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Abstract

Finite, discrete, time-homogeneous Markov chains are frequently used as a simple math-
ematical model of real-world dynamical systems. In many such applications, an analysis
of clustering behaviour in the states of the system is desirable, and it is well-known that
the eigendecomposition of the transition matrix A of the Markov chain can provide such
insight. Clustering methods based on the sign pattern in the second eigenvector of A are
frequently used when A has dominant eigenvalues that are real. In this paper, we present
a method to include an analysis for complex eigenvalues of A which are close to 1. Since a
real spectrum is not guaranteed in most applications, this is a valuable result in the area
of spectral clustering in Markov chains.
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1. Introduction

A finite, discrete, time-homogeneous Markov chain refers to a mathematical model of
a system which occupies, at any given time, one of a finite number of states {s1, . . . , sn}
and transitions between states in discrete time-steps, according to prescribed transition
probabilities. In particular, for any pair of states si and sj , there is a given probability
aij that the system moves to state sj in one time-step, given that it is currently in state
si. A Markov chain is memoryless, meaning that the movement of the system in the next
time-step depends only on the current state the system occupies. A Markov chain can be
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represented by a row-stochastic matrix A = [aij ] – that is, a matrix in which each row
sums to 1 – referred to as the probability transition matrix of the chain.

The applications of Markov chains are diverse, including their use as a model of traffic
in road networks (see [2]), and of web traffic on the world wide web (see [11]), and in
molecular conformational dynamics in drug design (see [5]). Complex dynamical systems
such as this last example can be difficult to analyse, but a Markov chain approach to
analysing the same system is both simple and powerful; see [8] for an introduction to
modelling complex dynamical systems using a Markov chain. The advantages of modelling
with Markov chains are broad; given only a transition matrix, many features of the real-
world system can be determined with simple techniques in linear algebra. The long-term
behaviour of the system is encapsulated in the stationary distribution vector, which is
simply a left eigenvector of A corresponding to the eigenvalue 1. The short-term behaviour
can be examined using the mean first passage time from the ith state to the jth state, mi,j

– i.e. the expected time it will take to reach state sj for the first time if the system begins
in state si. An interesting parameter of a Markov chain which has been the recent subject
of extensive study is Kemeny’s constant, denoted K(A), which is interpreted in terms of
the “expected time to mixing” in the system (see [10]), and gives an overall measure of how
‘well-connected’ the system is, due to its interpretation in terms of the expected length of
a trip from a ‘randomly’ selected initial state to a ‘randomly’ selected destination state.

Of great interest in many systems that can be modelled using Markov chains is the
manifestation of clustering behaviour and how it may be predicted. Clustering behaviour
is usually characterised by the existence of collections of states of the Markov chain for
which the system, if starting in a state in a cluster, is unlikely to leave that collection
of states in the short term. That is, the expected number of time-steps until the chain
is in a state outside of that cluster is relatively large. In the extreme, this results in
a nearly uncoupled system; that is, the stochastic matrix in question can be considered
as a perturbed block diagonal matrix, where the diagonal blocks represent the clusters
or almost invariant aggregates of the chain. It is not difficult to show that for such a
matrix, the second-largest (or subdominant) eigenvalue(s) must be close to 1 due to the
continuity of eigenvalues. However, much of the work regarding the determination of this
clustered behaviour or near uncoupling is concerned with the converse question: given that
a stochastic irreducible matrix A has eigenvalues λ close to 1, what can be said about the
clustering behaviour of the Markov chain represented by A? This is the question that we
consider in this article.

In a stochastic model of molecular dynamics, clusters are referred to as metastable
states, representing different conformations of the molecule. Identification of these metastable
conformations is extremely important in drug design (see [4]) and biomolecular research (see
[13]). An algorithm for this purpose, based on Perron cluster analysis (that is, analysing
the cluster of eigenvalues around the Perron eigenvalue or spectral radius 1), is developed
in [3], and improved upon in [5]. However, the Markov chains considered in these mod-
els are always reversible, and hence the eigenvalues of the stochastic matrices are always
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real. An attempt to generalise without relying on the reversibility assumption is given in
[12], which uses the singular value decomposition instead of the eigendecomposition of the
matrix. Further assumptions were found to be necessary for this algorithm in [15].

In [2], a detailed description of a Markov chain model for an urban traffic network
is presented. Clustering in such a network corresponds to ‘communities’ in the network,
and this is measured using Kemeny’s constant and the second largest (real) eigenvalue of
the transition matrix, which is found to be the basis of an expression of a bound on the
probabilities of moving from one subset of states to another, and also a bound on the mean
first passage times between those subsets. Since we cannot depend on the assumption of
real eigenvalues in this model of road traffic – or in any general Markov chain model – we
wish to generalise the result in this paper to the case that the stochastic matrix representing
the chain has complex eigenvalues.

We now give an expository discussion of the main theoretical result in [2, Appendix
6.1], regarding evidence of clustering in a Markov chain derived from the existence of a real
eigenvalue near 1. The method of proof of this result inspires this paper.

