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Abstract

Given a tree T , we consider a pair of vertices (u, v) where u is a centroid of
T , v is a characteristic vertex of T , and such that the distance between them,
denoted d(u, v), is smallest over all such pairs. We define δcentroid(T ) = d(u, v)
and δcentroid(n) = maxT δcentroid(T ), where the maximum is taken over all
trees T on n vertices. Analogous definitions are also given for δcentre(T ) and
δcentre(n)

We show that for each n ≥ 12, there is a broom T on n vertices such that
δcentroid(T ) = δcentroid(n) and a broom T ′ on n vertices such that δcentre(T ′) =
δcentre(n). We also prove that the sequences δcentroid(n)

n and δcentre(n)
n are conver-

gent, and find their limits. We rely on the characterisation of characteristic
vertices in terms of Perron branches in order to establish our results.
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1 Introduction and preliminaries

Suppose that T is a tree on n vertices, and denote its Laplacian matrix by L. It
is straightforward to see that L is positive semidefinite, with 0 as a simple eigen-
value. The smallest positive eigenvalue of L is known as the algebraic connectivity
of the tree, and here we denote it by a(T ). Suppose that x is an eigenvector of L
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Figure 1: The broom Tk,n

corresponding to the eigenvalue a(T ). A remarkable result of Fiedler [3] shows that
precisely one of two cases holds.
i) There is a unique vertex j of T such that xj = 0, and j is adjacent to k for some
vertex k with xk 6= 0. When this is the case, T is called a type 1 tree, and j is its
characteristic vertex.
ii) There is a unique pair of adjacent vertices j, k of T such that xjxk < 0. When this
is the case, T is called a type 2 tree, and the vertices j and k are its characteristic
vertices.
In either of cases i) and ii), the set consisting of the characteristic vertices of T is
known as the characteristic set. If it happens that a(T ) is a multiple eigenvalue of
L, then on the face of it, it would seem that both the type of tree and the charac-
teristic set could depend on the particular choice of the eigenvector x. However, as
is shown in [5], in fact every a(T )–eigenvector yields the same type of tree, and the
same characteristic set.

Suppose that T is a tree, and that v is a vertex of T . A branch at v is one of
the connected components of the forest T \ v. Recall that a vertex v of a tree T on
n vertices is a centroid if it has the property that each branch at v contains at most
bn

2
c vertices. It is well–known that for any tree on n ≥ 2 vertices, either there is a

unique centroid, or there are exactly two centroids, and they are adjacent. Similarly,
a vertex v of a tree on n ≥ 2 vertices is a centre if maxu d(v, u) = minw maxu d(w, u)
(here d(a, b) is the distance between vertices a and b). Again, it is well–known that
for any tree on n ≥ 2 vertices, either there is a unique centre, or there are exactly
two centres, and they are adjacent. Evidently v is a centre of T if and only if it is a
centre of one (indeed, every) longest path in T .

In [6], Merris considers the location of the characteristic set of a tree in relation
to both the centroid and the centre. In particular, he gives two intriguing examples,
both of which are instances of the family of trees known as brooms, which we now
describe. Given n ≥ 2 and k with 1 ≤ k ≤ n − 1, the broom Tk,n is formed from
the path on n − k vertices by appending k pendent vertices to one end point of
that path. Figure 1 illustrates, and note that henceforth we will take the vertices of
Tk,n to be labelled as in that figure. With this notation in place, Merris’ examples
show that for T5,11, the characteristic set and the centroid are disjoint, and for T7,13,
the characteristic set and the centre are disjoint. Motivated by Merris’ intriguing
examples, we investigate the following two quantities for trees in this paper:
i) the maximum possible distance between the characteristic set and the centroid
(taken over all trees on n vertices);
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ii) the maximum possible distance between the characteristic set and the centre
(taken over all trees on n vertices).
For each quantity we show that the maximum is attained for a broom. We also
describe the asymptotics for both quantities as n →∞.

We now recall a useful definition developed in [5]. Fix a vertex j of a tree T ;
for each branch B at j, the principal submatrix (say LB) of L corresponding to the
vertices of B is an irreducible M–matrix, consequently L−1

B is a positive matrix. (We
refer the reader to [1] for definitions and basic facts on M–matrices.) We say that
the Perron value of L−1

B is the Perron value of the branch B. We note in passing that
the Perron value of the branch B is the reciprocal of the smallest eigenvalue of LB.
A branch B at j is said to be a Perron branch at j if its Perron value is maximum
among the Perron values of all branches at j. The following result summarises some
helpful facts about Perron branches. The proofs can be found in [5].

Lemma 1.1. Let T be a tree on vertices 1, . . . , n.
a) Suppose that at some vertex j of T there are two or more Perron branches. Then
T is a type 1 tree and j is its characteristic vertex.
b) Suppose that there is a unique Perron branch at every vertex of T . Then there is
a unique pair of adjacent vertices j and k such that the unique Perron branch at j is
the branch containing k, and the unique Perron branch at k is the branch containing
j. Further, T is a type 2 tree, with j and k as its characteristic vertices.
c) Suppose that T is a tree and l is not a characteristic vertex of T . Then there is a
unique Perron branch at l, and it is the one containing the characteristic vertex or
vertices of T .

Let T be a tree. For any vertex u of T , let dc(u) be the distance between u and the
nearest characteristic vertex of T . Let δcentroid(T ) = max{dc(u)|u is a centroid ofT},
and let δcentre(T ) = max{dc(u)|u is a centre ofT}. Finally, we let

δcentroid(n) = max{δcentroid(T )|T is a tree on n vertices}

and
δcentre(n) = max{δcentre(T )|T is a tree on n vertices}.

The following two examples show that δcentroid(n) ≥ 1 for n ≥ 11 and that δcentre(n) ≥
1 for n ≥ 14. In both examples, we make use of the fact (shown in [5]) that for the
bottleneck matrix of a branch that consists of a path on k vertices, the corresponding
Perron value is given by 1

2(1−cos( π
2k+1

)
.

