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Abstract

For a weighted graph G with adjacency matrix A, let U(t) = eitA.

For indices s, r, the fidelity of transfer at time t is p(t) = |u(t)s,r|2,
and there is perfect state transfer if p(t0) = 1 for some t0. Under the

hypothesis of perfect state transfer, we provide closed form expres-

sions for dkp
dtk

at t0 for any k ∈ N. Those expressions then yield an

easily computed lower bound on p(t0 + h) for any h. We also produce

expressions for the first two partial derivatives of p with respect to

the weight of an edge in G, with the expression for the second deriva-

tive holding under the hypothesis of perfect state transfer. A parallel

suite of results using the Laplacian matrix of G is also developed, and

examples illustrating the results are included. The techniques rely on

the spectral decomposition of the adjacency (respectively, Laplacian)
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matrix, and on perturbation theory for eigenvalues and eigenvectors

of symmetric matrices.

Keywords: Quantum walk; Perfect state transfer; Eigenvalue and eigenvector

sensitivities.
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1 Introduction and preliminaries

Suppose that G is a weighted graph on n vertices – that is, a loop–free

undirected graph on vertices labelled 1, . . . , n, with an accompanying weight

function w mapping from the edge set to the positive real numbers. Asso-

ciated with our weighted graph is its adjacency matrix A, the n × n matrix

given by

ak,j =

w(k, j), if k is adjacent to j and w(k, j) is the edge weight,

0, if k is not adjacent to j

for k, j = 1, . . . , n. Letting D be the diagonal matrix of row sums of A, we

may also define the Laplacian matrix corresponding to the weighted graph

G via L = D − A. Both the adjacency matrix and the Laplacian matrix are

well–studied objects and in particular much is known about their spectral

structure, see for example [4], [7] and [10].

The adjacency matrix and the Laplacian matrix for weighted graphs play

a central role in the analysis of state transfer in quantum spin networks

(equivalently, quantum walks on a graph). Here is the setting. For a weighted

graph G with adjacency matrix A, set U(t) = eitA, and suppose that we are

given a pair of distinct vertices s, r of G. Our weighted graph corresponds to a
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network of spins; each vertex of the graph represents a spin, and two spins are

coupled if and only if there is an edge between the corresponding vertices.

Further, the strength of that coupling is determined by the corresponding

entry in A. Under so–called XY dynamics, the adjacency matrix A serves as

a time independent Hamiltonian. The fidelity of transfer (from s to r at time

t) is then given by p(t) = |u(t)s,r|2, and can be interpreted as the probability

that a single excitation travels from s to r after a free evolution of time

t. (As an aside, we note that
∑n

k=1 |u(t)s,k|2 = 1, so that the probabilistic

interpretation is appropriate here.) A slightly different setup leads to the

Laplacian matrix. If we assume that the process evolves under so–called XX

dynamics, then the Laplacian matrix L serves as the Hamiltonian; setting

U(t) = eitL, the fidelity of transfer is again p(t) = |u(t)s,r|2 (with an analogous

probabilistic interpretation) under this alternate hypothesis on the dynamics.

In either setting, there is particular interest in the phenomenon of perfect

state transfer: we say that there is perfect state transfer from s to r at

time t0 if the corresponding fidelity of transfer p(t0) is equal to 1. This

notion, introduced in [6], has attracted considerable attention (as evidenced

by the fact that [6] has received upwards of 800 citations to date) in part

because perfect state transfer is proposed as a mechanism for the transfer

of information in a quantum computer. A number of families of weighted

graphs exhibiting perfect state transfer are known – see, for example [2], [3],

[5], [9] and [16].

In this paper, we address the following question: given a weighted graph

exhibiting perfect state transfer (where the Hamiltonian in question is either

the adjacency matrix or the Laplacian matrix), how sensitive is the fidelity

of transfer to changes in either the readout time t0, or the weight of a par-

ticular edge? We are not the first to consider questions of this type. In

[15], the author considers the class of centrosymmetric adjacency matrices –

that is, the those adjacency matrices A such that PAP = A, where P is the
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back–diagonal permutation matrix. Specifically, for those centrosymmetric

adjacency matrices exhibiting perfect state transfer, say from state s to state

r, [15] discusses so–called timing errors and manufacturing errors. The former

are errors in the fidelity of transfer from s to r arising from small changes in

the readout time, while the latter are errors in the fidelity of transfer from s

to r arising from small changes in the weights of the edges. Not surprisingly,

these lead to the consideration of the derivatives of the fidelity of transfer

with respect to the readout time and the edge weights. Also related is the

work in [11] and [18], which investigate the effect on fidelity of transfer aris-

ing from changes in the edge weights in spin chains (where the underlying

undirected graph is restricted to be a path). However, the approach of those

articles has a probabilistic flavour, as the edge weights are considered to be

subject to random perturbations. As will become evident, this is a different

perspective than the one taken in the present paper.

Our approach in this paper is informed by that of [15]. But while that

paper includes a general discussion of the derivatives in question (and unfor-

tunately appears to contain an error in the expression for the second deriva-

tive with respect to time, evaluated at t0), our aim in the present work is to

establish precise formulas for derivatives of the fidelity of transfer with re-

spect to the edge weights and the readout time. As in [11], [15] and [18], our

primary focus is on the context of perfect state transfer. We emphasise that

our results do not impose any extra assumptions on the weighted graphs

under consideration, and cover the cases that the Hamiltonian is either a

Laplacian matrix or an adjacency matrix. Specifically, this paper makes the

following contributions:

i) we derive explicit expressions for derivatives (with respect to time, evalu-

ated at t0) of all orders of the fidelity of transfer when perfect state transfer

holds (Theorems 2.2 and 2.4);

ii) we provide an estimate of the remainder in the corresponding Taylor series
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for the fidelity of transfer (Corollary 2.10);

iii) when perfect state transfer holds for some t0, we prove a lower bound on

the fidelity of transfer at any time (Remark 2.11);

iv) we give an expression for the first partial derivative of the fidelity of trans-

fer with respect to the weight of an edge, even in the absence of perfect state

transfer (Theorem 3.3);

v) in the setting of perfect state transfer, we derive an expression for the

second partial derivative of the fidelity of transfer with respect to the weight

of an edge (Theorem 3.10).

Note that both iv) and v) require one to identify a special eigenbasis of the

Hamiltonian matrix, and we provide algorithms for finding such an eigenba-

sis in subsections 3.1 and 3.2, depending on whether the Hamiltonian under

consideration is a Laplacian matrix (the former subsection) or an adjacency

matrix (the latter subsection). Throughout, the results are illustrated with

examples.

As noted above, a number of families of weighted graphs with perfect

state transfer are now known. It is hoped that the results in this paper will

not only help to differentiate between such families of graphs by allowing

one to identify those with desirable sensitivity properties, but also inform

the construction of new families of graphs with perfect state transfer and

insensitive fidelity of transfer.

Most of the notation we use in the paper is standard, but for clarity we

now outline some of the less standard notation that is used in the sequel.

For adjacent vertices k, l of a graph, we denote the edge between them by

k ∼ l. For a matrix M we use M> and M † to denote the transpose and

Moore–Penrose inverse, respectively. If M is a square matrix, we use ρ(M)

to denote its spectral radius. Given a vector v ∈ Rn, diag(v) denotes the

n × n diagonal matrix whose diagonal entries are the corresponding entries

of v. We use 0k and 1k to denote the zero vector and all–ones vector of
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order k, respectively, while for a complex number z, we denote its real and

imaginary parts by Re(z), Im(z), respectively. Throughout the paper, we

assume basic knowledge of matrix theory and graph theory; the reader is

referred to [13] and [8], respectively, for background.

2 Sensitivity with respect to readout time

In this section, we extend the work of [15] on timing errors. The following

lemma will be useful in the development of some of the results below.

Lemma 2.1 Let M be a symmetric matrix of order n, let t0 > 0, and let U =

eit0M . Suppose that we have M = V ΛV >, where V is an orthogonal matrix

and Λ is a diagonal matrix. If there are indices s, r such that |us,r(t0)| = 1,

then

e>r V e−it0Λ = us,r(t0)e
>
s V. (1)

Proof. Evidently us,r(t0) = e>s V eit0ΛV >er. Since |us,r(t0)| = 1, we find that

1 = |e>s V eit0ΛV >er| = |(e−it0ΛV >es)
∗V >er| ≤ ||e−it0ΛV >es|| ||V >er|| = 1, so

that equality holds in the Cauchy–Schwarz inequality. From the character-

isation of the equality case in that inequality, we find that e−it0ΛV >es and

V >er are linearly dependent, so that for some δ ∈ C,

V >er = δe−it0ΛV >es. (2)

We find readily that δ = us,r(t0), and now (1) now follows from (2). 2

As noted in section 1, [15] includes a discussion (in the context of perfect

state transfer) of the second derivative of the fidelity of transfer with respect

to the readout time. The next result provides expressions for the derivatives

of all orders in terms of diagonal entries of powers of M .
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Theorem 2.2 Let M be a symmetric matrix of order n, and for each t ≥ 0,

let U(t) = eitM . Fix a pair of indices s, r, and for each t ≥ 0, let p(t) =

|us,r(t)|2. Suppose that for some t0 > 0, we have p(t0) = 1. For each j ∈ N,

let w(j) = e>s M jes, and set w(0) ≡ 1. Then for each k ∈ N,

dkp

dtk

∣∣∣
t0

=

(−1)(k mod 4)/2
∑k

j=0(−1)j
(

k
j

)
w(j)w(k − j), if k is even

0, if k is odd.
(3)

Proof. Write M as M = V ΛV >, where V is an orthogonal matrix and Λ is a

diagonal matrix. Fix a j ∈ N, and note that djus,r(t)

dtj

∣∣∣
t0

= (i)je>s V Λjeit0ΛV >er.