Theorem 1.1. Let A be an irreducible stochastic matrix and suppose that λ ∈ R is an
eigenvalue of A. Let v = [v>1 | −v>2 |0>]> be a corresponding λ eigenvector (with v1 > 0
and v2 > 0) and let us partition the matrix A conformally as A11 A12 A13

A21 A22 A23

A31 A32 A33


and label the subsets of the partition as S1, S2, and S3 respectively. Then:

(a) ρ(A11), ρ(A22) > λ.
(b) There are subsets S̃1 ⊆ S1, S̃2 ⊆ S2, and positive vectors w̃>1 , w̃

>
2 with supports on

S̃1, S̃2 respectively such that w̃>1 1 = w̃>2 1 = 1 and∑
i∈S̃1

w̃1(i)
∑
j /∈S̃1

aij = 1− ρ(A11) ≤ 1− λ, (1.1)

and ∑
i∈S̃2

w̃2(i)
∑
j /∈S̃2

aij = 1− ρ(A22) ≤ 1− λ. (1.2)

(c) For any j ∈ S̃2, ∑
i∈S̃1

w̃1(i)mij ≥
1

1− ρ(A11)
≥ 1

1− λ
(1.3)

and for any j ∈ S̃1, ∑
i∈S̃2

w̃2(i)mij ≥
1

1− ρ(A22)
≥ 1

1− λ
, (1.4)

where mij are entries of the mean first passage matrix.
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We first remark that the bounds in this theorem hold for any real eigenvalue λ of A.
However, the result is intended to provide evidence of clustering in a system when λ is
close to 1. The justification for this primarily relies on parts (b) and (c) of the above; (b)
essentially implies that transitions out of a certain subset of the index set of A11 are rare
(that is, the corresponding transition probabilities are small) if λ is close to 1, while (c)
indicates that the expected times for the system to move from one subset of states to the
other are large.

The drawback of this result is that lower bounds for ρ(A11) and ρ(A22) are determined
only by a real eigenvalue and its corresponding eigenvector. Our question is this – can
any clustering behaviour be determined from a complex eigenvalue and corresponding
eigenvector? That is, given λ ∈ C an eigenvalue of A where λ = α+ iβ, some α, β, can we:

(i) define a conformal partition of a corresponding eigenvector for λ and the matrix A;

(ii) determine lower bounds for the spectral radii of A11 and A22 (the principal subma-
trices determined by the index set of this partition); and

(iii) conclude equivalent statements about the clustering properties of A in Theorem 1.1,
parts (b) and (c).

Remark 1.2. A brief examination of the proof in [2] of Theorem 1.1 will determine that
indeed, (b) and (c) are proven independent of the fact that λ is real; moreover, given lower
bounds for ρ(A11), ρ(A22), these may be substituted for λ in (1.1), (1.2), (1.3) and (1.4).
Therefore our goal in this work is to define a partition and determine appropriate lower
bounds on the spectral radii of corresponding principal submatrices which will be close to
1 under certain circumstances. By Theorem 1.1 (b) and (c), this will allow us to conclude
that there is evidence of clustering in the Markov chain.

Another interesting line of inquiry for future work would be to quantify a measure of
clustering which incorporates both mean first passage times and transition probabilities
in the manner described above, and to study the behaviour of eigenvalues of transition
matrices which display clustering according to this measure. Note that such a measure
exists which quantifies clustering solely in terms of transition probabilities (see [9]), but
that in practice, considering mean first passage times in addition to transition probabilities
gives a more robust interpretation of clustering behaviour. Other characterisations are also
feasible, and the suggestion we make is just one possibility.

The remainder of this article is structured as follows: in Section 2, we establish a
method for determining a conformal partition using the real part of the complex eigenvector
corresponding to the eigenvector λ = α + iβ and the corresponding lower bounds. This
is our main result, presented in a discursive format and formalised in the statement of
Theorem 2.1 at the end of the section; in particular, we do not supply a formal proof.
In Section 3, we describe a parallel method for determining a conformal partition using
the imaginary part of the eigenvector corresponding to λ, which can produce entirely new
evidence of clustering behaviour in the Markov chain corresponding to the transition matrix
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in question. Since the mathematics is identical to that in Section 2, this is presented in
less detail, and again formalised in Theorem 3.1 without a formal proof. In Section 4 we
give some remarks about the implementation of this method as an algorithm, and present
some examples to illustrate the method. The results of Sections 2 and 3 can also be found
in [6].

Finally, we remark that this work is inspired by the empirical observations in [7] which
anticipated that clustering behaviour could be detected from complex eigenvectors. A ra-
tionale is given in Section 2.2 of [7] as to why this may be plausible, although we will
emphasise later in Remark 3.2 that the mere existence of complex eigenvalues of large
modulus or close to 1 is not sufficient to conclude the presence of clustering behaviour.
Furthermore, in a simulated model of a bus network, the authors of [7] demonstrate that
clusters in the Markov chain can be determined by visual inspection of the second eigen-
vector. We will analyse this example further in Section 4 using the theory developed in
Sections 2 and 3.