Example 1.1. Consider the tree Tdn−1
2
e,n, and observe that vertex dn−1

2
e+ 1 is the

unique centroid. Consider vertex dn−1
2
e+ 2 and note that there are two branches at

vertex dn−1
2
e+2 : a path on bn−3

2
c vertices having Perron value r1 = 1

2

„
1−cos

„
π

2bn−3
2 c+1

«« ,

and a star with dn−1
2
e pendent vertices. It is easily seen that this latter branch has

Perron value r2 bounded above by dn+3
2
e.
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Since cos(θ) > 1− θ2

2
for any θ > 0, we find that

r1 >

(
2bn−3

2
c+ 1

π

)2

.

It is readily determined that for any n ≥ 11, we have

r1 >

(
2bn−3

2
c+ 1

π

)2

>

⌈
n + 3

2

⌉
≥ r2.

Consequently when n ≥ 11, the unique Perron branch at u is the path on bn−3
2
c

vertices. We conclude that the centroid, vertex dn−1
2
e + 1, is not a characteristic

vertex in that case.

Example 1.2. Consider the tree Tn−6,n, which has a unique centre n − 3, i.e., the
middle vertex on the paths of length 6 (there are n− 6 such paths). We claim that
n− 3 is not a characteristic vertex of T when n ≥ 14.

To see the claim, consider the vertex n− 4. Observe that at n− 4 there are two
branches: a path of length 3 and a star on n− 5 vertices. The former branch has a
bottleneck matrix with Perron value 1

2(1−cos(π
9 ))

≈ 8.2909 . . . . The latter branch has

the bottleneck matrix given by [
I + Jn−6 1

1T 1

]
,

where Jk denotes the k × k all ones matrix and 1 is an all ones vector. Evidently
the Perron value of this branch is bounded below by n − 5. It now follows that if
n ≥ 14, then the unique Perron branch at n− 4 is the one containing the vertex of
maximum degree. Consequently n− 3 cannot be a characteristic vertex.

The following useful result will assist us in developing our results. In that result
and elsewhere, we use u ∼ v to indicate that vertices u and v are adjacent.

Lemma 1.2. Let T be a tree and suppose that u is a vertex of T that is not a
characteristic vertex. Let v be the characteristic vertex of T that is closest to u, say
with dc(u) = d, and denote the path from u to v by u ≡ u0 ∼ u1 ∼ . . . ∼ ud−1 ∼
ud ≡ v. Let Bj, j = 1, . . . , l be a collection of branches at u that do not contain any
characteristic vertices, and denote the direct sum of the corresponding bottleneck
matrices by M . Form T̂ from T by replacing the branches B1, . . . , Bl by another
collection of branches B̂1, . . . , B̂p, and denote the direct sum of the corresponding

bottleneck matrices by M̂. If M̂ is entrywise dominated by a principal submatrix of
M , then dc(u) ≤ d̂c(u), where d̂c(u) denotes the distance in T̂ from u to the closest
vertex in the characteristic set.
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Proof. Consider the branches of T at ud−1, and observe that by Lemma 1.1, the
unique Perron branch at ud−1 is the one containing ud (equivalently, v). From the
construction of T̂ , we find that the branch (in T̂ ) at ud−1 containing u0 cannot be a
Perron branch at ud−1. It now follows that in T̂ , the unique Perron branch at ud−1

is the branch containing ud. Since all characteristic vertices of T̂ lie in the branch
at ud−1 containing ud, we deduce that d̂c(u) ≥ d = dc(u).

The following result is a consequence of Theorem 1 in [4]. Here we employ the
following notation: for square nonnegative matrices A and B (not necessarily of the
same order) we write A << B if there is a permutation matrix Q such that QAQT

is entrywise dominated by a principal submatrix of B, with strict inequality in at
least one position if A and B have the same order.

Proposition 1.1. Let T be a tree, v a vertex of T , and B a branch at v that does
not contain all of the characteristic vertices of T . Form a new tree T̂ by replacing
the branch B at v by another branch B̂ at v. Let M be the bottleneck matrix for B in
T and let M̂ be the bottleneck matrix for B̂ in T̂ . Suppose that M << M̂. Then the
characteristic vertices of T̂ are either on the path joining the characteristic vertices
of T to v, or they are in the new branch B̂.

Suppose that T is a tree and that B is a branch at vertex v, say with w as the
vertex in B adjacent to v. The depth of B is equal to maxu∈B d(w, u). Suppose that
B is a branch on m vertices with depth k that is not a broom, and consider a branch
B̃, also on m vertices with depth k that is a broom. It is straightforward to show
(say by induction on m − k) that M << M̃, where M and M̃ are the bottleneck
matrices for B and B̃, respectively.

2 Maximum distance between the centroid and

the characteristic set

The following result identifies a family of trees that attain the maximum distance
between the centroid and the characteristic set.

Theorem 2.1. Suppose that n ≥ 12. Then δcentroid(n) = δcentroid(Tbn
2
c,n).

Proof. Let T be a tree on n vertices such that δcentroid(n) = δcentroid(T ). Let u and
v be the centroid and characteristic vertex, respectively, of T such that d(u, v) =
δcentroid(T ). From Example 1.1, u 6= v so that d(u, v) ≥ 1. Observe that each branch
of T at u contains at most n

2
vertices, and that the unique Perron branch at u is the

one containing v. Form T1 from T by replacing all of the non-Perron branches at
u by collections of pendent vertices (comprising the same total number of vertices),
each of which is adjacent to u. By Lemma 1.2, dc(u) ≥ δcentroid(n), and u is still a
centroid of T1, so we see that in fact dc(u) = δcentroid(n). Suppose for concreteness
that there are k pendent vertices adjacent to u in T1. In T1, label the branches at v
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as B1, . . . , Bl, where we take B1 to be the branch containing u. Letting ρ(•) denote
the Perron value of a branch, we see that ρ(B1) ≤ maxj=2,...,l ρ(Bj).