From Lemma 2.1, we have e>s V Λjeit0ΛV >er = us,r(t0)e
>
s V ΛjV >es, so that

djus,r(t)

dtj

∣∣∣
t0

= (i)jus,r(t0)w(j). Setting Re(us,r(t0)) = α, Im(us,r(t0)) = β, it

now follows that

djus,r(t)

dtj

∣∣∣
t0

=



(α + iβ)w(j), if j ≡ 0 mod 4,

(−β + iα)w(j), if j ≡ 1 mod 4,

(−α− iβ)w(j), if j ≡ 2 mod 4,

(β − iα)w(j), if j ≡ 3 mod 4.

(4)

Set x(t) = Re(us,r(t)) and y(t) = Im(us,r(t)) (so that in particular x(t0) =

α, y(t0) = β), and note that p(t) = x(t)2 + y(t)2. It now follows that for each

k ∈ N,

dkp

dtk

∣∣∣
t0

=
k∑

j=0

(
k

j

)(
djx

dtj

∣∣∣
t0

dk−jx

dtk−j

∣∣∣
t0

+
djy

dtj

∣∣∣
t0

dk−jy

dtk−j

∣∣∣
t0

)
.

Suppose first that k is odd. Considering the cases arising from (4), we find

that djx
dtj

∣∣∣
t0

dk−jx
dtk−j

∣∣∣
t0
+djy

dtj

∣∣∣
t0

dk−jy
dtk−j

∣∣∣
t0

is either α(−β)+βα, αβ+β(−α), (−α)(−β)+

(−β)α, or (−α)(−β) + β(−α), all of which equal zero. It now follows imme-

diately that dkp
dtk

∣∣∣
t0

= 0 when k is odd.
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Next we suppose that k is even with k ≡ 2 mod 4. Then again referring

to (4), we have

djx

dtj

∣∣∣
t0

dk−jx

dtk−j

∣∣∣
t0

+
djy

dtj

∣∣∣
t0

dk−jy

dtk−j

∣∣∣
t0

= w(j)w(k − j)



−α2 − β2, j ≡ 0 mod 4,

β2 + α2, j ≡ 1 mod 4,

−α2 − β2, j ≡ 2 mod 4,

β2 + α2, j ≡ 3 mod 4

= (−1)j−1w(j)w(k − j).

A similar argument shows that if k ≡ 0 mod 4, then djx
dtj

∣∣∣
t0

dk−jx
dtk−j

∣∣∣
t0
+djy

dtj

∣∣∣
t0

dk−jy
dtk−j

∣∣∣
t0

= (−1)jw(j)w(k − j). This establishes (3) when k is even. 2

Remark 2.3 Suppose that M is the adjacency matrix of an unweighted

graph – that is, a graph in which each of the edges has weight 1. Again

using the notation of Theorem 2.2, we see that w(2) is the degree of vertex

s, say d. In particular, d2p
dt2

∣∣∣
t0

= −2d in that case. Similarly, if M is the

Laplacian matrix of an unweighted graph, then w(1) = d, w(2) = d2 + d, and

we find that d2p
dt2

∣∣∣
t0

= −(d2 + d − 2d2 + d2 + d) = −2d. Thus, in both cases

we find that d2p
dt2

∣∣∣
t0

is correlated with the degree of vertex s.

Next, we provide alternate expressions for the derivatives in Theorem 2.2

in terms of the spectral information associated with the matrix in question.

As noted above, [15] discusses the second derivative of the fidelity of transfer,

and does so by using the eigendecomposition of the Hamiltonian. Thus, (5)

offers an extension of the discussion in [15].

Theorem 2.4 Let M be a symmetric matrix of order n, and for each t ≥
0, and let U(t) = eitM . Fix a pair of indices s, r, and for each t ≥ 0, let
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p(t) = |us,r(t)|2. Suppose that for some t0 > 0, we have p(t0) = 1. Denote

the distinct eigenvalues of M by λ1, . . . , λq, and for each l = 1, . . . , q, let al

denote the (s, s) entry in the orthogonal idempotent eigenprojection matrix

associated with λl. Then for each even k ∈ N, we have

dkp

dtk

∣∣∣
t0

= (−1)(k mod 4)/2
∑

1≤l<m≤q

2alam(λl − λm)k. (5)

Proof. For each l = 1, . . . , q, let Pl denote the orthogonal idempotent

eigenprojection matrix associated with λl. For each j ∈ N we have M j =∑q
l=1 λj

l Pl, from which we find that

w(j) =

q∑
l=1

alλ
j
l (6)

for any such j.

Let k be a positive even integer, and consider the expression

k∑
j=0

(−1)j

(
k

j

)
w(j)w(k − j).

From (6), we find that

k∑
j=0

(−1)j

(
k

j

)
w(j)w(k − j) =

k∑
j=0

(−1)j

(
k

j

)( q∑
l=1

alλ
j
l

)(
q∑

m=1

amλk−j
m

)
.
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Expanding the right hand side and simplifying now yields the following:

k∑
j=0

(−1)j

(
k

j

)
w(j)w(k − j) =

k∑
j=0

(−1)j

(
k

j

)( q∑
l=1

alλ
j
l

)
=

k∑
j=0

(−1)j

(
k

j

){ q∑
l=1

a2
l λ

k
l +

∑
1≤l<m≤q

alam(λj
l λ

k−j
m + λk−j

l λj
m)

}
=(

q∑
l=1

a2
l λ

k
l

)
k∑

j=0

(−1)j

(
k

j

)
+

k∑
j=0

(−1)j

(
k

j

) ∑
1≤l<m≤q

alam(λj
l λ

k−j
m + λk−j

l λj
m) =

∑
1≤l<m≤q

alam

k∑
j=0

(−1)j

(
k

j

)
(λj

l λ
k−j
m + λk−j

l λj
m) =∑

1≤l<m≤q

2alam(λl − λm)k.

The expression dkp
dtk

∣∣∣
t0

in (5) now follows immediately. 2

We have the following consequence of Theorem 2.4.

Corollary 2.5 Suppose that the hypothesis and notation of Theorem 2.4

holds. Then dkp
dtk

∣∣∣
t0

< 0 when k ≡ 2 mod 4 and dkp
dtk

∣∣∣
t0

> 0 when k ≡ 0

mod 4.

Proof. Since each al is a diagonal entry of a (non–zero) idempotent matrix,

we find that al > 0, l = 1, . . . , q. Further, since we have perfect state transfer

from s to r, M is not the identity matrix, so that q ≥ 2. Hence for any even

k ∈ N,
∑

1≤l<m≤q 2alam(λl − λm)k > 0. The conclusion now follows. 2
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Example 2.6 Consider the matrix A given by

A =



0
√

5 0 0 0 0
√

5 0
√

8 0 0 0

0
√

8 0
√

9 0 0

0 0
√

9 0
√

8 0

0 0 0
√

8 0
√

5

0 0 0 0
√

5 0


.

Let U(t) = eitA for each t ≥ 0, and let p(t) = |u1,6(t)|2, again for t ≥ 0. As is

observed in [9], we have p(π
2
) = 1. The eigenvalues of A are known to be given

by λl = 7 − 2l, l = 1, . . . , 6, and we have the following list of corresponding

eigenvectors:

v1 =
1√
32



1
√

5
√

10
√

10
√

5

1


, v2 =

√
5

32



1
3√
5√
2
5

−
√

2
5

− 3√
5

−1


, v3 =

√
5

4



1
1√
5

−
√

2
5

−
√

2
5

1√
5

1


,

v4 =

√
5

4



1

− 1√
5

−
√

2
5√

2
5

1√
5

−1


, v5 =

√
5

32



1

− 3√
5√
2
5√
2
5

− 3√
5

1


, v6 =

1√
32



1

−
√

5
√

10

−
√

10
√

5

−1


.

It now follows that, in the notation of Theorem 2.4, a1 = 1
32

, a2 = 5
32

, a3 =
5
16

, a4 = 5
16

, a5 = 5
32

and a6 = 1
32

. Substituting the expressions for λl and
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al, l = 1, . . . , 6 into (5) and simplifying, we find that for each even k ∈ N,

dkp

dtk

∣∣∣
π
2

=

2(−1)(k mod 4)/2

[(
105

512

)
2k +

(
15

128

)
4k +

(
45

1024

)
6k

+

(
5

512

)
8k +

(
1

1024

)
10k

]
.

Example 2.7 Consider the graph on n vertices given by G = Kn− e, where

e denotes the edge between vertices 1 and 2, and suppose that n ≡ 0 mod 4.

Let L denote the Laplacian matrix for G. As is shown in [16], the (1, 2) entry

of ei π
2
L has modulus one, so that there is perfect state transfer from vertex

1 to vertex 2 at time π
2
. The eigenvalues of L are known to be λ1 = n (with

multiplicity n − 2), λ2 = n − 2 (simple), and λ3 = 0 (also simple), with the

following as the respective orthogonal idempotent eigenprojection matrices:

P1 =

[
n−2
2n

J2 − 1
n
J2,n−2

− 1
n
Jn−2,2 I − 1

n
Jn−2

]
, P2 =

1

2
(e1 − e2)(e1 − e2)

>, P3 =
1

n
J.