2. A conformal partition with respect to the real part of an eigenvector

Suppose that A is an irreducible stochastic matrix of order n with an eigenvalue λ =
α + iβ. It will be important later to consider α to be close to 1, and β close to 0, but
for now we assume only that α, β > 0. Let x + iy be a corresponding eigenvector for A,
where x, y ∈ Rn. It follows from equating real and complex coefficients in the standard
eigenequation that

Ax = αx− βy (2.1)

and
Ay = βx+ αy. (2.2)

Now consider the following: we partition the system (i.e. the matrix A and the vectors
x and y) according to where x is positive, negative, and zero. That is, we have A11 A12 A13

A21 A22 A23

A31 A32 A33

 x1
x2
0

 =

 αx1 − βy1
αx2 − βy2
−βy3


where x1 > 0 and x2 < 0, entrywise. Let S1, S2, S3 denote the index sets of the partition.
Note that S3 may be empty.

This gives:
A11x1 +A12x2 = αx1 − βy1,

and since A12x2 is entrywise nonpositive,

A11x1 ≥ αx1 − βy1.
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Now consider the diagonal matrix X1 := diag(x1), and observe that A11x1 = A11X11.
Furthermore, from the above,

X−11 A11X11 ≥ X−11 (αx1 − βy1).

By a well-known result (see [14, Cor.1 to Thm.1]) we know that the spectral radius of a
nonnegative matrix lies between its minimum and maximum row sums; hence

ρ(X−11 A11X1) ≥ min(X−11 A11X11) ≥ min
j

(
αx1(j)− βy1(j)

x1(j)

)
(where xi(j) denotes the jth entry of xi, for example).Since A11 and X−11 A11X1 are similar
matrices, their spectral radii are equal, and it follows that

ρ(A11) ≥ α− βmax
j

(
y1(j)

x1(j)

)
. (2.3)

Similarly, we may show that

ρ(A22) ≥ α− βmax
j

(
y2(j)

x2(j)

)
. (2.4)

We pause here to note two things. The first is that if α is close to 1, and β close to 0,
then these lower bounds are each close to 1, indicating that the vertices indexed by S1 and
S2 display some clustering behaviour in the Markov chain represented by A, in the manner
described in Theorem 1.1, parts (b) and (c).

The second thing to note is that it is vital to our further discussion on these clusters
that we assume that

αx1 − βy1 > 0 and αx2 − βy2 < 0, (2.5)

in order that the lower bounds in (2.3) and (2.4) are positive. We will consider (2.5) as an
additional hypothesis that must be satisfied in order to state the result, because although
(2.3) and (2.4) still hold in the case that (2.5) does not, they are worthless to us, since the
spectral radius will always be nonnegative. Therefore this result (and subsequent results)
are only relevant in the case that the hypotheses in (2.5) hold.

2.1. Expanding the index sets of the partition

The bounds derived in this section correspond to Theorem 2.1, 1(ii) and 2(ii).
It is possible to optimise the bounds in (2.3) and (2.4) by adding a little flexibility in

how the partition is determined. We allow the option of expanding the first cluster indexed
by S1 to include indices corresponding to positive entries of y3. Similarly, we expand the
second index set S2 by including entries corresponding to negative entries of y3.

Formally, we define the new partition index sets as

S̃1 = S1 ∪ {j | y3(j) > 0}, and S̃2 = S2 ∪ {j | y3(j) < 0}.
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Equivalently, we may consider the vector x + ty for some t > 0 and partition, as before,
according to where x+ ty is positive, negative, and zero, producing the respective partition
sets S̃1, S̃2, and S̃3 = {j | x(j) = y(j) = 0}. In particular, we must choose t > 0 sufficiently
small to achieve the above; we require

t <
−x(j)

y(j)
, for all j such that x(j)y(j) < 0.

This ensures that x(j) + ty(j) > 0 for all j ∈ S̃1, and that x(j) + ty(j) < 0 for all j ∈ S̃2.
Considering A(x+ty), and partitioning with respect to where x+ty is positive, negative,

and zero, using (2.1) and (2.2) we obtain: Ã11 Ã12 Ã13

Ã21 Ã22 Ã23

Ã31 Ã32 Ã33


 x̃1 + tỹ1
x̃2 + tỹ2

0

 =

 α(x̃1 + tỹ1) + β(tx̃1 − ỹ1)
α(x̃2 + tỹ2) + β(tx̃2 − ỹ2)

(αt− β)ỹ3

 , (2.6)

where Ãij denote the submatrices corresponding to the new partition with index sets

S̃1, S̃2, S̃3.
Note that this ‘repartition’ is not substantially different; we simply allow the option of

including some extra states in each cluster by including indices corresponding to positive
entries of y3 to S1, and indices corresponding to negative entries of y3 to S2. Moreover,
S1 ⊆ S̃1 and S2 ⊆ S̃2. Interpreting in terms of prospective clustering behaviour, we are
simply allowing the possible addition of more states into our existing index set to determine
more information about the clustering behaviour of our chain.