Next form T2 from T1 by replacing the Perron branch at u by a path on n−k−1
vertices, and let v′ be the vertex on that path whose distance to u is d(u, v). Denote
the branch at v′ containing u by B′

1 and denote the other branch at v′ by B′
2. Observe

that ρ(B′
1) ≤ ρ(B1) ≤ maxj=2,...,l ρ(Bj) ≤ ρ(B′

2). If ρ(B′
1) = ρ(B′

2), then T2 is a type
1 tree with v′ as its unique characteristic vertex; if ρ(B′

1) < ρ(B′
2), then necessarily v′

is a characteristic vertex, otherwise every characteristic vertex of T2 is in B′
2, which

in turn yields d(u, v) < δcentroid(T2), a contradiction. In either case we see that v′ is
a characteristic vertex, and that δcentroid(n) = δcentroid(T2) = δcentroid(Tk,n).

Since u is a centroid of Tk,n, we find that n−k−1 ≤ n
2
, so that k ≥ n−2

2
. If k = n−2

2
,

we find that the non-pendent neighbour of u is also a centroid of Tk,n, contrary to our
original assumption that d(u, v) = δcentroid(T ). Hence k ≥ n−1

2
. Suppose that it were

the case that k ≥ n+1
2

. Then we could remove one of the pendent vertices adjacent to
u and appended it at the end of the Perron component at u. The resulting tree Tk−1,n

still would have u as a centroid, and applying Lemma 1.2 (for deleting a pendent
vertex adjacent to u), followed by Proposition 1.1 (for appending a pendent vertex
at the end of the Perron component at u) as above it follows that dc(u) = δcentroid(n),
i.e. δcentroid(Tk−1,n) = δcentroid(n). Repeating that process if necessary, it follows that
for a tree Tl,n with n

2
≥ l ≥ n−1

2
, we have δcentroid(Tl,n) = δcentroid(n). Considering the

cases that n is odd and even respectively, we find that δcentroid(Tbn
2
c,n) = δcentroid(n),

as desired.

Next, we want to consider the asymptotics of δcentroid(n). The following technical
result will assist with our later analysis. Below we use Ik to denote the k×k identity
matrix.

Lemma 2.1. Consider the irreducible nonsingular M-matrix M of order k + l given
by:

M =



Ik −1 0 . . . 0
−1T k + 1 −1
0T −1 2 −1
0T −1 2 −1

...
. . . . . . . . .

0T −1 2 −1
0T −1 2


.

Let λ be the smallest eigenvalue of M . Then λ = 2(1 − cos(θ∗)), where θ∗ is the
unique solution in the interval (0, π

2l+3
] of the equation

fl(θ) ≡ tan
(π

2
− (l + 1)θ

)
+ tan

(
θ

2

)
− 2k(1− cos(θ))

sin(θ)(2(k − 1)(1− cos(θ)) + 1)
= 0. (1)
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Proof. We will proceed by producing an all–positive eigenvector of M associated
with 2(1 − cos(θ∗)), then appeal to the fact that for an irreducible symmetric M–
matrix, the only eigenvalue for which there is a positive eigenvector is the smallest
eigenvalue.

We begin by showing that (1) has a solution in the interval (0, π
2l+3

]. To that
end, consider fl(θ) in (1) as a function of θ. First, we claim that fl(

π
2l+3

) < 0. To
see the claim, we first note that it is straightforward to verify that the inequality
fl(

π
2l+3

) < 0 is equivalent to

tan(τ)− k(1− cos(2τ))

sin(2τ)(2(k − 1)(1− cos(2τ)) + 1)
< 0, (2)

where τ = π
2(2l+3)

. Using the double angle formulas for cos(2τ) and sin(2τ), (2)

simplifies to 4(k − 1) sin2(τ) + 1 < k, i.e. | sin(τ)| < 1
2
. Since 0 < τ ≤ π

10
we have

sin(τ) < 1
2
, and (2) now follows, completing the proof of the claim. Evidently f is

continuous for θ ∈ (0, π
2l+3

]. Since fl(
π

2l+3
) < 0 while fl(θ) → ∞ as θ → 0+, it now

follows from the intermediate value theorem that (1) has a solution in the interval
(0, π

2l+3
].

Let θ∗ be a solution to (1) in (0, π
2l+3

]. Let λ = 2(1 − cos(θ∗)), and for each
j = 1, . . . , l, let vj = sin((l + 1− j)θ∗). Set v0 = v1

1−λ
, and consider the vector

v =


v01
v1

v2
...
vl

 .

Evidently v is a positive vector, and an uninteresting exercise reveals that Mv = λv.
Since v is positive and M is an M–matrix, we find that λ is in fact the smallest
eigenvalue of M . Finally, we note that if there were another solution θ̂ 6= θ∗ to
(2) (in the interval (0, π

2l+3
]), then, analogous to the construction of v, we would

be able to construct a positive eigenvector v̂ of M corresponding to an eigenvalue
λ̂ 6= λ, a contradiction. We thus deduce that θ∗ is the unique solution to (2) in the
(0, π

2l+3
].

The final result of this section gives the asymptotics for δcentroid(n).

Theorem 2.2. Let z be the unique root of the equation tan(z) + z = 0 that lies in

the interval (π
2
, π]. We have limn→∞

δcentroid(n)
n

= 1
2
− π

4z
.

Proof. From Theorem 2.1, the maximum distance between the centroid and the
characteristic set for a tree on n vertices occurs for Tk,n with k = bn

2
c. Henceforth

we take k = bn
2
c, and as usual we label the vertices of Tk,n as in Figure 1. Suppose

that k + l is the characteristic vertex of Tk,n that is closest to a centroid. Observe
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that l ≤ n−k− l, otherwise the unique Perron branch at vertex k+ l contains vertex
k + l− 1, not vertex k + l +1, a contradiction. In particular we have l ≤ n−k

2
≤ n+1

4
.