In the notation of Theorem 2.4, we then have a1 = n−2
2n

, a2 = 1
2
, a3 = 1

n
.

Substituting into (5), it now follows that for each even k ∈ N, we have

dkp

dtk

∣∣∣
π
2

= (−1)(k mod 4)/2

[
n− 2

2n
2k +

n− 2

n2
nk +

1

n
(n− 2)k

]
.

Example 2.8 Suppose that d ∈ N, and consider the d–cube, that is, the

graph on 2d vertices whose adjacency matrix Ad can be generated via the

following iteration:

A1 =

[
0 1

1 0

]
, Ak+1 =

[
Ak I

I Ak

]
, k = 0, . . . , d− 1.
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It is shown in [9] that with this labelling of the vertices, the d–cube exhibits

perfect state transfer from vertex 1 to vertex 2d at time π
2
. Next, we con-

sider the ‘standard’ Hadamard matrix of order 2d generated by the following

iteration:

H1 =

[
1 1

1 −1

]
, Hk+1 =

[
Hk Hk

Hk −Hk

]
, k = 0, . . . , d− 1.

It is readily shown that the columns of 1√
2d

Hd form an orthonormal basis of

eigenvectors for the adjacency matrix Ad. We note further that the eigen-

values of Ad are given by d − 2j, j = 0, . . . , d, with respective multiplicities(
d
j

)
.

Let p(t) denote the fidelity of transfer from vertex 1 to vertex 2d at time t.

From the fact that Ad is diagonalised by 1√
2d

Hd, it follows that for each j =

0, . . . , d, the diagonal entries of the eigenprojection matrix for the eigenvalue

n− 2j are all equal to
(d

j)
2d . From (5), we thus find that for each even k,

dkp

dtk

∣∣∣
π
2

= (−1)(k mod 4)/2

d∑
j=0

d∑
l=0

(
d
j

)
2d

(
d
l

)
2d

(n− 2j − n + 2l)k

=
(−1)(k mod 4)/2

22d−k

d∑
j=0

d∑
l=0

(l − j)k

(
d

j

)(
d

l

)
. (7)

When k = 2, it is not difficult to show that d2p
dt2

∣∣∣
π
2

= −2d, in agreement with

Remark 2.3, while substituting k = 4 into (7) and simplifying, we find that
d4p
dt4

∣∣∣
π
2

= 4d(3d− 1).

Next we provide an upper bound on the sizes of the derivatives (of all

orders, and taken with respect to the readout time) of the fidelity of transfer.

Theorem 2.9 Let M be a symmetric matrix of order n, and for each t ≥ 0,

and let U(t) = eitM . Fix a pair of indices s, r, and for each t ≥ 0, let p(t) =

13



|us,r(t)|2. Then for any k ∈ N and any t ≥ 0 we have∣∣∣dkp

dtk

∣∣∣ ≤ 2k+1ρ(M)k.

Proof. For each t ≥ 0 let x(t) = Re(us,r(t)), y(t) = Im(us,r(t)), and note

that p(t) = x2(t) + y2(t). We find that for any k ∈ N,

dkp

dtk
=

k∑
j=0

(
k

j

)[
djx

dtj
dk−jx

dtk−j
+

djy

dtj
dk−jy

dtk−j

]
.

We claim that for each m ∈ N and any t ≥ 0, |dmx
dtm

|, |dmy
dtm

| ≤ ρ(M)m.

In order to establish the claim, we begin by writing M = V ΛV >, where

Λ = diag
([

λ1 . . . λn

])
is a diagonal matrix of eigenvalues and V is an

orthogonal matrix of corresponding eigenvectors. It now follows that x(t) +

iy(t) = us,r(t) = e>s V eitΛV >er, so that for each m ∈ N, dmx
dtm

+ idmy
dtm

=
dmus,r

dtm
= (i)ke>s V ΛmeitΛV >er. Observe that |d

mus,r

dtm
| = |

∑n
j=1 λm

j vs,je
itλjvr,j| ≤∑n

j=1 ρ(M)m|vs,j||vr,j| ≤ ρ(M)m, the last inequality following from the Cauchy–

Schwarz inequality and the fact that V is an orthogonal matrix. Since

|dmx
dtm

|, |dmy
dtm

| ≤ |d
mus,r

dtm
|, the claim now follows.

Applying our claim, along with the triangle inequality now yields∣∣∣dkp

dtk

∣∣∣ ≤
k∑

j=0

(
k

j

)(∣∣∣djx

dtj

∣∣∣∣∣∣dk−jx

dtk−j

∣∣∣+ ∣∣∣djy

dtj

∣∣∣∣∣∣dk−jy

dtk−j

∣∣∣) ≤

2ρ(M)k

k∑
j=0

(
k

j

)
= 2k+1ρ(M)k,

as desired. 2

The following is immediate.
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Corollary 2.10 Suppose that M and p are as in Theorem 2.9, and that

p(t0) = 1 for some t0 > 0. Denote the distinct eigenvalues of M by λ1, . . . , λq,

and for each k = 1, . . . , q, let ak be the (s, s) entry of the orthogonal idem-

potent eigenprojection matrix corresponding to λk. For each j ∈ N, let

w(j) = e>s M jes, and set w(0) = 1. Let l ∈ N, and h ∈ R. Then

p(t0 + h) = 1 +
l∑

j=1

(−1)(2j mod 4)/2 h2j

(2j)!

[
2j∑

m=0

(−1)m

(
2j

m

)
w(m)w(2j −m)

]

+
h2l+2

(2l + 2)!
R2l+2

= 1 +
l∑

j=1

(−1)(2j mod 4)/2 h2j

(2j)!

∑
1≤k<m≤q

2akam(λk − λm)2j +
h2l+2

(2l + 2)!
R2l+2,

where |R2l+2| ≤ 22l+3ρ(M)2l+2.

Remark 2.11 In this remark, we maintain the hypotheses of Theorem 2.4,

and suppose that M, p, t0 and the als are as in that theorem. For our symmet-

ric matrix M , the spread of M, s(M), is the difference between its largest and

smallest eigenvalues. Since each of the als is a diagonal entry of a symmetric

idempotent matrix, we find readily that in fact each al must be positive.

Further, since
∑

1≤l<m≤q 2alam = 1 −
∑q

l=1 a2
l < 1, it follows from (5) that

for each even k ∈ N,

∣∣∣∣∣dkp
dtk

∣∣∣
t0

∣∣∣∣∣ < (s(M))k.

We now apply the spread–based upper bound on the derivatives of the

fidelity of transfer. From Taylor’s theorem, for any h, we have p(t0 + h) =

1+
∑∞

j=1
h2j

(2j)!
d2jp
dt2j

∣∣∣
t0
. Further, from Corollary 2.5, d2jp

dt2j

∣∣∣
t0

is positive or negative

according as j is even or odd, respectively. It now follows that

p(t0 + h) ≥ 1−
∞∑
l=0

h4l+2

(4l + 2)!

d4l+2p

dt4l+2

∣∣∣
t0
≥ 1−

∞∑
l=0

(s(M)h)4l+2

(4l + 2)!
=

1− 1

2

[
es(M)h + e−s(M)h

2
− cos(s(M)h)

]
. (8)
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Thus (8) quantifies the notion that if h is small relative to 1
s(M)

, then p(t0+h)

is necessarily close to 1.

We note that a result in [17] provides an easily computed upper bound

for the spread of any symmetric matrix. Specifically, for our symmetric

matrix M of order n, we have s(M) ≤
√

2trace(M>M)− 2
n
(trace(M))2. For

a connected unweighted undirected graph on n vertices, it is well–known that

the spread of the corresponding Laplacian matrix is bounded above by n; in

[14] it is conjectured that the maximum possible spread of the adjacency

matrix of such a graph is equal to
√
b4

3
(n2 − n + 1)c.

3 Sensitivity with respect to edge weights

While the derivatives of the fidelity of transfer with respect to the readout

time (under the hypothesis of perfect state transfer) are established fairly

readily, the corresponding partial derivatives with respect to the edge weights

require a rather more technical development. As we have seen above, the

fidelity of transfer depends on the eigenvalues and eigenvectors of the Hamil-

tonian, and evidently perturbing an edge weight will affect both the eigenval-

ues and the corresponding eigenvectors. Consequently, in order to compute

derivatives of the fidelity of transfer, it is first necessary to identify an eigen-

basis of the Hamiltonian that is analytic in the edge weight being perturbed.

As noted in section 1, our Hamiltonian may take the form of the Laplacian

matrix of a weighted graph, or of the adjacency matrix of a weighted graph.

We treat those two cases separately below in our discussion of how to find a

differentiable eigenbasis. We note that the Laplacian case is slightly simpler

to address, as in that case, perturbing an edge weight leads to a perturbing

matrix of rank 1, while the adjacency case leads to a perturbing matrix of

rank 2.
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3.1 Differentiable eigenbasis with respect to an edge

weight: Laplacian case

Let L be the Laplacian matrix of a weighted graph, select a pair of vertices

k, l, and set E equal to (ek − el)(ek − el)
>. According to [1], there is an

ε > 0 such that for each h ∈ (−ε, ε), the matrix L + hE can be diagonalised

as L + hE = V (h)Λ(h)V (h)>, where both V (h) and Λ(h) are analytic in

h, V (h) is orthogonal, and Λ(h) = diag
([

λ1(h) . . . λn(h)
])

is diagonal.