Proceeding as before, we have, from (2.6):

Ã11(x̃1 + tỹ1) ≥ α(x̃1 + tỹ1) + β(tx̃1 − ỹ1) (2.7)

⇒ ρ(Ã11) ≥ α+ βmin
j

(
tx̃1(j)− ỹ1(j)
x̃1(j) + tỹ1(j)

)
, (2.8)

and similarly

ρ(Ã22) ≥ α+ βmin
j

(
tx̃2(j)− ỹ2(j)
x̃2(j) + tỹ2(j)

)
. (2.9)

These lower bounds are increasing functions of t and so they are optimised by taking the
limit as t approaches

min

{
−x(j)

y(j)

∣∣∣∣x(j)y(j) < 0

}
. (2.10)

If the set above is empty, then t is unbounded. This occurs if and only if wherever x is
positive, y is positive, and where x is negative, y is negative. It follows that our lower
bounds would then be

ρ(Ã11) ≥ α+ βmin
j

(
x̃1(j)

ỹ1(j)

)
,
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and

ρ(Ã22) ≥ α+ βmin
j

(
x̃2(j)

ỹ2(j)

)
,

by taking the limit as t→∞.
As in the first case, we need to ensure that the right-hand side of (2.8) is positive in

order for our conclusions to be worthwhile. It is not difficult to show that if S1 = S̃1, the
first hypothesis in (2.5) is sufficient to ensure positivity, but if S1 is a proper subset of S̃1,
the additional case that x̃1(j) = 0 and ỹ1(j) > 0 is considered. In this case we obtain the
additional restriction that

t >
β

α
.

Since t is also bounded above by (2.10), it is necessary that β
α is also strictly less than this.

In other words, it is necessary that

αx1 + βy1 > 0 and αx2 + βy2 < 0. (2.11)

It remains to consider the possibility that, in our lower bounds (2.8) and (2.9), we
divide by zero when setting t equal to the minimum entry of the set in (2.10). Of course,
by choosing t in this way, we do set at least one entry of either the vector x̃1 + tỹ1 or the
vector x̃2 + tỹ2 equal to zero, but since we choose the minimum entry of

tx̃i − ỹi
x̃i + tỹi

for i = 1, 2, this only presents issues if every entry of either x̃1 + tỹ1 or x̃2 + tỹ2 is equal
to zero. This means that linear dependence occurs between the vectors x̃i and ỹi for i = 1
or i = 2. This presents yet another condition: that the vectors xi and yi must be linearly
independent (since linear independence of xi and yi implies linear independence of x̃i and
ỹi).

Finally, we note that there is a possibility that no extra states are included in one or
both of the clusters; that is, S̃1 = S1, or S̃2 = S2. In this case, it is easily shown that the
new lower bounds (2.8) and (2.9) are an improvement on the lower bounds (2.3) and (2.4),
respectively.

2.2. An alternate expansion of the index sets of the partition

The bounds derived in this section correspond to Theorem 2.1, 1(iii) and 2(iii).
We now consider an alternate partition derived from the index sets S1 and S2, where

we allow the inclusion of indices corresponding to negative entries of y3 to S1, and positive
entries of y3 to S2. That is, we define new index sets

S1 = S1 ∪ {j | y3(j) < 0} and S2 = S2 ∪ {j | y3(j) > 0}.
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This is equivalent to considering the vector x + ty, where t is negative and sufficiently
small, and partitioning according to where x + ty is positive, negative and zero, denoting
these new index sets S1, S2, S3. This may provide a different partition than before, but
the computation of the lower bounds is exactly the same. Since we observed that the
expressions for the lower bounds in (2.8) and (2.9) were increasing in t, and t is negative,
we choose t→ 0 to optimise these lower bounds for the spectral radii.

We now summarize the results of this section in the following theorem:

Theorem 2.1. Let A be an n× n irreducible and stochastic matrix, let λ = α + iβ be an
eigenvalue of A, with α, β > 0, and let x + iy be a right eigenvector of A corresponding
to λ. For i = 1, 2, 3, let Si, S̃i, and Si be the index sets described in Section 2, let
xi, yi, x̃i, ỹi, x̄i, ȳi be the subvectors of x and y corresponding to the index sets Si, S̃i, and
Si, and let Aii, Ãii and Aii be the principal submatrices of A corresponding to the index
sets Si, S̃i, and Si. Then:

1. If αx1 − βy1 > 0,

(i) ρ(A11) ≥ α− β ·max
j

{
y1(j)

x1(j)

}
.

(ii) If y1 > 0 and y2 < 0, then

ρ(Ã11) ≥ α+ β ·min
j

{
x̃1(j)

ỹ1(j)

}
.

Otherwise, if x1 and y1 are linearly independent, αx1+βy1 > 0, and αx2+βy2 <
0, then

ρ(Ã11) ≥ α+ β ·min
j

{
tx̃1(j)− ỹ1(j)
x̃1(j) + tỹ1(j)

}
,

where t > 0 and is bounded above by

min

{
−x(j)

y(j)

∣∣∣∣x(j)y(j) < 0

}
.

