

]
, and applying the induction hypothesis, we see that



20

y must be 0. Hence

[
B(l + 1)

comp(B(l + 1))

]
has nullity zero, which completes the proof

of the induction step.

Theorem 3.5. Let A be an n×m (0, 1) matrix with distinct columns and two 0s in
each column. There is a diagonal matrix D with nonnegative diagonal entries such
that (A, D) is a mock design if and only if, up to row and column permutations,
A = B(n). In that case, necessarily D = 2

(n−1)(n−2)
I.

Proof. Suppose first that (A, D) is a mock design for some nonnegative diagonal
matrix D. We assume without loss of generality that A has no repeated columns.
Each nonzero column of A is necessarily a column of B(n). Hence, it follows that
(by adding some zero diagonal entries if necessary) we may extend D to a diag-

onal matrix D̂ of order
(

n
2

)
so that for a suitable permutation matrix P we have

B(n)D̂P =
[

AD 0
]
. Since ADA> = 2

n−1
I + n−3

n−1
J, we see that the vector D̂1 is

a solution to the following linear system:[
B(n)

comp(B(n))

]
x =

[
1n

n−3
n−1

1(n−1
2 )

]
. (15)

From Lemma 3.3, we find that the coefficient matrix of (15) has full column rank.

Noting that x = 1

(n−1
2 )

1(n
2)

is the solution to (15), we thus conclude that D̂ =

2
(n−1)(n−2)

I(n
2)

and that A = B(n)P. The converse is straightforward.

Suppose that we are given a (0, 1) matrix A with constant column sums, a
diagonal matrix D such that (A, D) is a mock design, and suppose further that D
is an extreme point of the set ∆. From Proposition 3.4 it follows that the vector
consisting of the nonzero diagonal entries of D is the solution to a linear system
whose coefficient matrix is (0, 1) and has full column rank, and whose right–hand
sides are all rational numbers. In particular, we find that the diagonal entries of
D must all be rational. Our final result gives more insight into the structure of A
in that setting, and makes another connection between mock designs and balanced
incomplete block designs.

Theorem 3.6. Let A be an n × m (0, 1) matrix with c ≥ 1 0s in each column.
Suppose that D is a diagonal matrix of order m such that each diagonal entry is
positive and rational, write D as D = 1

q
diag(p), where q, p1, . . . , pm ∈ N. Then

(A, D) is a mock design if and only if the matrix B given by

B =
[

Ae11
>
p1

Ae21
>
p2

. . . Aem1>pm

]
(16)

is the incidence matrix of a balanced incomplete block design with parameters (v, k, λ) =

(n, n− c, q(n−c−1)
n−1

).
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Proof. Suppose first that (A, D) is a mock design, so that ADA> = c
n−1

I+(1− c
n−1

)J.

Hence we have
∑m

l=1 ai,ldlai,l = 1, i = 1, . . . , n, and
∑m

l=1 ai,ldlaj,l = n−c−1
n−1

, for
1 ≤ i < j ≤ n. Since dl = pl

q
for each l = 1, . . . ,m, we see that

∑m
l=1 a2

i,lpl = q, i =

1, . . . , n, and
∑m

l=1 ai,lplaj,l = q(n−c−1)
n−1

, for 1 ≤ i < j ≤ n. Set s =
∑m

l=1 pl. Referring
to (16), we see that these last two conditions are equivalent to

∑s
l=1 b2

i,l = q, i =

1, . . . , n, and
∑s

l=1 bi,lbj,l = q(n−c−1)
n−1

, for 1 ≤ i < j ≤ n, respectively. Consequently

BB> = qc
n−1

I+ q(n−c−1)
n−1

J, so that B is a the incidence matrix of a balanced incomplete

block design with parameters (n, n− c, q(n−c−1)
n−1

). The converse is straightforward.
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