Suppose that we have such an eigenbasis in hand and consider the j–th

eigen–equation (L + hE)V (h)ej = λj(h)V (h)ej. Differentiating both sides

with respect to h and evaluating at h = 0 yields EV (0)ej + LdV
dh

∣∣∣
h=0

ej =

dλj

dh

∣∣∣
h=0

V (0)ej + λj(0)dV
dh

∣∣∣
h=0

ej. It now follows readily that

dλj

dh

∣∣∣
h=0

= e>j V (0)>EV (0)ej.

Thus, once we have the differentiable eigenbasis in hand, the derivatives of

the corresponding eigenvalues are easily computed.

Our goal thus is to determine V (0) and dV
dh

∣∣∣
h=0

; to do so we follow Algo-

rithm 1 of [1], which sets out a general method for finding a differentiable

eigenbasis, as well as its derivative, at h = 0. Suppose that L has eigen-

value λ of multiplicity r. Let x1, . . . , xr be an orthonormal basis for the

λ–eigenspace of L. If it happens that Exj = 0 for j = 1, . . . , r, then in fact

each xj is a λ–eigenvector of L + hE for all h in a neighbourhood of 0. The

corresponding columns of V (h) can be taken to be x1, . . . , xr, and evidently

they have derivative 0 on that neighbourhood of 0.

Suppose now that Exj 6= 0 for some j, and without loss of generality

we take j = 1. If r ≥ 2, set δj = (ek − el)
>xj, j = 1, . . . , r, and let x̂1 =

1√Pr
j=1 δ2

j

∑r
j=1 δjxj. Observe that the λ–eigenspace of L can be decomposed

as a direct sum of Span{x̂1} and S ≡ Span{δ1xj − δjx1|j = 2, . . . , r}. Evi-

dently S is a subspace of the null space of E, and each vector in S is orthogo-
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nal to x̂1. Selecting an orthonormal basis x̂j, j = 2, . . . , r of S, it now follows

that there is a differentiable eigenbasis V (h) of L+hE such that the columns

of V (0) corresponding to the eigenvalue λ can be taken to be x̂j, j = 1, . . . , r.

Suppose that the m–th column of V (h) corresponds to the eigenvalue λ, say

with V (0)em = x̂p for some p ≥ 2. It is straightforward to determine then

that dV
dh

∣∣∣
h=0

em = 0. On the other hand, if V (0)em = x̂1, then as above we

have EV (0)em + LdV
dh

∣∣∣
h=0

em = dλ
dh

∣∣∣
h=0

V (0)em + λ(0)dV
dh

∣∣∣
h=0

em. From this we

find readily that (λI −L)†(λI −L)dV
dh

∣∣∣
h=0

em = (λI −L)†EV (0)em. Recalling

that (λI −L)†(λI −L) = I −
∑r

j=1 x̂jx̂
>
j , we find from the orthonormality of

the columns of V (h) that (λI − L)†(λI − L)dV
dh

∣∣∣
h=0

em = dV
dh

∣∣∣
h=0

em. We thus

deduce that in this case,

dV

dh

∣∣∣
h=0

em = (λI − L)†EV (0)em.

We observe here that the eigenvalue and eigenvector matrices Λ(h) and

V (h), and hence the associated eigenvalue and eigenvector derivatives, de-

pend on the choice of the indices k, l (equivalently, on the edge k ∼ l whose

weight is perturbed). In order to emphasise that dependence in the sequel,

we will use the notation ∂Λ
∂k,l

and ∂V
∂k,l

to denote the diagonal matrix of deriva-

tives with respect to the weight of edge k ∼ l, and the matrix whose columns

are the derivatives (again with respect to the weight of edge k ∼ l) of the

associated eigenvectors, respectively.

Example 3.1 Here we revisit Example 2.7 and illustrate the formulas above

concerning the differentiable eigenbases associated with the various pairs of

indices k, l. Recall that the Laplacian matrix for Kn \ e has 0 and n − 2 as

simple eigenvalues, and n as an eigenvalue of multiplicity n− 2.

Case 1, (k, l) = (1, 2): Here we have E = (e1−e2)(e1−e2)
>. In this instance,
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our V (0) can be taken as follows

V (0)e1 =
1√
n
1n (an eigenvector for the eigenvalue 0),

V (0)e2 =
1√
2
(e1 − e2) (an eigenvector for the eigenvalue n− 2),

V (0)e3 =
1√

2n(n− 2)

[
−(n− 2)12

21n−2

]
(one eigenvector for the eigenvalue n),

V (0)ek+3 =
1√

k(k + 1)


02

1k

−k

0n−k−3

 , k = 1, . . . , n− 3

(the remaining eigenvectors for the eigenvalue n).

Note that for each j 6= 2, EV (0)ej = 0, while ((n − 2)I − L)†EV (0)e2 =
√

2((n − 2)I − L)†(e1 − e2) = 0. It now follows that ∂V
∂1,2

is the zero matrix.

We also find that ∂Λ
∂1,2

= diag
([

0 2 0 . . . 0
])

.

Case 2, (k, l) = (1, 3): Here we take E = (e1 − e3)(e1 − e3)
>, and our

V (0) can be taken as follows

V (0)e1 =
1√
n
1n (for the eigenvalue 0),

V (0)e2 =
1√
2
(e1 − e2) (for the eigenvalue n− 2),

V (0)e3 =
1√
6
(e1 + e2 − 2e3) (for the eigenvalue n),

V (0)ek+3 =
1√

(k + 2)(k + 3)


12

1k

−(k + 2)

0n−k−3

 , k = 1, . . . , n− 3

(for the eigenvalue n).

Observe that EV (0)ej = 0 for j 6= 2, 3. Using the orthogonal idempotent
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decomposition for L from Example 2.7, it follows that (using the notation of

that example) (−L)† = − 1
n
P1− 1

n−2
P2, ((n−2)I−L)† = −1

2
P1+ 1

n−2
P3, (nI−

L)† = 1
2
P2 + 1

n
P3. We thus find that

∂V

∂1,3

e2 = − 1

2
√

2

(
1

2
e1 +

1

2
e2 − e3

)
, and

∂V

∂1,3

e3 =
3

4
√

6
(e1 − e2), while

∂V

∂1,3

ej = 0, j 6= 2, 3.

Finally, we observe that ∂Λ
∂1,3

= diag
([

0 1
2

3
2

0 . . . 0
])

.

Case 3, (k, l) = (3, 4): Here we take E = (e3 − e4)(e3 − e4)
>, and our

V (0) can be taken as follows

V (0)e1 =
1√
n
1n (for the eigenvalue 0),

V (0)e2 =
1√
2
(e1 − e2) (for the eigenvalue n− 2),

V (0)e3 =
1√
2
(e3 − e4) (for the eigenvalue n),

V (0)e4 =
1√

2n(n− 2)

[
−(n− 2)12

21n−2

]
(for the eigenvalue n),

V (0)ek+3 =
1√

k(k + 1)


02

1k

−k

0n−k−3

 , k = 2, . . . , n− 3 (for the eigenvalue n).

Observe that EV (0)ej = 0 for j 6= 3; using our expression for (nI − L)†

above, we also find that (nI − L)†V (0)e3 = 0. Hence ∂V
∂3,4

is the zero matrix.

Finally, we note that ∂Λ
∂3,4

= diag
([

0 0 2 0 . . . 0
])

.
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3.2 Differentiable eigenbasis with respect to an edge

weight: adjacency case

Suppose that we have a weighted graph on n vertices with adjacency matrix

A. Select a pair of vertices k, l, and set E equal to eke
>
l + ele

>
k . As in subsec-

tion 3.1, there is an ε > 0 such that for each h ∈ (−ε, ε), the matrix A + hE

can be diagonalised as A+hE = V (h)Λ(h)V (h)>, where both V (h) and Λ(h)

are analytic in h, V (h) is orthogonal, and Λ(h) = diag
([

λ1(h) . . . λn(h)
])

is diagonal. Again we find that

dλj

dh

∣∣∣
h=0

= e>j V (0)>EV (0)ej, j = 1, . . . , n.

It remains now to compute V (0) and dV
dh

∣∣∣
h=0

, and we do so by implement-

ing Algorithm 1 of [1]. Fix an eigenvalue λ of A of multiplicity r, and let

x1, . . . , xr denote an orthonormal eigenbasis of the λ–eigenbasis of A. Ob-

serve that since E has rank two, the subspace spanned by Exj, j = 1, . . . , r

has dimension zero, one or two.

In the dimension zero case we find that each xj is a λ–eigenvector of

A + hE, from which it follows that the corresponding columns of V (h) can

be taken to be x1, . . . , xr, and that the derivative (at h = 0) of each such

column is 0.

In the dimension one case, we assume without loss of generality that

Ex1 6= 0. For each j = 1, . . . , r, let δj =
x>1 E>Exj

x>1 E>Ex1
. If r ≥ 2, then necessarily

for each j = 2, . . . , r, Exj is a scalar multiple of Ex1, from which we find

that E(xj−δjx1) = 0, j = 2, . . . , r. Set x̂1 = 1√Pr
j=1 δ2

j

∑r
j=1 δjxj, and observe

that the λ–eigenspace of A decomposes as a direct sum of Span{x̂1} and S ≡
Span{δ1xj − δjx1|j = 2, . . . , r}. Select an orthonormal basis x̂j, j = 2, . . . , r

of S. We then find that there is a differentiable eigenbasis V (h) of A + hE

such that the columns of V (0) corresponding to the eigenvalue λ can be taken

to be x̂j, j = 1, . . . , r. Again reasoning as in subsection 3.1, we see that if
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V (0)em = xj for some j = 2, . . . , r, then dV
dh

∣∣∣
h=0

em = 0, while if V (0)em = x1,

then dV
dh

∣∣∣
h=0

em = (λI − A)†Ex1.