(iii) ρ(A11) ≥ α− β ·max
j

{
ȳ1(j)

x̄1(j)

}
.

2. If αx2 − βy2 < 0,

(i) ρ(A22) ≥ α− β ·max
j

{
y2(j)

x2(j)

}
.

(ii) If y1 > 0 and y2 < 0, then

ρ(Ã22) ≥ α+ β ·min
j

{
x̃2(j)

ỹ2(j)

}
.
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Otherwise, if x2 and y2 are linearly independent, αx1+βy1 > 0, and αx2+βy2 <
0, then

ρ(Ã22) ≥ α+ β ·min
j

{
tx̃2(j)− ỹ2(j)
x̃2(j) + tỹ2(j)

}
,

where t > 0 and is bounded above by

min

{
−x(j)

y(j)

∣∣∣∣x(j)y(j) < 0

}
.

(iii) ρ(A22) ≥ α− β ·max
j

{
ȳ2(j)

x̄2(j)

}
.

3. A conformal partition with respect to the imaginary part of an eigenvector

We could also begin by partitioning the system with respect to where y is positive, neg-
ative, and zero. This potentially gives an entirely different partition, and we use the same
approach to find lower bounds for the spectral radii of the submatrices of A corresponding
to the index sets of this partition. For the purpose of avoiding congested notation, we will
re-use y1, y2, x1, x2, and x3 in this section to denote the components of the vectors y and
x once the system has been partitioned, where this time it is understood that y1 > 0 and
y2 < 0. Similarly, the submatrices Aij now represent something different than in Sections
1 and 2.

In particular, we consider: A11 A12 A13

A21 A22 A23

A31 A32 A33

 y1
y2
0

 =

 βx1 + αy1
βx2 + αy2

βx3


where y1 > 0 and y2 < 0, entrywise. Let T1, T2, T3 denote the index sets of the partition.
This equation produces, in the same way as before, the following inequalities:

ρ(A11) ≥ α+ βmin
j

(
x1(j)

y1(j)

)
(3.1)

ρ(A22) ≥ α+ βmin
j

(
x2(j)

y2(j)

)
. (3.2)

We are once again in a situation where, if α ≈ 1 and β ≈ 0, these lower bounds are close
to 1, indicating clustering behaviour in the Markov chain represented by the transition
matrix A.

Note that we require new hypotheses in order to ensure these lower bounds are positive.
In particular, we need

αy1 + βx1 > 0 and αy2 + βx2 < 0. (3.3)

Pursuing the same analysis with repartitioning results in the following theorem:
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Theorem 3.1. Let A be an n× n irreducible and stochastic matrix, let λ = α + iβ be an
eigenvalue of A, with α, β > 0, and let x + iy be a right eigenvector of A corresponding
to λ. For i = 1, 2, 3, let Ti denote the index sets obtained by partitioning according to
where y is positive, negative and zero, and let xi and yi denote the subvectors of x and y
corresponding to the index set Ti. Also, let

T̃1 = T1 ∪ {j | x3(j) > 0}, T̃2 = T2 ∪ {j | x3(j) < 0}

and
T 1 = T1 ∪ {j | x3(j) < 0}, T 2 = T2 ∪ {j | x3(j) > 0}.

and let x̃i, ỹi, and x̄i, ȳi be the subvectors of x and y corresponding to the index sets T̃i and
T i, respectively. Finally, let Aii, Ãii and Aii be the principal submatrices of A corresponding
to the index sets Ti, T̃i, and T i. Then:

1. If αy1 + βx1 > 0,

(i) ρ(A11) ≥ α+ β ·min
j

{
x1(j)

y1(j)

}
.

(ii) ρ(Ã11) ≥ α+ β ·min
j

{
x̃1(j)

ỹ1(j)

}
.

(iii) If x1 < 0 and x2 > 0, then

ρ(A11) ≥ α− β ·max
j

{
ȳ1(j)

x̄1(j)

}
.

Otherwise, if x1 and y1 are linearly independent, αy1−βx1 > 0, and αy2−βx2 <
0, then

ρ(A11) ≥ α+ β ·min
j

{
x̄1(j)− sȳ1(j)
sx̄1(j) + ȳ1(j)

}
,

where s < 0 and is bounded below by

min

{
−y(j)

x(j)

∣∣∣∣x(j)y(j) > 0

}
.

2. If αy2 + βx2 < 0,

(i) ρ(A22) ≥ α+ β ·min
j

{
x2(j)

y2(j)

}
.

(ii) ρ(Ã22) ≥ α+ β ·min
j

{
x̃2(j)

ỹ2(j)

}
.

(iii) If x1 < 0 and x2 > 0, then

ρ(A22) ≥ α− β ·max
j

{
ȳ2(j)

x̄2(j)

}
.
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Otherwise, if x2 and y2 are linearly independent, αy1−βx1 > 0, and αy2−βx2 <
0, then

ρ(A22) ≥ α+ β ·min
j

{
x̄2(j)− sȳ2(j)
sx̄2(j) + ȳ2(j)

}
,

where s < 0 and is bounded below by

min

{
−y(j)

x(j)

∣∣∣∣x(j)y(j) > 0

}
.