Let θl−1 be the unique root of fl−1 in the interval (0, π
2l+1

] and let θl be the unique
root of fl in the interval (0, π

2l+3
]. Observe that if Tk,n is a type 1 tree with k + l as

the characteristic vertex, then necessarily θl−1 = π
2(n−k−l)+1

. On the other hand, if

Tk,n is a type 2 tree with (k + l) ∼ (k + l+1) as the end vertices of the characteristic
edge, then θl−1 > π

2(n−k−l)+1
and θl < π

2(n−k−l)−1
. Observe that in either case, we

have θl−1 ≥ π
2(n−k−l)+1

and θl < π
2(n−k−l)−1

. Since fl−1 and fl have unique roots in

the intervals (0, π
2l+1

] and (0, π
2l+3

] respectively, it follows that θl−1 ≥ π
2(n−k−l)+1

if
and only if

fl−1

(
π

2(n− k − l) + 1

)
≥ 0. (3)

Similarly, θl < π
2(n−k−l)−1

if and only if

fl

(
π

2(n− k − l)− 1)

)
< 0. (4)

We thus deduce that if k + l is the characteristic vertex of Tk,n that is closest to a
centroid, then

tan

(
π

2
− πl

2(n− k − l) + 1

)
+ tan

(
π

2(2(n− k − l) + 1)

)

−
2k
(
1− cos

(
π

2(n−k−l)+1

))
sin
(

π
2(n−k−l)+1

)(
2(k − 1)

(
1− cos

(
π

2(n−k−l)+1

))
+ 1
) ≥ 0

> tan

(
π

2
− π(l + 1)

2(n− k − l)− 1

)
+ tan

(
π

2(2(n− k − l)− 1)

)

−
2k
(
1− cos

(
π

2(n−k−l)−1

))
sin
(

π
2(n−k−l)−1

)(
2(k − 1)

(
1− cos

(
π

2(n−k−l)−1

))
+ 1
) . (5)

For each n, define rn = l
n
, and note that since l ≤ n+1

4
, we have rn ≤ 1

4
+ 1

4n
.
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Observe that (5) can then be rewritten as

tan

(
π

2
− πrn

2(1− k
n
− rn) + 1

n

)
+ tan

(
π

2n(2(1− k
n
− rn) + 1

n
)

)

−
2k
(
1− cos

(
π

n(2(1− k
n
−rn)+ 1

n
)

))
sin
(

π
n(2(1− k

n
−rn)+ 1

n
)

)(
2(k − 1)

(
1− cos

(
π

n(2(1− k
n
−rn)+ 1

n
)

))
+ 1
) ≥ 0

> tan

(
π

2
−

πrn + 1
n

2(1− k
n
− rn)− 1

n

)
+ tan

(
π

2n(2(1− k
n
− rn)− 1

n
)

)

−
2k
(
1− cos

(
π

n(2(1− k
n
−rn)− 1

n
)

))
sin
(

π
n(2(1− k

n
−rn)− 1

n
)

)(
2(k − 1)

(
1− cos

(
π

n(2(1− k
n
−rn)− 1

n
)

))
+ 1
) . (6)

Observe that rn is a bounded sequence, and so has at least one convergent
subsequence. Let nj be an increasing subsequence of natural numbers such that rnj

converges, say to r, as j → ∞. Necessarily 0 ≤ r ≤ 1
4
. In fact it must be the case

that r > 0, otherwise there is a further subsequence rnjp
such that as p →∞, either

tan

(
π

2
−

πrnjp
+ 1

njp

2(1− k
njp

− rnjp
)− 1

njp

)
→∞

or

tan

(
π

2
−

πrnjp

2(1− k
njp

− rnjp
) + 1

njp

)
→ −∞,

both of which violate (6). Hence we have r > 0. Consider (6) where we take
n = nj, k = bnj

2
c and rn = rnj

. Taking a limit as j →∞, we find from (6) that

− tan

(
π

2
+

πr

2(1
2
− r)

)
− π

4(1
2
− r)

≥ 0 ≥ − tan

(
π

2
+

πr

2(1
2
− r)

)
− π

4(1
2
− r)

. (7)

Consequently, tan
(

π
2

+ πr
2( 1

2
−r)

)
+ π

4( 1
2
−r)

= 0. Since 0 < r ≤ 1
4
, we have π

2
< π

4( 1
2
−r)

≤
π. In particular, letting z be the unique root of the equation tan(z) + z = 0 that
lies in the interval (π

2
, π] we have r = 1

2
− π

4z
. Inspecting the argument above, we see

that any convergent subsequence of rn converges to 1
2
− π

4z
, from which we deduce

that in fact the entire sequence rn is convergent, with limit given by 1
2
− π

4z
.

Remark 2.1. From computations we find that z ≈ 2.0287578381104339 . . . so that
1
2
− π

4z
≈ 0.112867465675962 . . ..
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3 Maximum distance between the centre and the

characteristic set

In this section we consider the distance between the centre and the characteristic
set for a tree. Some of the approaches of section 2 will carry over to the present
section, though there are some subtle differences between the two problems.

Theorem 3.1. Suppose that n ≥ 12. Then for some 2 ≤ k ≤ n − 2, δcentre(n) =
δcentre(Tk,n).

Proof. Let T be a tree on n vertices such that δcentre(n) = δcentre(T ). Let u and v be
the centre and characteristic vertex, respectively, of T such that d(u, v) = δcentre(T ).
By Example 1.2, u 6= v so that d(u, v) ≥ 1. Denote by P an induced path in T of
maximum length, recall that u is a centre of P , and denote the (end point) pendent
vertices of P by w1 and w2.

We claim that without loss of generality we may assume that u and v are on a
path P of maximum length. To see the claim, we suppose that v is not on P , and let
v0 denote the vertex on P that is closest to v. Without loss of generality we assume
that d(u, w1) ≤ d(v0, w1). Observe that at v, there is at least one Perron branch
B̃ that does not contain v0, otherwise v is not the closest characteristic vertex to
u. Select a vertex v1 on P such that d(v1, w2) = d(v0, w2)− d(v0, v), and note that
d(v1, w2) ≥ 1, since we are assuming that v is not on a path of maximum length
that includes u.