Next we suppose that the subspace spanned by Exj, j = 1, . . . , r has

dimension two; without loss of generality, the vectors Ex1, Ex2 form a basis

for that space. If r ≥ 3, then for each j = 1, . . . , r, define the scalars αj, βj

via [
αj

βj

]
=

([
e>k

e>l

] [
x1 x2

])−1 [
e>k

e>l

]
xj.

We observe in passing that α1 = 1, β1 = 0, α2 = 0, β2 = 1. It now follows that

for each j = 3, . . . , r, xj−αjx1−βjx2 is a null vector of E. We can decompose

the λ–eigenspace of A as the direct sum of S1 = Span{
∑r

j=1 αjxj,
∑r

j=1 βjxj}
and S2 = Span{xj −αjx1− βjx2|j = 3, . . . , r}. Let x̃1, x̃2 be an orthonormal

basis of S1, and let x̂j, j = 3, . . . , r be an orthonormal basis of S2.

Consider the 2× 2 matrix

B =

[
x̃>1

x̃>2

]
E
[

x̃1 x̃2

]
.

A straightforward computation shows that det(B) = −(e>l x̃1e
>
k x̃2−e>k x̃1e

>
1 x̃2)

2

< 0, the strict inequality following from the fact that Ex̃1 and Ex̃2 are lin-

early independent. Evidently B has distinct eigenvalues, one of which is

positive, the other negative. Let

U =

[
σ1 τ1

σ2 τ2

]

be an orthogonal matrix that diagonalises B (i.e. U>BU is diagonal). Setting

x̂1 = σ1x̃1 + σ2x̃2 and x̂2 = τ1x̃1 + τ2x̃2, it follows from Algorithm 1 of

[1] that there is a differentiable eigenbasis V (h) of A + hE such that the

columns of V (0) corresponding to the eigenvalue λ can be taken to be x̂j, j =

1, . . . , r. Further, if V (0)em = xj for some j = 3, . . . , r, then dV
dh

∣∣∣
h=0

em = 0.
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Finally, again referring to [1], if p, q are indices such that V (0)
[

ep eq

]
=[

x̂1 x̂2

]
, then

dV

dh

∣∣∣
h=0

[
ep eq

]
=[

(λI − A)†Ex̂1 (λI − A)†Ex̂2

]
+

x̂>1 E(λI − A)†Ex̂2

x̂>2 Ex̂2 − x̂>1 Ex̂1

[
−x̂2 x̂1

]
. (9)

(We note in passing that

[
x̂>1

x̂>2

]
E
[

x̂1 x̂2

]
is a diagonal matrix whose

diagonal entries are the eigenvalues of B. It now follows readily that either

x̂>2 Ex̂2 > 0 > x̂>1 Ex̂1 or either x̂>2 Ex̂2 < 0 < x̂>1 Ex̂1. In either case, the

denominator of the rational expression appearing in (9) is not zero.)

In keeping with the comment made in subsection 3.1, in the context of the

adjacency matrix of a weighted graph, we will use the notation ∂Λ
∂k,l

and ∂V
∂k,l

, to

denote the diagonal matrix of derivatives with respect to the weight of edge

k ∼ l, and the matrix whose columns are the derivatives (again with respect

to the weight of edge k ∼ l) of the associated eigenvectors, respectively.

Remark 3.2 As we will see below, the second term on the right hand side

of (9) is a bit of a nuisance, in the sense that it is not so readily analysed (see

Remark 3.6, for example). Nevertheless, there are circumstances in which

this nuisance term does not appear, and in this remark we outline one such

setting.

Suppose that d ∈ N, and consider the d–cube, which is described in Ex-

ample 2.8. Recall that the corresponding adjacency matrix Ad is diagonalised

by 1√
2d

Hd, where Hd is the ‘standard’ Hadamard matrix of order 2d. Fix a

pair of distinct indices k, l and let E = eke
>
l + ele

>
k . Since Hd is a Hadamard

matrix, it follows that for the vectors Hdek and Hdel, there are 2d−1 positions

in which the entries in both vectors are equal, and 2d−1 positions in which

the entries in both vectors have opposite sign. It now follows that for any
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diagonal matrix D, (ek + el)
>HdDH>

d (ek − el) = 0, from which we deduce

that for any eigenvalue λ of Ad, we have (ek + el)
>(λI − Ad)

†(ek − el) = 0.

Fix an eigenvalue λ of Ad, suppose that x1, . . . , xp are the columns of
1√
2d

Hd that span the corresponding eigenspace, and assume that Span{Exj|j =

1, . . . , p} has dimension two. Scaling the xjs by −1 if necessary and re-

ordering them (also if necessary), we find that there is an index m be-

tween 1 and p − 1 such that

[
e>k

e>l

]
xj = 1√

2d

[
1

1

]
, j = 1, . . . ,m, and[

e>k

e>l

]
xj = 1√

2d

[
1

−1

]
, j = m + 1, . . . , p. Implementing the construction

above, it now follows that x̂1 = 1√
m

∑m
j=1 xj and x̂2 = 1√

p−m

∑p
j=m+1 xj,

while Ex̂j = 0, j = 3, . . . , p. As a result, we have Ex̂1 =
√

m
2d (ek + el) and

Ex̂2 = −
√

p−m
2d (ek−el). Hence we have x̂>1 E(λI−Ad)

†Ex̂2 = −
√

m(p−m)

2d (ek+

el)
>(λI −Ad)

†(ek − el) = 0, thus yielding the desired simplification of (9) for

the d–cube.

3.3 First derivative with respect to an edge weight

Subsections 3.1 and 3.2 allow us to find an eigenbasis that is suitable for

discussing the perturbation of an edge weight. With such an eigenbasis in

hand, we turn to our next result. In order to simplify the notation in the

sequel, we suppress the explicit dependence on h = 0 – i.e. we use V, Λ, ∂V
∂k,l

and ∂Λ
∂k,l

in place of V (0), Λ(0), ∂V
∂k,l

∣∣∣
h=0

and ∂Λ
∂k,l

∣∣∣
h=0

, respectively.

Theorem 3.3 Let M be a symmetric matrix of order n, and for each t ≥ 0,

and let U(t) = eitM . Fix a pair of indices s, r, and for each t ≥ 0, let p(t) =

|us,r(t)|2. Fix a t0 > 0 and denote us,r(t0) by a + ib.

Suppose that k and l are distinct indices between 1 and n. We consider

the following two scenarios:

i) M is the Laplacian matrix of a weighted graph and V ≡ V (0), Λ ≡ Λ(0)
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are orthogonal and diagonal, respectively, and are constructed as in subsection

3.1;

ii) M is the adjacency matrix of a weighted graph and V ≡ V (0), Λ ≡ Λ(0)

are orthogonal and diagonal, respectively, and are constructed as in subsection

3.2.

In either scenario, we have the following, where ∂V
∂k,l

, and ∂Λ
∂k,l

are computed

as described in either subsection 3.1 or 3.2, as appropriate:

∂us,r(t0)

∂k,l

=

e>s
∂V

∂k,l

(cos(t0Λ) + i sin(t0Λ)) V >er + e>s V (cos(t0Λ) + i sin(t0Λ))
∂V >

∂k,l

er +

it0e
>
s V

∂Λ

∂k,l

(cos(t0Λ) + i sin(t0Λ)) V >er;(10)

and

∂p(t0)

∂k,l

=

2

[
e>s

∂V

∂k,l

(a cos(t0Λ) + b sin(t0Λ)) V >er + e>s V (a cos(t0Λ) + b sin(t0Λ))
∂V >

∂k,l

er

]
+

2t0

[
e>s V

∂Λ

∂k,l

(b cos(t0Λ)− a sin(t0Λ)) V >er

]
.(11)

Proof. We have U(t0) = V eit0ΛV >; differentiating that equation with respect

to the weight of the edge between vertices k and l and then evaluating at the

weight of k ∼ l yields

∂U(t0)

∂k,l

=
∂V

∂k,l

eit0ΛV > + V eit0Λ∂V >

∂k,l

+ it0V
∂Λ

∂k,l

eit0ΛV >.

Hence

∂us,r(t0)

∂k,l

= e>s
∂V

∂k,l

eit0ΛV >er + e>s V eit0Λ∂V >

∂k,l

er + it0e
>
s V

∂Λ

∂k,l

eit0ΛV >er,

from which (10) follows readily.
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Setting x(t) = Re(us,r(t)) and y(t) = Im(us,r(t)), we have p(t) = x2(t) +

y2(t). Thus,
∂p(t0)

∂k,l

= 2

[
x(t0)

∂x(t0)

∂k,l

+ y(t0)
∂y(t0)

∂k,l

]
.

By hypothesis, x(t0) = a and y(t0) = b, while (10) yields

∂x(t0)

∂k,l

= e>s
∂V

∂k,l

cos(t0Λ)V >er+e>s V cos(t0Λ)
∂V >

∂k,l

er−t0e
>
s V

∂Λ

∂k,l

sin(t0Λ)V >er

and

∂y(t0)

∂k,l

= e>s
∂V

∂k,l

sin(t0Λ)V >er+e>s V sin(t0Λ)
∂V >

∂k,l

er+t0e
>
s V

∂Λ

∂k,l

cos(t0Λ)V >er.