Remark 3.2. We note here the importance of the hypotheses in (2.5) and (3.3), and
stress that it is not sufficient to simply determine an eigenvalue of the transition matrix
which is sufficiently close to 1 and conclude that the associated Markov chain must exhibit
clustering behaviour.

It is easily determined that the n× n transition matrix

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0


has eigenvalues {e

2πji
n | j = 0, 1, . . . , n − 1}, and hence for n large enough, A will have an

eigenvalue λ = e
2πi
n sufficiently close to 1, with large real part and small imaginary part.

However, the Markov chain represented by A has no clustering behaviour, since the chain
transitions cyclically through the states in a deterministic fashion.

The eigenvector x+ iy corresponding to λ = e
2πi
n = cos(2πn ) + i sin(2πn ) is

cos(0)
cos(2πn )
cos(4πn )

...

cos(2(n−1)πn )

+ i


sin(0)

sin(2πn )
sin(4πn )

...

sin(2(n−1)πn )

 .

Partitioning the system with respect to the sign pattern of x as in Section 2, we have

x1 =



cos(0)
cos(2πn )

...

cos(2kπn )

cos(−2kπ
n )

...
cos(−2π

n )


, y1 =



sin(0)
sin(2πn )

...

sin(2kπn )

sin(−2kπ
n )

...
sin(−2π

n )


,
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where

k =

{
bn4 c, n 6≡ 0 mod 4;
n
4 − 1, n ≡ 0 mod 4.

Let α + iβ = λ = cos(2πn ) + i sin(2πn ). Considering the first of the hypotheses in (2.5),
we have that each entry of αx1 + βy1 is of the form

cos(2πn ) cos(2πjn )− sin(2πn ) sin(2πjn ) = cos(2π(j+1)
n )

for j ∈ {−k, . . . ,−1, 0, 1, . . . , k}. Hence there is an entry of the vector αx1 − βy1 which is
negative (in particular, the k + 1 entry), and so the hypothesis does not hold. Similarly,
αx2 − βy2 can be found to have a positive entry; furthermore due to the structure of the
matrix and its eigenvectors, it is similarly determined that the hypotheses do not hold
for the other case of partitioning with respect to y. Hence we conclude nothing about
clustering behaviour of the Markov chain with transition matrix A, as expected.

4. Simulations and examples

In this section we produce some numerical examples, determined somewhat randomly,
in order to test this method of detecting clusters. To produce such examples for which
we can test this process, we require irreducible stochastic matrices which have complex
eigenvalues appropriately close to 1, and which have a certain degree of clustered structure
built in. To design an appropriate matrix with a prescribed eigenvalue, we make use of
the following technique, which is described below in a general matrix theory setting but
is more well-known in spectral graph theory in the context of an equitable partition of the
adjacency matrix of a graph (see [1, Section 2.3]).

Consider a square block matrix

X =


X11 X12 · · · X1m

X21 X22 · · · X2m
...

...
. . .

...

Xm1 Xm2 · · · Xmm


and suppose that X has been partitioned into these blocks in such a way that each block
Xij has constant row sums qij . That is, Xij1j = qij1ki (where ki is the number of rows in
Xij).

Now consider that λ is an eigenvalue of X with right eigenvector
[c11k1 | c21k2 | · · · | cm1km ]> if and only if

q11 q12 · · · q1m
q21 q22 · · · q2m
...

...
. . .

...
qm1 qm2 · · · qmm



c1
c2
...
cm

 = λ


c1
c2
...
cm

 .
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That is, the eigenvalues of this quotient matrix Q = [qij ] are contained in the spectrum of
X. We make use of this technique here by determining some 3×3 matrix with appropriate
eigenvalues to act as the quotient matrix, and then constructing a larger matrix where the
first two diagonal blocks represent clusters of the chain.

Consider the 3× 3 matrix

B =

 5
6 0 1

6
3
4

1
6

1
12

2
3 − 12t2 1

3 + 12t2 0


which, for any t ∈ [0,

√
2
6 ], is nonnegative, stochastic, and irreducible, with eigenvalues

1,±it. Taking a convex combination of this matrix and the identity will produce a 3 × 3
matrix

C := (1− s)I + sB, 0 ≤ s ≤ 1

which has eigenvalues 1, (1− s)± i(st).
Now let T11, T22 and T33 be irreducible stochastic matrices of orders n1, n2, and n3

respectively. Further, let Tij be an ni × nj rectangular row-stochastic matrix, for i, j ∈
{1, 2, 3}, i 6= j. Then

A =

 c11T11 c12T12 c13T13
c21T21 c22T22 c23T23
c31T31 c32T32 c33T33


is an irreducible stochastic matrix of order n1 + n2 + n3 which has in its spectrum the
complex eigenvalues (1− s)± i(st).