Form T̂ from T by deleting the branch at v1 that contains w2, and appending
that same branch at v. Note also that u is a centre in T̂ that is closest to v, and that
u and v are on a path of maximum length in T̂ . Further, in T̂ , neither the branch
at v containing v0, nor the branch at v containing w2 is a Perron branch; also the
branch B̃ at v is still a Perron branch at v in T̂ . From this we deduce that v must
be a characteristic vertex of T̂ , otherwise all characteristic vertices of T are in B̃, so
that δcentre(T̂ ) > δcentre(T ) = δcentre(n), a contradiction. This establishes the claim.

Henceforth we suppose that in T, the vertices u and v are on a path P of max-
imum length. Let Bu be the branch at v containing u, and note that as above it
is not a Perron branch at v. Construct T1 from T as follows: delete all vertices in
Bu that are not on P, and append those vertices as pendent vertices adjacent to
v. By Lemma 1.2 and the fact that pendent vertices cannot be Perron branches
in a tree on more than 3 vertices, we deduce that v is a characteristic vertex of T1

that is closest to u. In T1 denote the branches at v not containing u by B1, . . . , Bk.
Next we construct T2 from T1 by successively replacing, for each j = 1, . . . , k, each
Bj by the corresponding broom on |Bj| vertices whose depth coincides with that of
Bj. By Proposition 1.1 (repeatedly applied) and the fact that d(u, v) = δcentre(n),
we deduce that δcentre(T2) = δcentre(n), with u and v as the centre and characteristic
vertex that are closest together. Note that if k = 1, then T2 is a broom, and we are
done.
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Suppose now that k ≥ 2. Let B1 be a branch at v not containing u and having
maximum depth, and let Bl be a Perron branch at v. Consider a branch Bj at v that
is not a unique Perron branch, and such that j ≥ 2. Note that if we modify T2 by
deleting Bj and appending |Bj| pendent vertices adjacent to the next–to–pendent
vertex in Bl, then the resulting tree still has u as a centre, and v as the closest
characteristic vertex to that centre (otherwise we exceed δcentre(n)). Perform this
operation repeatedly for each such Bj, and denote the resulting tree by T3. Evidently
δcentre(T3) = δcentre(n), with u and v as the centre and characteristic vertex that are
closest together. In particular if l = 1, (i.e. B1 was a Perron branch in T2) then T3

is a broom, and we are done.
The last case to consider is that in T3 there are just three branches at v: the

branch containing u, a non–Perron branch B1, and a Perron branch B̃ whose depth
is less than that of B1. Construct T4 as follows. Delete B1, and successively append
its vertices into B̃ so that the depth of the resulting branch coincides with the depth
of B1. Arguing as above we find that in T4, u and v as the centre and characteristic
vertex that are closest together. Note that in T4, v has degree 2. We now construct
T5 from T4 by replacing the branch B′ at v that does not contain u by the broom on
|B′| vertices having the same depth as B′. Evidently T5 is a broom, and as above it
follows that δcentre(T5) = δcentre(n).

The following sequence of technical results will assist us in determining the
asymptotic behaviour of δcentre(n)

n
.

Lemma 3.1. Fix c ∈ (0, 1) and consider the function φ(r) = tan
(

(1−c)π
2(1−r)

)
+ cπ

2(1−r)

for r ∈
(
c, c+1

2

)
.

a) For each c ∈ (0, 1)∃!r ∈
(
c, c+1

2

)
such that φ(r) = 0.

b) Considering r as a function of c in a), r is differentiable with respect to c for
c ∈ (0, 1).
c) As c → 0+, r → 1

2
.

d) As c → 1−, r → 1.

Proof. a) Observe that as r → c+, (1−c)π
2(1−r)

→ π
2

+, so that φ(r) → −∞. As r →(
c+1
2

)+
, (1−c)π

2(1−r)
→ π, so φ(r) → cπ

1−c
> 0. Hence by the Intermediate Value Theorem,

there is at least one r ∈
(
c, c+1

2

)
such that φ(r) = 0. Since dφ

dr
= (1−c)π

2(1−r)2
sec2

(
(1−c)π
2(1−r)

)
+

cπ
2(1−r)2

> 0, we deduce that the solution to φ(r) = 0 in the interval
(
c, c+1

2

)
is unique.

b) Since dφ
dr

= (1−c)π
2(1−r)2

sec2
(

(1−c)π
2(1−r)

)
+ cπ

2(1−r)2
> 0, we find from implicit differentiation

that r is differentiable as a function of c and that

dr

dc
= −

dφ
dc
dφ
dr

= −

 − π
2(1−r)

(
1− sec2

(
(1−c)π
2(1−r)

))
(1−c)π
2(1−r)2

sec2
(

(1−c)π
2(1−r)

)
+ cπ

2(1−r)2

 .

c) Let cj be a sequence of positive numbers that converges to 0, and for each j ∈ N,
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let rj ∈
(
cj,

cj+1

2

)
be the corresponding solution to φ(r) = 0. Then for each j ∈

N, tan
(

(1−cj)π

2(1−rj)

)
= − cjπ

2(1−rj)
≡ zj. Note that zj → 0−. Further, since π

2
<

(1−cj)π

2(1−rj)
< π,

we find that
(1−cj)π

2(1−rj)
= π + arctan(zj). Consequently,

rj = 1− (1− cj)π

2(π + arctan(zj))
,

and since cj, zj → 0, we find that rj → 1
2
. It now follows that as c → 0+, r → 1

2
.

d) Since c < r < c+1
2

, we have 0 < c+1
2
− r < 1−c

2
. Thus, as c → 1−, r → 1.

Lemma 3.2. For each c ∈ (0, 1) let g(c) = c+1
2
−r, where r ∈

(
c, c+1

2

)
is the solution

to φ(r) = 0 guaranteed by Lemma 3.1. Extend g to [0, 1] by setting g(0) = 0 and
g(1) = 0. Then g is continuous on [0, 1] and differentiable on (0, 1). Suppose that

c0 ∈ (0, 1) is such that dg
dc

∣∣∣
c0

= 0. Then

g(c0) =
πc0

4

(
πc0 −

√
π2c2

0 − 4(1− c0)

)
− 1− c0

2
.

In particular, it must be the case that c0 ≥ 2
√

π2+1
π2 − 1.