Substituting those expressions now yields (11). 2

The following is immediate from (11) upon application of the Cauchy–

Schwarz inequality, as well as the fact that for the diagonal matrices a cos(t0Λ)+

b sin(t0Λ) and b cos(t0Λ)−a sin(t0Λ), all diagonal elements have absolute value

bounded above by 1.

Corollary 3.4 With the notation as in Theorem 3.3, we have

∣∣∣∣∂p(t0)

∂k,l

∣∣∣∣ ≤ 2

√e>s
∂V

∂k,l

∂V >

∂k,l

es +

√
e>r

∂V

∂k,l

∂V >

∂k,l

er + t0

√
e>s V

(
∂Λ

∂k,l

)2

V >es

 .

In our next two remarks, we maintain the notation of Theorem 3.3.

Remark 3.5 Suppose that M is the Laplacian matrix of a weighted graph,

and denote the distinct eigenvalues of M by λj, j = 1, . . . ,m. Recall from

subsection 3.1 that
∂λj

∂k,l
= e>j V (ek − el)(ek − el)

>V >ej. We now find readily

that |∂λj

∂k,l
| ≤ 2; hence we find that

√
e>s V

(
∂Λ
∂k,l

)2

V >es ≤ 2.

From the construction of the special eigenbasis matrix V , we find that

e>s
∂V
∂k,l

has at most m nonzero entries (i.e. one for each distinct eigenvalue),
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and that each such entry has the form e>s (λjI−M)†(ek−el)(ek−el)
>V ej̃ for

some suitable index j̃. From the Cauchy–Schwarz inequality it follows that

for any such j̃,
(
e>s (λj −M)†(ek − el)(ek − el)

>V ej̃

)2 ≤ 4
(
ρ((λjI −M)†)

)2
.

Consequently, we find that

e>s
∂V

∂k,l

∂V >

∂k,l

es ≤ 4
m∑

j=1

1

minp6=j(λj − λp)2
.

A similar argument applies to e>r
∂V
∂k,l

∂V >

∂k,l
er, and so we find from Corollary 3.4

that ∣∣∣∂p(t0)

∂k,l

∣∣∣ ≤ 4t0 + 8

√√√√ m∑
j=1

1

minp6=j(λj − λp)2
.

Remark 3.6 Suppose that M is the adjacency matrix of a weighted graph,

and let λj, j = 1, . . . ,m denote the distinct eigenvalues of M . From subsec-

tion 3.2, we find that
∂λj

∂k,l
= e>j V (eke

>
l + ele

>
k )V >ej, so that

∣∣∣∂λj

∂k,l

∣∣∣ ≤ 1. Hence√
e>s V

(
∂Λ
∂k,l

)2

V >es ≤ 1.

Next we consider the entries of e>s
∂V
∂k,l

. From the discussion in subsection

3.2, we find that the nonzero entries of e>s
∂V
∂k,l

come in two types: i) entries

of the form e>s (λjI −M)†(eke
>
l + ele

>
k )V ej̃ for some suitable index j̃ (arising

from the dimension one case in subsection 3.2); and ii) pairs of entries of the

form[
e>s (λjI −M)†(eke

>
l + ele

>
k )V ej̃1

e>s (λjI −M)†(eke
>
l + ele

>
k )V ej̃2

]
+

(V ej̃1
)>(eke

>
l + ele

>
k )(λjI −M)†(eke

>
l + ele

>
k )V ej̃2

V e>
j̃2

(eke>l + ele>k )V ej̃2
− (V ej̃1

)>(eke>l + ele>k )V ej̃1

[
−e>s V ej̃2

e>s V ej̃1

]
for suitable indices j̃1, j̃2 (arising from the dimension two case, see (9) ). Ev-

idently the entries in case i) are bounded above by ρ((λjI−M)†) in absolute

value.
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Next we consider case ii), and we let

δ = max


∣∣∣∣∣
√

(V ej̃1
)>(eke>k + ele>l )V ej̃1

(V ej̃2
)>(eke>k + ele>l )V ej̃2

(V ej̃2
)>(eke>l + ele>k )V ej̃2

− (V ej̃1
)>(eke>l + ele>k )V ej̃1

∣∣∣∣∣
 ,

where the maximum is taken over all pairs of indices j̃1, j̃2 such that V ej̃1
, V ej̃2

are pairs of eigenvectors corresponding to the same eigenvalue, as constructed

in subsection 3.2. It follows that any nonzero entry of e>s
∂V
∂k,l

is case ii) is

bounded above by (1 + δ)ρ((λjI −M)†) in absolute value.

In either case i) or case ii), we find that there are at most 2m nonzero

entries in e>s
∂V
∂k,l

(i.e., either 1 or 2 such nonzero entries for each of the m

distinct eigenvalues of M). We thus deduce that

e>s
∂V

∂k,l

∂V >

∂k,l

es ≤ 2(1 + δ)2

m∑
j=1

1

minp6=j(λj − λp)2
.

A similar inequality holds for e>r
∂V
∂k,l

∂V >

∂k,l
er. Assembling the observations above,

we thus find that

∣∣∣∂p(t0)

∂k,l

∣∣∣ ≤ 2t0 + 4(1 + δ)

√√√√ m∑
j=1

1

minp6=j(λj − λp)2
.

Remark 3.7 Referring to Remarks 3.5 and 3.6 we see that in both cases, the

upper bounds on
∣∣∣∂p(t0)

∂k,l

∣∣∣ depend in part on the separation between distinct

eigenvalues of M . Specifically, if the distinct eigenvalues are not well sepa-

rated, then the upper bound is large. Notice that in the context of perfect

state transfer, there is a tradeoff between Theorem 2.4 and Remarks 3.5 and

3.6. From (5), we might hope that the eigenvalues are close together so that

the derivatives of the fidelity of transfer with respect to the readout time are

not too large; however, if the eigenvalues are close together, it may be the

case that the derivatives of fidelity of transfer with respect to edge weights

are large.
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Example 3.8 Here we consider the adjacency matrix of the unweighted path

on 3 vertices, namely A =


0 1 0

1 0 1

0 1 0

 . Fix the time t0 = π√
8
, let U(t) = eitA,

and let p(t) = |u1,3(t)|2. Set k = 1, l = 2; we wish to find ∂u1,3(t0)

∂1,2
and ∂p(t0)

∂1,2
.

First, note that we may diagonalise A as A = V ΛV >, where

Λ = diag
([ √

2 0 −
√

2
])

and V =


1
2

1√
2

1
2

1√
2

0 − 1√
2

1
2

− 1√
2

1
2

 .

It is now readily determined that u(1, 3) = −1
2
.

Since A has distinct eigenvalues, the method of subsection 3.2 to com-

pute derivatives of the eigenvectors is significantly streamlined. Using the

approach of subsection 3.2, we find that

∂V

∂1,3

=


1
4

− 1√
8

1
4

0 0 0

−1
4

− 1√
8

−1
4

 .

Making the appropriate substitutions into (10) and (11), we find that ∂u1,3(t0)

∂1,2
=

−π
8

while ∂p(t0)
∂1,2

= π
8
.

Remark 3.9 Here we consider the conclusions of Theorem 3.3 in the con-

text of perfect state transfer. Maintaining the notation of that theorem,

suppose that there is perfect state transfer from vertex s to vertex r at

time t0. Applying Lemma 2.1, it follows that eit0ΛV >er = (a + ib)V >es.

Hence we find that e>s
∂V
∂k,l

eit0ΛV >er = e>s
∂V
∂k,l

V >es = 0, and a similar ar-

gument shows that e>s V eit0Λ ∂V >

∂k,l
er = 0. Referring to (10), we find that

∂us,r(t0)

∂k,l
= it0e

>
s V ∂Λ

∂k,l
(cos(t0Λ) + i sin(t0Λ)) V >er = i(a + ib)t0e

>
s V ∂Λ

∂k,l
V >es.

From this simpler expression for ∂us,r(t0)

∂k,l
, we find that

∂p(t0)

∂k,l

= 2t0

(
e>s V

∂Λ

∂k,l

V >es

)
(−ab + ab) = 0.
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This last conclusion is of course not a surprise: since p(t0) = 1, we have

a local maximum for p (considered as a function of the weight of the edge

between vertices k and l), and hence the corresponding partial derivative

must be zero.

3.4 Second derivative with respect to an edge weight,

under perfect state transfer

Suppose that we are given a Hamiltonian, and we want to consider the effect

of perturbing an edge weight on the fidelity of transfer. The results of [1]

show how to compute derivatives of all orders of the eigenvalues, as well

as derivatives of all orders of an appropriate analytic eigenbasis. Thus, in

principle, one can compute the derivative of any desired order of the fidelity of

transfer; however, it should be noted that the expressions that arise in such

a computation become increasingly involved as the order of the derivative

increases. Our next result tackles the second derivative of the fidelity of

transfer with respect to an edge weight, under the hypothesis of perfect state

transfer.

Theorem 3.10 Let M be a symmetric matrix of order n, and for each t ≥ 0,

let U(t) = eitM . Fix a pair of indices s, r, and for each t ≥ 0, let p(t) =

|us,r(t)|2. Suppose that for some t0 > 0, p(t0) = 1 and denote us,r(t0) by

α + iβ.