For s chosen appropriately, these eigenvalues are close to 1. Furthermore, the first two
diagonal blocks of A represent potential clusters in that the probability of transitioning
to another state indexed in the same block is high (≥ 1 − s) relative to the probability
of transitioning to a state indexed in another block. Note that although these transition
matrices are constructed to have certain properties, we emphasise that this construction
may involve many elements of randomness in order to effectively test the method presented
in this article.

• t is chosen uniformly at random from the interval [0,
√
2
6 ].

• s is chosen uniformly at random from the interval [0, 0.2], so that the complex eigen-

value λ under consideration has real part α ∈ [0.8, 1] and imaginary part β ∈ [0,
√
2

30 ].

• The order n of A is fixed. n1 is an integer chosen at random from {3, 4, . . . , bn2 c}.
n2 is an integer chosen at random from {3, 4, . . . n− n1 − 3}, and n3 := n− n1 − n2.
These integers are chosen in this way to avoid trivial or degenerate cases.

• The matrices Tij are chosen as uniform stochastic random matrices respecting a zero
pattern determined randomly with density p := 0.7.

14



We present a single example in detail that has been constructed in this way in order
to illustrate both the construction and the analysis of the eigenvectors which produces the
partitions and associated potential clusters.

Example 4.1. A is a 100 × 100 matrix, with n1 = 32, n2 = 53, and n3 = 15. A has an
eigenvalue λ = 0.9067 + 0.0106i; i.e. the values of s and t chosen are 0.0933 and 0.1138,
respectively.

Figure 4.1: A heat map of the transition matrix A in Example 4.1. Evidence of clustering behaviour is
indicated by the largely red blocks on the diagonal, indicating high probability of staying within one group
of states, and low probability (blue) of leaving.

A heat map for A is given in Fig. 4.1, which illustrates the clustering behaviour of the
Markov chain with transition matrix A. The index sets of the constructed clusters are
{1, 2, . . . , 32}, {33, 34, . . . , 85} and {86, 87, . . . , 100}.

The results of the analysis according to Theorem 2.1 are summarized in the following
table:
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Thm 2.1 index set spectral radius lower bound

1(i) {1, 2, . . . , 32} 0.9844 0.9052
1(ii) {1, 2, . . . , 32} 0.98441 0.98441

1(iii) {1, 2, . . . , 32} 0.9844 0.9052
2(i) {33, 34, . . . , 100} 0.9348 0.8932
2(ii) {33, 34, . . . , 100} 0.9348 0.9150
2(iii) {33, 34, . . . , 100} 0.9348 0.8932

We see that the partitions determined according to Theorem 2.1 recover the first cluster
exactly, and present the second two clusters together with evidence of clustering behaviour
on the union of those two sets of states. Note that although the ‘repartitioning’ process of
Theorem 2.1 does not actually change the partitions, the calculation of the lower bounds
in both cases is an improvement on the initial lower bound.

The results of the analysis according to Theorem 3.1 are summarized in the following
table:

Thm 3.1 index set spect. rad. lower bound

1(i) hypothesis not satisfied: αy1 + βx1 ≯ 0 - -
1(ii) hypothesis not satisfied: αy1 + βx1 ≯ 0 - -
1(iii) hypothesis not satisfied: αy1 + βx1 ≯ 0 - -
2(i) {33, . . . , 85, 88, 89, 90, 99} 0.9224 0.9150
2(ii) {33, . . . , 85, 88, 89, 90, 92, 99} 0.9224 0.9150
2(iii) hypothesis not satisfied: αx2 + βy2 ≮ 0 - -

In this case, certain hypotheses do not hold, and hence we obtain less information
about the clustering behaviour of this matrix from the partitions obtained with respect to
the sign pattern of the imaginary part of the eigenvector. However, we note that while in
the previous analysis, the second and third constructed clusters were presented as a single
cluster, we see some differentiation here in that the partition obtained from Theorem
3.1 2(i) produces the index set {33, . . . , 85, 88, 89, 90, 99} with equally strong evidence of
clustering on this subset of the state space, which is essentially composed of the second
constructed cluster, plus four states from the third constructed cluster.

We produce 10,000 such matrices with in-built clustered structure, then run this same
analysis of the eigenvectors corresponding to eigenvalues close to 1 using Theorems 2.1
and 3.1. The goal is to determine how frequently we can recover the clusters that we
constructed, and to determine lower bounds on the spectral radii of the corresponding
submatrices. The magnitude of these lower bounds is an indicator of the ‘tightness’ of the
detected cluster, in the manner described in Theorem 1.1, parts (b) and (c).

Our results are as follows:

1The spectral radius and the lower bound in this case differ in the 10−15 position.
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• The first cluster is recovered exactly in 99.6% of cases.

• The second cluster is recovered exactly in 9.12% of cases.

• The third cluster is recovered exactly in 0.4% of cases.

• The first and second clusters are both recovered exactly in 8.94% of cases. The first
and third are recovered exactly in 0.27% of cases. The second and third are never
both recovered exactly in the same simulation; neither are all three ever recovered
exactly using this analysis.