Proof. From Lemma 3.1 b) it follows that g is differentiable on (0, 1). By Lemma 3.1
c) and d) , we find that as c → 0+, g(c) → 0, and as c → 1−, g(c) → 0. Consequently
g is continuous on [0, 1].

Next, suppose that c0 ∈ (0, 1) and that dg
dc

∣∣∣
c0

= 0. For ease of notation in the

remainder of the argument, we introduce a dummy function w via w(c) = π
2(1−r)

(here

and elsewhere we express the explicit dependence of r on c). Evidently dg
dc

∣∣∣
c0

= 0 if

and only if dr
dc

∣∣∣
c0

= 1
2
. Since dr

dc
= dr

dw
dw
dc

, and dr
dw

= π
2w2 , we find that dr

dc

∣∣∣
c0

= 1
2

if and

only if dw dw
dc

= w2

π
. Using implicit differentiation on the equation φ(w) = 0, we find

that
dw

dc
= − w sec2((1− c)w) + w

(1− c) sec2((1− c)w) + c
.

From the facts that sec2((1− c)w) = tan2((1− c)w) + 1, and tan((1− c)w) = −cw
(since φ(w) = 0), it now follows that dw

dc
can be rewritten as

dw

dc
=

c2w3

1 + c2(1− c)w2
.

We thus deduce that if dg
dc

∣∣∣
c0

= 0, then

w(c0)
2

π
=

c2
0w(c0)

3

1 + c2
0(1− c0)w(c0)2

,
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which in turn yields

c2
0(1− c0)w(c0)

2 − πc2
0w(c0) + 1 = 0. (8)

Considering the left side of (8) as a quadratic in w we observe that its vertex is
π

2(1−c0)
, so that necessarily w(c0) is the larger of the two roots of (8). We thus

deduce that

w(c0) =
πc0 +

√
π2c2

0 − 4(1− c0)

2c0(1− c0)
;

the expression

g(c0) =
πc0

4

(
πc0 −

√
π2c2

0 − 4(1− c0)

)
− 1− c0

2

now follows by substitution and simplification.

Lemma 3.3. Let w(c) be defined as in Lemma 3.2. There is a unique c0 ∈
(

2
√

π2+1
π2 − 1, 1

)
such that

w(c0) =
πc0 +

√
π2c2

0 − 4(1− c0)

2c0(1− c0)
. (9)

Proof. For each c ∈
(

2
√

π2+1
π2 − 1, 1

)
, we define the function ω(c) via

ω(c) =
πc +

√
π2c2 − 4(1− c)

2c(1− c)
.

We claim that the equation φ(ω(c)) = 0 has a unique solution on
(

2
√

π2+1
π2 − 1, 1

)
.

First note that as c → (2
√

π2+1
π2 − 1)+, (1 − c)ω(c) → π

2
+, so that φ(ω(c)) → −∞.

Also, as c → 1−, (1 − c)ω(c) → π−, so that φ(ω(c)) → ∞. Hence there is at least

one c ∈
(

2
√

π2+1
π2 − 1, 1

)
such that φ(ω(c)) = 0.

Next, we show the uniqueness of c0 in (9) by showing that φ(ω(c)) is increasing
in c. We have

dφ(ω(c))

dc
= sec2((1− c)ω(c))

(
−w + (1− c)

dω

dc

)
+

(
w + c

dω

dc

)
.

Since c2(1− c)ω2 − πc2ω + 1 = 0, we find from implicit differentiation that

dω

dc
=

2πω − (2− 3c)ω2

2c(1− c)ω − πc
.

It now follows readily that

w + c
dω

dc
=

cω(π + cω)

2c(1− c)ω − πc
> 0
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and that

−w + (1− c)
dω

dc
=

ω(2− c)(π − (1− c)ω)

2c(1− c)ω − πc
> 0.

Consequently, dφ(ω(c))
dc

> 0, so that there is a unique c0 ∈
(

2
√

π2+1
π2 − 1, 1

)
satisfying

(9).

Remark 3.1. Based on numerical calculations, it turns out that for c0 satisfying
(9), we have c0 ≈ 0.48165092839814441 . . . , and g(c0) ≈ 0.137326240400131 . . . .

Remark 3.2. Consider a sequence of trees Tkj ,nj
such that

kj

nj
→ 1 as j →∞. Since

no pendent vertex of a tree on more than two vertices can be either a centre or a
characteristic vertex, it follows that δcentre(Tkj ,nj

) ≤ nj − kj − 2 for each j ∈ N. We

deduce then that
δcentre(Tkj,nj

)

nj
→ 0 as j →∞.

Theorem 3.2. Consider the sequence δcentre(n)
n

, and let
δcentre(nj)

nj
be a convergent

subsequence of it. Then

lim
j→∞

δcentre(nj)

nj

≤ πc0

4

(
πc0 −

√
π2c2

0 − 4(1− c0)

)
− 1− c0

2
, (10)

where c0 is the unique solution to (9).

Proof. By Theorem 3.1, for all sufficiently large n ∈ N we have δcentre(n) = δ(Tk,n)
for some k. Consequently, for the convergent subsequence in the statement, we have
δcentre(nj)

nj
=

δ(Tkj,nj
)

nj
for some corresponding subsequence kj. For each j ∈ N, denote

the characteristic vertex of Tkj ,nj
that is closest to a centre by kj + lj. Observe

that both
kj

nj
and

kj+lj
nj

are bounded, and so by considering a further subsequence of

Tkj ,nj
if necessary, we may assume that both

kj

nj
and

kj+lj
nj

are convergent, say with

limj→∞
kj

nj
= c and limj→∞

kj+lj
nj

= r. Observe that we then have limj→∞
δcentre(nj)

nj
=

limj→∞
δ(Tkj,nj

)

nj
= c+1

2
− r.

By Remark 3.2, we see that if c = 1, then limj→∞
δcentre(nj)

nj
= limj→∞

δ(Tkj,nj
)

nj
= 0.