Suppose that k and l are distinct indices between 1 and n. We consider

the following two scenarios:

i) M is the Laplacian matrix of a weighted graph and V ≡ V (0), Λ ≡ Λ(0)

are orthogonal and diagonal, respectively, and are constructed as in subsection

3.1;

ii) M is the adjacency matrix of a weighted graph and V ≡ V (0), Λ ≡ Λ(0)
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are orthogonal and diagonal, respectively, and are constructed as in subsection

3.2.

In either scenario, we have the following, where ∂V
∂k,l

, and ∂Λ
∂k,l

are computed

as described in either subsection 3.1 or 3.2, as appropriate:

∂2p(t0)

∂2
k,l

=

−2t20

[
e>s V

(
∂Λ

∂k,l

)2

V >es −
(

e>s V
∂Λ

∂k,l

V >es

)2
]

−2

[
e>s

∂V

∂k,l

∂V >

∂k,l

es + e>r
∂V

∂k,l

∂V >

∂k,l

er − 2e>s
∂V

∂k,l

(α cos(t0Λ) + β sin(t0Λ))
∂V >

∂k,l

er

]
(12)

Proof. Set x(t) = Re(us,r(t)) and y(t) = Im(us,r(t)), so that p(t) = x(t)2 +

y(t)2. Evidently

∂2p(t0)

∂2
k,l

= 2

[
x(t0)

∂2x(t0)

∂2
k,l

+ y(t0)
∂2y(t0)

∂2
k,l

+

(
∂x(t0)

∂k,l

)2

+

(
∂y(t0)

∂k,l

)2
]

.

Observe that x(t0) = α, y(t0) = β, and from (10),(
∂x(t0)

∂k,l

)2

+

(
∂y(t0)

∂k,l

)2

= t20

(
e>s V

∂Λ

∂k,l

V >es

)2

.

Thus, it remains only to find α∂2x(t0)

∂2
k,l

+ β ∂2y(t0)

∂2
k,l

.

Differentiating (10) with respect to the weight of the edge between vertices

k and l and then evaluating at the weight of k ∼ l yields

∂2us,r(t0)

∂2
k,l

=

e>s
∂2V

∂2
k,l

eit0ΛV >er + e>s V eit0Λ∂2V >

∂2
k,l

er + 2e>s
∂V

∂k,l

eit0Λ∂V >

∂k,l

er +

2it0

[
e>s

∂V

∂k,l

∂Λ

∂k,l

eit0ΛV >er + e>s V
∂Λ

∂k,l

eit0Λ∂V >

∂k,l

er

]
+

it0e
>
s V

∂2Λ

∂2
k,l

eit0ΛV >er − t20e
>
s V

(
∂Λ

∂k,l

)2

eit0ΛV >er. (13)
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Next we observe that eit0ΛV >er = (α+iβ)V >es, e
>
s

∂2V
∂2

k,l
V >es = −e>s

∂V
∂k,l

∂V >

∂k,l
es,

and e>r
∂2V
∂2

k,l
V >er = −e>r

∂V
∂k,l

∂V >

∂k,l
er, the last two equalities following from the

fact that V >es and V >er are constrained to have norm 1. Using those ob-

servations in conjunction with (13), and simplifying, it now follows that

α
∂2x(t0)

∂2
k,l

+ β
∂2y(t0)

∂2
k,l

=

−

[
e>s

∂V

∂k,l

∂V >

∂k,l

es + e>r
∂V

∂k,l

∂V >

∂k,l

er + t20e
>
s V

(
∂Λ

∂k,l

)2

V >es

]

+2αe>s
∂V

∂k,l

cos(toΛ)
∂V >

∂k,l

er +

2βe>s
∂V

∂k,l

sin(toΛ)
∂V >

∂k,l

er.

Assembling the various component pieces and simplifying now yields (12). 2

Our next example illustrates the effect of an edge weight perturbation in

the case of periodic perfect state transfer.

Example 3.11 Here we consider the matrix B given by

B =



0
√

5 0 0 0 0
√

5 0
√

8 0 0 0

0
√

8 0 2.95 0 0

0 0 2.95 0
√

8 0

0 0 0
√

8 0
√

5

0 0 0 0
√

5 0


,

which can be thought of as a perturbation of the matrix A in Example 2.6

(where the weight of the edge 3 ∼ 4 has been changed from 3 to 2.95).

Note that for the matrix A, there is perfect state transfer from vertex 1 to

vertex 6 at any time of the form (j − 1
2
)π, j ∈ N. Thus, for U(t) = eitA and

p(t) = |u1,6(t)|2, we have p((j − 1
2
)π) = 1 for j ∈ N.
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Figure 1: p̃((j − 1
2
)π) in Example 3.11 for j = 1, . . . , 20
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Next, we set Ũ(t) = eitB and p̃(t) = |ũ1,6(t)|2. Referring to (12), we

see that ∂2p(t)

∂2
3,4

|t=(j− 1
2
)π is nonincreasing in j, and consequently we expect the

values of p̃((j − 1
2
)π) to drift away from 1 as j increases. Figure 1 illustrates

that phenomenon for values of j between 1 and 20.

Next, we show how, even in the context of an unweighted graph admit-

ting perfect state transfer, different edges can yield varying second order

derivatives of the fidelity of transfer.

Example 3.12 Once again, we consider the graph Kn \ e of Examples 2.7

and 3.1. Recall that if n ≡ 0 mod 4, and e is the edge between vertices

1 and 2, then letting L be the Laplacian matrix and U(t) = eitL, we have

p(π
2
) = 1, where p(t) = |u(t)1,2|2, t > 0. It is readily determined that in fact

u(π
2
)1,2 = 1 ≡ α + iβ. Our goal in the present example is to compute

∂2p(π
2
)

∂2
k,l

for the pairs (k, l) ∈ {(1, 2), (1, 3), (3, 4)}.
Case 1, (k, l) = (1, 2): From Example 3.1 we find that the desired orthog-

onal eigenmatrix V can be taken to be given as follows

V e1 =
1√
n
1n, V e2 =

1√
2
(e1 − e2), V e3 =

1√
2n(n− 2)

[
−(n− 2)12

21n−2

]
,

V ek+3 =
1√

k(k + 1)


02

1k

−k

0n−k−3

 , k = 1, . . . , n− 3.

Again referring to Example 3.1, we have ∂Λ
∂1,2

= diag(2e2), and E = (e1 −
e2)(e1 − e2)

>. We now find that EV =
√

2(e1 − e2)e
>
2 , from which it follows

that ∂V
∂1,2

= 0. (We note in passing that the matrices −L†, ((n − 2)I − L)†,

and (nI − L)† are readily computed from the orthogonal idempotent de-

composition of L given in Example 2.7.) Substituting into (12) now yields
∂2p(π

2
)

∂2
1,2

= −π2

2
.
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Case 2, (k, l) = (1, 3): In this case, our orthogonal eigenmatrix V can be

taken to be as follows

V e1 =
1√
n
1n, V e2 =

1√
2
(e1 − e2), V e3 =

1√
6
(e1 + e2 − 2e3),

V ek+3 =
1√

(k + 2)(k + 3)


12

1k

−(k + 2)

0n−k−3

 , k = 1, . . . , n− 3.

From Example 3.1, we have ∂Λ
∂1,3

= diag(
[

0 1
2

3
2

0 . . . 0
]
), and E =

(e1−e3)(e1−e3)
>. We now find that the second column of EV is 1√

2
(e1−e3),

the third column of EV is 3√
6
(e1 − e3), and all remaining columns of EV

are zero. It follows that the second and third columns of ∂V
∂1,3

are given by

− 1
4
√

2
(e1+e2−2e3) and 3

4
√

6
(e1−e2), respectively, while all remaining columns

of ∂V
∂1,3

are zero.

Substituting these various expressions into (12), now yields that
∂2p(π

2
)

∂2
1,3

=

−π2

8
− 1. It is straightforward to see that for each j = 3, . . . , n, we also have

∂2p(π
2
)

∂2
1,j

= −π2

8
− 1.

Case 3, (k, l) = (3, 4): The orthogonal eigenmatrix V in question can be

taken as follows

V e1 =
1√
n
1n, V e2 =

1√
2
(e1 − e2), V e3 =

1√
2
(e3 − e4),

V e4 =
1√

2n(n− 2)

[
−(n− 2)12

21n−2

]
, V ek+3 =

1√
k(k + 1)


02

1k

−k

0n−k−3

 ,

k = 2, . . . , n− 3.

We have E = (e3− e4)(e3− e4)
>, and ∂Λ

∂3,4
= diag(2e3). Hence EV =

√
2(e3−

e4)e
>
3 , and it now follows that ∂V

∂3,4
= 0.
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Substitution into (12), shows that
∂2p(π

2
)

∂2
3,4

= 0. It is straightforward to see

that for k, l = 3, . . . , n with k 6= l,
∂2p(π

2
)

∂2
k,l

= 0.

Thus we see that even though our weighting of Kn \ e assigns every edge

the same weight, the edges themselves have different influences on the fidelity

of transfer at readout time π
2
.

Our next two remarks analyse (12) in further detail.

Remark 3.13 Here we consider signs of the expressions appearing in (12).

From the Cauchy–Schwarz inequality, we find that(
e>s V

∂Λ

∂k,l

V >es

)2

≤

e>s V
∂Λ

∂k,l

(
∂Λ>

∂k,l

)V >ese
>
s V V >es =

e>s V (
∂Λ

∂k,l

)>V >es.

We thus find that the coefficient of t20 in (12) is nonpositive.