• In every case that the first cluster is recovered, the second and third clusters are both
partially recovered in that they are each produced in some larger subset of states on
which the Markov chain displays clustering behaviour. In 96.74% of these cases where
the second cluster is not recovered, the second cluster is produced by this algorithm
along with some states from the third cluster as an index set of states on which
the Markov chain displays clustering behaviour, in a similar manner as discussed in
Example 4.1. This occurs with the third cluster in only 6 cases out of a total of 9039.

We note that in the extreme majority of these examples, the first constructed cluster is
recovered exactly, and the second and third are often grouped together as a single cluster.
We expect that this is an artefact of the particular 3 × 3 matrix used to produce these
examples. In particular, the spectral radii of the submatrices corresponding to the first,
second and third clusters are 1− s

6 , 1− 5s
6 , and 1−s, respectively. Hence it is not unexpected

that the first cluster is recovered more frequently, as by this measure alone it represents a
‘stronger’ or ‘tighter’ cluster than the others.

As a final remark, we observe that once this tightest cluster is determined, we could
use a ‘divide-and-conquer’ approach and consider a principal submatrix with the rows and
columns corresponding to this cluster removed. Renormalizing the rows of this matrix will
produce a stochastic transition matrix which represents a parallel Markov chain acting only
on the states of the second and third cluster. It is possible that we could then perform a
similar analysis on this new matrix, if it had eigenvalues appropriately close to one, and
there is a chance that we could recover the second and third clusters separately.

To illustrate, we refer to Example 4.1, whose first cluster on the states {1, 2, . . . , 32}
was recovered exactly. We consider the matrix Â constructed as above by appropriately
renormalizing the principal submatrix obtained from A by deleting the first 32 rows and
columns. This matrix has an eigenvalue equal to 0.9437. By considering the sign pattern
of the associated eigenvector and applying Theorem 1.1, we conclude evidence of clustering
behaviour on the states indexed by {33, 34, . . . , 85} and {86, 87, . . . , 100}; that is, we re-
cover both constructed clusters exactly. An investigation into possible divide-and-conquer
approaches will be the subject of a forthcoming article.
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Example 4.2. In this example, we apply Theorems 2.1 and 3.1 to the transition matrix for
a simulated bus network discussed in [7] in which states represent bus stops in a network
and transition probabilities are simulated probabilities of passengers moving from one stop
to another through the bus network. In [7], the authors observed evidence of clustering
behaviour based on the mean first passage matrix (shown in Fig. 4.2a) and observed that
the eigenvector corresponding to the eigenvalue of second largest modulus (which was, in
this case, complex) could be used to determine these clusters. A plot of the entries of this
vector is given in Fig. 4.2b in which it can clearly be seen that the entries are clustered,
with clusters indexed by {1, 2, . . . , 6}, {7, 8, . . . , 11}, and {12, 13, . . . , 17}, which are the
subsets of states for which the mean first passage times seem to predict clustering.

The following tables summarize the findings of Theorems 2.1 and 3.1 with regard to
this eigenvalue λ = 0.9998 + 0.0001i and its corresponding eigenvector.

Thm 2.1 index set spectral radius lower bound

1(i) {12, 13, . . . , 17} 0.9998 0.9997
1(ii) {12, 13, . . . , 17} 0.99981 0.99981

1(iii) {12, 13, . . . , 17} 0.9998 0.9997
2(i) {1, 2, . . . , 11} 0.9999 0.9996
2(ii) {1, 2, . . . , 11} 0.9999 0.9996
2(iii) {1, 2, . . . , 11} 0.9999 0.9996

Thm 3.1 index set spect. rad. lower bound

1(i) {7, 8, . . . , 16} 0.9999 0.9997
1(ii) {7, 8, . . . , 17} 0.9999 0.9997
1(iii) hypothesis not satisfied: αx1 + βy1 ≯ 0 - -
2(i) {1, 2, . . . , 6} 0.99992 0.99992

2(ii) {1, 2, . . . , 6} 0.99993 0.99993

2(iii) hypothesis not satisfied: αx1 + βy1 ≯ 0 - -

With some examination of this information, one can recover all three clusters.
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(a) Heat map of the mean first passage matrix for the transition ma-
trix of the simulated bus network. Evidence of clustering behaviour is
given by the relatively low (blue) values for mfp times between states
in the same cluster, and high values for mfp times between clusters.

(b) Entries of the eigenvector corresponding to the eigenvalue of
second-largest modulus

Figure 4.2: Evidence of clustering in the transition matrix for the bus network in [7], discussed in Example
4.2.
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Appendix: Flowcharts for Theorem 2.1 and Theorem 3.1

On the next two pages, we provide flowcharts for each of Theorem 2.1 and Theorem
3.1 that clearly display the dependencies of the lower bounds on the technical hypotheses.
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ỹ 2
(j

)

}
N

o
co

n
cl

u
si

on
s

ca
n

b
e

m
ad

e
ab

ou
t

se
co

n
d

cl
u
st

er
.

Is
x
1
<

0
a
n
d

is
x
2
>

0
?

ρ
(A

2
2
)
≥
α
−
β

m
a
x

j

{ ȳ 2(
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