Henceforth we assume that c ∈ [0, 1). By applying the technique of the proof of

Theorem 2.2, we find that tan
(

(1−c)π
2(1−r)

)
+ c π

2(1−r)
= 0. Thus, limj→∞

δcentre(nj)

nj
= g(c)

for some c ∈ [0, 1], where g(c) is defined in Lemma 3.2. From Lemmas 3.2 and
3.3, it follows that g attains its maximum on [0, 1] at the unique solution c0 to (9).

Consequently, limj→∞
δcentre(nj)

nj
= g(c) ≤ g(c0), and the conclusion follows.

Theorem 3.3. Let c0 be the unique solution to (9). For the sequence of trees Tbc0nc,n,
we have

lim
n→∞

δcentre(Tbc0nc,n)

n
=

πc0

4

(
πc0 −

√
π2c2

0 − 4(1− c0)

)
− 1− c0

2
.
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Proof. Set k = bc0nc. The centre of Tbc0nc,n is readily seen to consist of vertex n−k+2
2

if n − k is even, and to consist of vertices n−k+1
2

, n−k+3
2

if n − k is odd. Observe
that as n → ∞, n−k+2

2n
, n−k+1

2n
, and n−k+3

2n
all approach c0. Having determined the

asymptotic behaviour of the centre of Tbc0nc,n, it remains only to do the same for its
characteristic vertices.

From the techniques used in section 2, we find that if fl−1

(
π

2(n−k−l)+1

)
> 0,

then the Perron component at vertex k + l is the path component at that vertex,

and if fl−1

(
π

2(n−k−l)+1

)
< 0, then the Perron component at vertex k + l is the

broom component at that vertex. Our goal is to localise the characteristic vertices

of Tbc0nc,n by showing that there are indices l1, l2 such that fl1−1

(
π

2(n−k−l1)+1

)
>

0, fl2−1

(
π

2(n−k−l2)+1

)
< 0 such that as n →∞, k+l1

2n
, k+l2

2n
→ r, where r = 1− π

2w(c0)
.

This will show that the characteristic vertices of Tbc0nc,n lie on the path between
vertices k + l1 and k + l2, and that if jn is a sequence of characteristic vertices of
Tbc0nc,n, then jn

n
→ r as n →∞.

To that end, we will write k = nc0 − εc, where the explicit dependence of k
and εc on n will be suppressed. Observe that εc ∈ [0, 1] for all n. Fix an M > 0,
and consider an l ∈ N such that rn − k − M ≤ l ≤ rn − k + M ; note that since
c0 < r, such an l exists for all sufficiently large n. Observe that k + l can be written
as k + l = rn + εr (here we suppress the explicit dependence of εr on n), where
|εr| ≤ M for all n. In particular, we have εr

n
→ 0 as n → ∞. With this notation

and hypothesis in place, we want to estimate fl−1

(
π

2(n−k−l)+1

)
to terms in 1

n
, and

neglect all terms of order 1
n2 and smaller.

First, note that tan
(

π
2(2(n−k−l)+1)

)
= π

2(2(n−k−l)+1)
+ O

(
1
n2

)
= π

4(1−r)n
+ O

(
1
n2

)
.

Next, observe that
2k(1−cos( π

2(n−k−l)+1))
sin( π

2(n−k−l)+1)
=
(

kπ
2(n−k−l)+1

)
+ O

(
1
n2

)
. Also,

2(k − 1) cos

(
π

2(n− k − l) + 1

)
+ 1 = 1 + k

(
π

2(n− k − l) + 1

)2

+ O

(
1

n2

)
.

Consequently, we find that

2k
(
1− cos

(
π

2(n−k−l)+1

))
sin
(

π
2(n−k−l)+1

)(
(k − 1) cos

(
π

2(n−k−l)+1

)
+ 1
) =

kπ

2(n− k − l) + 1

(
1− k

(
π

2(n− k − l) + 1

)2
)

+ O

(
1

n2

)
=

kπ

2(n− k − l) + 1
− k2

(
π

2(n− k − l) + 1

)3

+ O

(
1

n2

)
.
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Observe that

kπ

2(n− k − l) + 1
=

π
(
c0 − εc

n

)
2(1− r − εr

n
) + 1

n

=

π
(
c0 − εc

n

)
2(1− r)

(
1 +

εr

n(1− r)
− 1

2n(1− r)

)
+ O

(
1

n2

)
=

πc0

2(1− r)
− πc0

2(1− r)

εc

n
+

πc0

2(1− r)

(
εr

n(1− r)
− 1

2n(1− r)

)
+ O

(
1

n2

)
.

Further, it is straightforward to determine that

k2

(
π

2(n− k − l) + 1

)3

=
π3c2

0

8(1− r)2n
+ O

(
1

n2

)
.

Consequently, we find that

2k
(
1− cos

(
π

2(n−k−l)+1

))
sin
(

π
2(n−k−l)+1

)(
(k − 1) cos

(
π

2(n−k−l)+1

)
+ 1
) =

πc0

2(1− r)
− πc0

2(1− r)

εc

n
+

πc0

2(1− r)

(
εr

n(1− r)
− 1

2n(1− r)

)
− π3c2

0

8(1− r)2n
+ O

(
1

n2

)
.

Finally, we need to estimate tan
(

π
2
− lπ

2(n−k−l)+1

)
, or equivalently, − tan

(
π
2

+ lπ
2(n−k−l)+1

)
=

− tan
(

π((2(n−k)+1)
2(2(n−k−l)+1)

)
. Note that

π((2(n− k) + 1)

2(2(n− k − l) + 1)
=

π
(
1− k

n
+ 1

2n

)
2
(
1− k+l

n

)
+ 1

n

=

π
(
1− c0 + εc

n
+ 1

2n

)
2(1− r)

(
1− εr

n(1−r)
+ 1

2n(1−r)

) =

π
(
1− c0 + εc

n
+ 1

2n

) (
1 + εr

n(1−r)
− 1

2n(1−r)

)
2(1− r)

+ O

(
1

n2

)
=

π(1− c0)

2(1− r)
+

π

2(1− r)

(
εc

n
+

1

2n

)
+

π(1− c0)

2(1− r)

(
εr

n(1− r)
− 1

2n(1− r)

)
+ O

(
1

n2

)
.