Let b> = e>s
∂V
∂k,l

and c> = e>s
∂V
∂k,l

, and choose ω so that cos ω = α, sin ω =

β, so that α cos(t0Λ) + β sin(t0Λ) = cos(t0Λ + ωI). We then have

e>s
∂V

∂k,l

∂V >

∂k,l

es + e>r
∂V

∂k,l

∂V >

∂k,l

er − 2e>s
∂V

∂k,l

(α cos(t0Λ) + β sin(t0Λ))
∂V >

∂k,l

er =

b>b + c>c− 2b> cos(t0Λ + ωI)c ≥ b>b + c>c− 2
√

b>bc>(cos(t0Λ + ωI))2c ≥

(
√

b>b−
√

c>c)2.

Consequently the constant term in (12) (i.e. the term not multiplying t20) is

also nonpositive.

Remark 3.14 Suppose that M is the Laplacian matrix of a weighted graph,

and suppose that the hypothesis (and notation) of Theorem 3.10 hold. It is
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straightforward to see from (12) that

∣∣∣∂2p(t0)

∂2
k,l

∣∣∣
t0

∣∣∣ ≤ 2t20e
>
s V

(
∂Λ

∂k,l

)2

V >es+2

(√
e>s

∂V

∂k,l

∂V >

∂k,l

es +

√
e>r

∂V

∂k,l

∂V >

∂k,l

er

)2

.

As in Remark 3.5 we find that e>s V
(

∂Λ
∂k,l

)2

≤ ρ((ek − el)(ek − el)
>)2 = 4.

Also, denoting the distinct eigenvalues of M by λ1, . . . , λm, we find, again

from Remark 3.5, that

e>s
∂V

∂k,l

∂V >

∂k,l

es ≤ 4
m∑

j=1

1

minp6=j(λj − λp)2
.

We thus deduce that∣∣∣∂2p(t0)

∂2
k,l

∣∣∣
t0

∣∣∣ ≤ 8t20 + 32
m∑

j=1

1

minp6=j(λj − λp)2
.

Remark 3.15 Suppose that M is the adjacency matrix of a weighted graph,

and that the hypothesis (and notation) of Theorem 3.10 hold. Parallelling

3.5, we want to provide an upper bound on
∣∣∣∂2p(t0)

∂2
k,l

∣∣∣
t0

∣∣∣. As in Remark 3.5 we

find that e>s V
(

∂Λ
∂k,l

)2

V >es ≤ (ρ(eke
>
l + ele

>
k )>)2 = 1. From Remark 3.6, we

find that

e>s
∂V

∂k,l

∂V >

∂k,l

es ≤ 2(1 + δ)2

m∑
j=1

1

minp6=j(λj − λp)2
,

where λ1, . . . , λm are the distinct eigenvalues of M , and δ is as defined in

Remark 3.6. From the observations above, we thus find that∣∣∣∂2p(t0)

∂2
k,l

∣∣∣
t0

∣∣∣ ≤ 2t20 + 16(1 + δ)2

m∑
j=1

1

minp6=j(λj − λp)2
.

We close the paper by considering a couple of examples of graphs for which

there is not perfect state transfer, but instead, a variant known as pretty good

state transfer: a weighted graph exhibits pretty good state transfer between
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vertices s and r if, for any ε > 0, there is a time t such that the fidelity of

transfer from s to r at time t exceeds 1 − ε. The main result of [12] is that

for an unweighted path on n vertices, when the adjacency matrix is used

as the Hamiltonian, there is pretty good state transfer from one end point

of the path to the other if and only if n + 1 is prime, twice a prime, or a

power of two. Some of the techniques developed in this section allow us to

compute the first two derivatives of the fidelity of transfer even in the absence

of perfect state transfer, as the following two examples illustrate.

Example 3.16 Consider the unweighted path on six vertices, whose adja-

cency matrix A can be written as

A =



0 1 0 0 0 0

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

0 0 0 0 1 0


.

From [12], there is pretty good state transfer between vertices 1 and 6. In

particular, a computation on MATLABr shows that for t̂ ≈ 356.5 we have

p(t̂) ≈ 0.9995. Using (11) to find ∂p(t̂)
∂3,4

, we find from a MATLABr compu-

tation that ∂p(t̂)
∂3,4

≈ 1.5576. In view of the modest size of this derivative, one

might imagine that the fidelity of state transfer from vertex 1 to vertex 6 at

time t̂ will not be especially sensitive to small changes in the weight of the

edge between vertices 3 and 4.

To test that intuition, we next consider the effect of perturbing the weight
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of the edge between vertices 3 and 4. To that end, set

Bw =



0 1 0 0 0 0

1 0 1 0 0 0

0 1 0 w 0 0

0 0 w 0 1 0

0 0 0 1 0 1

0 0 0 0 1 0


,

Uw(t) = eitBw and pw(t) = |uw(t)1,6|2. Figure 2 plots p(t) (equivalently,

p1(t)) and pw(t), t ∈ [355, 358] for the values w = 0.999, 0.997, 0.995. Not

surprisingly, we see a decay from the value of p(t̂) as w decreases through

the values 0.999, 0.997, 0.995, with the following computed values: p0.999(t̂) ≈
0.9851, p0.997(t̂) ≈ 0.8837, and p0.995(t̂) ≈ 0.7076. The modest size of ∂p(t̂)

∂3,4
does

not account for much of the discrepancy between p(t̂) and p0.995(t̂). Thus it

may be instructive to consider ∂2p(t̂)

∂2
3,4

.

Setting x(t) = Re
(
(eitA)1,6

)
and y(t) = Im

(
(eitA)1,6

)
, we have

∂2p(t̂)

∂2
3,4

= 2

[
x(t̂)

∂2x(t̂)

∂2
3,4

+ y(t̂)
∂2y(t̂)

∂2
3,4

+

(
∂x(t̂)

∂3,4

)2

+

(
∂y(t̂)

∂3,4

)2
]

. (14)

Evidently we need the first and second order partial derivatives of x and

y, and (10) supplies the necessary first order derivatives. Inspecting (13), we

find that in order to find the desired second order partial derivatives, we need

to compute the second partial derivatives (with respect to the weight of the

edge between vertices 3 and 4) of the eigenvalues as well as the eigenvectors.

The derivation of the expressions for those second partial derivatives is

facilitated by the fact that the eigenvalues of any tridiagonal matrix are all

simple. Letting λ, v be an analytic (with respect to w) eigenvalue–eigenvector

pair, and denoting e3e
>
4 + e4e

>
3 by E, we find readily that

(λI −B1)
∂2v

∂2
3,4

∣∣∣
w=1

= 2

(
E − ∂λ

∂3,4

∣∣∣
w=1

I

)
∂v

∂3,4

∣∣∣
w=1

− ∂λ2

∂2
3,4

∣∣∣
w=1

v.
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Figure 2: fidelities of transfer in Example 3.16 for t ∈ [355, 358] with four

weightings of the edge 3 ∼ 4
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From the fact that v> ∂v
∂3,4

∣∣∣
w=1

= 0 (since we are taking v>v = 1) it now

follows that ∂λ2

∂2
3,4

∣∣∣
w=1

= 2v>E ∂v
∂3,4

∣∣∣
w=1

and that

∂2v

∂2
3,4

∣∣∣
w=1

= −
(

∂v

∂3,4

∣∣∣>
w=1

∂v

∂3,4

∣∣∣
w=1

)
+ (λI −B1)

†2

(
E − ∂λ

∂3,4

∣∣∣
w=1

I

)
∂v

∂3,4

∣∣∣
w=1

.

Computing the various first and second order partial derivatives in MATLABr,

and substituting them into (14) now yields that ∂2p(t̂)

∂2
3,4

≈ −25, 920.5. In par-

ticular, this example indicates that first partial derivatives may not be enough

to explain the effect of even small perturbations in edge weights, and that

higher order derivatives may also play a significant role.

Example 3.17 Here we consider the unweighted path on 15 vertices, with

all edge weights equal to 1. Again we have pretty good state transfer from

vertex 1 to vertex 15. Set U(t) = eitA, where A is the corresponding ad-

jacency matrix, and let p(t) = |u1,15(t)|2. For t̂ = 33, 535.1, a MATLABr

computation yields p(t̂) ≈ 0.9610.

Suppose that vertex 1 is an end point of the path, and that vertex 2 is

adjacent to it. We now consider the effect of perturbing the weight of the

edge between vertices 1 and 2. Following the approach of Example 3.16 to

compute the first two partial derivatives of the fidelity of transfer with respect

to the weight of the edge between vertices 1 and 2, we find that ∂p(t̂)
∂1,2

≈ 393.9

and ∂2p(t̂)

∂2
1,2

≈ −41, 815, 858.7. This suggests that the fidelity of transfer at

time t̂ may be quite sensitive to the weight of the edge between vertices 1

and 2. That notion is reinforced by Figure 3.17, which plots the fidelity of

transfer for t ∈ [33534, 33536] for the cases that the edge weight for 1 ∼ 2 is

taken as 1, 0.9999, 0.9995, and 0.999, respectively. As further evidence of this

sensitivity, we note that the approximate values of the fidelity of transfer at

t̂ for the 1 ∼ 2 edge weights 0.9999, 0.9995, and 0.999, are 0.7357, 0.1266 and

0.0595, respectively.
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Figure 3: fidelities of transfer in Example 3.17 for t ∈ [33534, 33536] with

four weightings of the edge 1 ∼ 2
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