Consequently, from Taylor’s theorem we have

tan

(
π((2(n− k) + 1)

2(2(n− k − l) + 1)

)
= tan

(
π(1− c0)

2(1− r)

)
+ sec2

(
π(1− c0)

2(1− r)

)[
π

2(1− r)

(εc

n

+
1

2n

)
+

π(1− c0)

2(1− r)

(
εr

n(1− r)
− 1

2n(1− r)

)]
+ O

(
1

n2

)
.
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Assembling the estimates above, we have

fl−1

(
π

2(n− k − l) + 1

)
= tan

(
π

2
− l

π

2(n− k − l) + 1

)
+ tan

(
π

2(n−k−l)+1

2

)

−
2k(1− cos( π

2(n−k−l)+1
))

sin( π
2(n−k−l)+1

)(2(k − 1)(1− cos( π
2(n−k−l)+1

)) + 1)

= −
(

tan

(
π(1− c0)

2(1− r)

)
+ sec2

(
π(1− c0)

2(1− r)

)[
π

2(1− r)

(εc

n

+
1

2n

)
+

π(1− c0)

2(1− r)

(
εr

n(1− r)
− 1

2n(1− r)

)])
+

π

4(1− r)n

−
[

πc0

2(1− r)
− πc0

2(1− r)

εc

n
+

πc0

2(1− r)

(
εr

n(1− r)
− 1

2n(1− r)

)
− π3c2

0

8(1− r)2n

]
+ O

(
1

n2

)
.

Since

− tan

(
π(1− c0)

2(1− r)

)
− πc0

2(1− r)
= 0,

we find that

fl−1

(
π

2(n− k − l) + 1

)
= − sec2

(
π(1− c0)

2(1− r)

)[
π

2(1− r)

(
εc

n
+

1

2n

)
+

π(1− c0)

2(1− r)

(
εr

n(1− r)
− 1

2n(1− r)

)]
+

π

4(1− r)n
−
[
− πc0

2(1− r)

εc

n
+

πc0

2(1− r)

(
εr

n(1− r)
− 1

2n(1− r)

)
− π3c2

0

8(1− r)3n

]
+ O

(
1

n2

)
= − sec2

(
π(1− c0)

2(1− r)

)
π

2(1− r)

(
1

2n
− (1− c0)

2n(1− r)

)
+

π

4(1− r)n
+

πc0

2(1− r)

1

2n(1− r)
+

π3c2
0

8(1− r)3n

+
εc

n

(
− π

2(1− r)
sec2

(
π(1− c0)

2(1− r)

)
+

πc0

2(1− r)

)
− εr

n

(
π(1− c0)

2(1− r)2
sec2

(
π(1− c0)

2(1− r)

)
+

πc0

2(1− r)2

)
+ O

(
1

n2

)
.
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Define α, β, γ as follows:

α = − sec2

(
π(1− c0)

2(1− r)

)
π

2(1− r)

(
1

2
− (1− c0)

2(1− r)

)
+

π

4(1− r)
+

πc0

2(1− r)

1

2(1− r)
+

π3c2
0

8(1− r)3
;

β = − π

2(1− r)
sec2

(
π(1− c0)

2(1− r)

)
+

πc0

2(1− r)
;

γ =
π(1− c0)

2(1− r)2
sec2

(
π(1− c0)

2(1− r)

)
+

πc0

2(1− r)2
.

Observe that β < 0 and γ > 0. With this notation in place we see that

fl−1

(
π

2(n− k − l) + 1

)
=

1

n
(α + βεc − γεr) + O

(
1

n2

)
.

Suppose that we choose l1 via the relation n− k − l1 = b(1− r)nc+ bα+β
γ
c − 1.

Observe that the corresponding value of εr is given by b(1−r)nc−(1−r)n+bα+β
γ
c−1.

Then α +βεc− γεr ≥ α +β− γεr ≥ α +β− γ(bα+β
γ
c− 1) > 0. We thus deduce that

for all sufficiently large n, fl1−1

(
π

2(n−k−l1)+1

)
> 0.

Next, choose l2 via the relation n−k−l2 = d(1−r)ne+dα
γ
e+1. The corresponding

εr is given by d(1−r)ne−(1−r)n+dα
γ
e+1. Then we have α+βεc−γεr ≤ α−γεr ≤

α− γ(dα
γ
e+ 1) < 0. Hence, for all sufficiently large n, fl2−1

(
π

2(n−k−l2)+1

)
< 0.

We have thus shown that for all sufficiently large values of n, the characteristic
vertices of Tbc0nc,n lie on the path from k + l1 to k + l2. Since k+l1

n
, k+l2

n
→ r as

n →∞, the desired conclusion now follows.

We now establish the asymptotics for δcentre(n)
n

.

Corollary 3.3.1. Let c0 be the unique solution to (9). We have

lim
n→∞

δcentre(n)

n
=

πc0

4

(
πc0 −

√
π2c2

0 − 4(1− c0)

)
− 1− c0

2
.

Proof. Take any sequence nj ∈ N such that
δcentre(nj)

nj
converges, say to limit m. Since

δcentre(nj) ≥ δcentre(Tbc0njc,nj
) for each j ∈ N, we deduce from Theorem 3.3 that

m = lim
j→∞

δcentre(nj)

nj

≥ lim
j→∞

δcentre(Tbc0njc,nj
)

nj

=
πc0

4

(
πc0 −

√
π2c2

0 − 4(1− c0)

)
−1− c0

2
.

On the other hand, from Theorem 3.2, we also have

m = lim
j→∞

δcentre(nj)

nj

≤ πc0

4

(
πc0 −

√
π2c2

0 − 4(1− c0)

)
− 1− c0

2
,
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from which we conclude that

lim
j→∞

δcentre(nj)

nj

=
πc0

4

(
πc0 −

√
π2c2

0 − 4(1− c0)

)
− 1− c0

2
.

Since every convergent subsequence of δcentre(n)
n

has limit πc0
4

(
πc0 −

√
π2c2

0 − 4(1− c0)
)
−

1−c0
2

, the desired conclusion follows.
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