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Abstract

Motivated by a question arising in the analysis of social net-
works, we investigate pairs of (0, 1) matrices A,B such that
AAT = BBT and AT A = BT B. Using the techniques of combi-
natorial matrix theory, we show how the problem can be anal-
ysed in terms of certain linear systems. We construct two large
infinite families of pairs of such matrices. One family has an
amusing connection with regular tournament matrices, while the
other is connected with a generalisation of Ryser’s notion of an
interchange for a (0, 1) matrix. Not surprisingly, both families
of matrices are highly structured.

1 Introduction and preliminaries

A two–mode network can be thought of as a rectangular (0, 1) matrix in
the following way: rows represent agents and columns represent events,
with a 1 in the (i, j) position if agent i participates in event j, and
a 0 in that position if not. In the sociology literature such matrices
are analysed mathematically in order to yield insight on, for example,
the relative importance of, or relationships between, the various agents.
For instance, a classic example of a two–mode social network appears
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in [1], while the special issue [2] includes a variety of contemporary
examples and approaches to two–mode social networks.

Given an m × n (0, 1) matrix A that encodes the information in a
two–mode network, one of the mathematical approaches to furnish such
insights is to consider the related matrices AAT (where both rows and
columns correspond to agents) and AT A (where both rows and columns
correspond to events). Both AAT and AT A represent single–mode net-
works, and as pointed out in [3], analysis of this pair of single–mode
networks offers a couple of advantages over direct analysis of A. First,
both matrices are symmetric (unlike the original matrix A which is
not symmetric in general), and so can be analysed by the wide array
of mathematical techniques that is available for symmetric matrices.
Second, since the rows and columns of the single–mode networks rep-
resent the same types of entities (i.e. they are all agents, or they are
all events) the comparisons made between entities are perhaps more
naturally made, as opposed to the ‘apples by oranges’ properties of
two–mode networks. We refer the interested reader to [3] for a discus-
sion of these and related issues.

The question has been posed explicitly in [3] as to whether knowl-
edge of both AAT and AT A is sufficient to reconstruct A itself. To
frame the question more mathematically, if we have m × n (0, 1) ma-
trices A and B such that AAT = BBT and AT A = BT B, must it be
the case that A = B? In general the answer is in the negative, and
[3] alludes to the existence of a pair of distinct 19× 19 matrices whose
corresponding single–mode network matrices are the same; this is an
example of data loss, whereby the pair of matrices AAT and AT A does
not contain enough information to specify A.

In the present paper, our goal is to push farther in that direction
by developing some tools that facilitate a more systematic study of
pairs of (0, 1) matrices A, B such that AAT = BBT and AT A = BT B.
Those tools will lead to the construction of two large infinite families
of such pairs A, B, and as might be expected, both families are highly
structured. Our techniques are linear algebraic, and make use of basic
ideas in combinatorial matrix theory; we refer the interested reader to
[4] for an introduction to that rich and active subject.

We begin with a basic and well–known observation. Suppose that A
is a (0, 1) matrix, and note that the diagonal entries of AAT are simply
the rows sums of A, and that the diagonal entries of AT A are the column
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sums of A. Consequently, if we have two m×n (0, 1) matrices A, B such
that AAT = BBT and AT A = BT B, then necessarily A and B must
have the same row sum vectors, and the same column sum vectors.
Setting E ≡ B−A, it now follows readily that E is a (0, 1,−1) matrix
with E1 = 0 and 1T E = 0T , where 1 denotes an all–ones vector of the
appropriate size (which will always be clear from the context). That
simple observation informs the approach in Sections 2 and 3.

We round out this Section with a preliminary result showing that,
in some sense, the pairs of (0, 1) matrices A, B with AAT = BBT and
AT A = BT B are not so common. Let Sm×n denote the set of all m×n
(0, 1) matrices. Evidently the cardinality of Sm×n is 2mn. We consider
ordered pairs (A, B) ∈ Sm×n×Sm×n; the following result gives an upper
bound on the number of such ordered pairs such that AAT = BBT and
AT A = BT B.

Theorem 1.1. The number of pairs (A, B) ∈ Sm×n × Sm×n such that
AAT = BBT and AT A = BT B is bounded above by

min

{[(
2n

n

)]m

,

[(
2m

m

)]n}
.

Proof. Note that if AAT = BBT for some A, B ∈ Sm×n×Sm×n, then in
particular, A1 = B1. Thus, the number of pairs (A, B) ∈ Sm×n×Sm×n

such that AAT = BBT and AT A = BT B is bounded above by the
number of pairs (A, B) such that A1 = B1.

Suppose for concreteness that we specify a row sum vector r. Then
there are

(
n
r1

)(
n
r2

)
. . .

(
n

rm

)
matrices in Sm×n having row sum vector r.

Hence there are
(

n
r1

)2(n
r2

)2
. . .

(
n

rm

)2
pairs of matrices (A, B) ∈ Sm×n ×

Sm×n such that A1 = r = B1. It now follows that the number of pairs
(A, B) ∈ Sm×n × Sm×n such that A1 = B1 is given by

∑
0≤r1,...,rm≤n

(
n

r1

)2(
n

r2

)2

. . .

(
n

rm

)2

.

Recalling that
∑n

k=0

(
n
k

)2
=

(
2n
n

)
(see [5]), we find that the number of

pairs (A, B) ∈ Sm×n × Sm×n such that A1 = B1 is given by
[(

2n
n

)]m
.

An analogous argument applies to pairs of matrices (A, B) such that
1T A = 1T B, and the conclusion follows.
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Let p(m, n) be the proportion of pairs of matrices (A, B) ∈ Sm×n×
Sm×n such that AAT = BBT and AT A = BT B.

Corollary 1.1.1. As max{m, n} → ∞, p(m, n) → 0.

Proof. From Theorem 1.1, we find that

p(m, n) ≤ min

{
2−2mn

[(
2n

n

)]m

, 2−2mn

[(
2m

m

)]n}
.

By a refinement of Stirling’s approximation, we have, for each k ∈ N,

√
2πkk+ 1

2 e−k+ 1
12k+1 < k! <

√
2πkk+ 1

2 e−k+ 1
12k

(see [6]). It now follows that
(
2k
k

)
< 2k

√
πk

, so that 2−2mn
[(

2n
n

)]m
<

1

(πn)
m
2

for any m, n ∈ N. An analogous bound applies for 2−2mn
[(

2m
m

)]n
,

yielding p(m, n) < min
{

1

(πn)
m
2

, 1

(πm)
n
2

}
. The conclusion follows.

From Corollary 1.1.1, we find that for large m or n, there is only a
small probability that a randomly chosen pair of matrices A, B ∈ Sm×n

has the property that AAT = BBT and AT A = BT B.

2 A linear system approach

One way of approaching the question posed in Section 1 is as follows.
Suppose that we are given an m × n (0, 1,−1) matrix E such that
E1 = 0,1T E = 0T . Determine the circumstances under which can we
find a (0, 1) matrix A such that

A + E is (0, 1),

EAT + AET + EET = 0 and

ET A + AT E + ET E = 0. (1)

If our given E admits such an A, then setting B = A + E we find
readily that AAT = BBT and AT A = BT B. This is the approach that
we adopt in this Section.

The following result shows that the case for a general E can be
reduced to the case that there are no zero rows or columns. The proof
is straightforward, and is omitted.

4



Lemma 2.1. Suppose that E is a (0, 1,−1) matrix such that E1 = 0
and 1T E = 0T . Suppose further that E has the form

E =

[
Ẽ 0
0 0

]
.

Suppose that A is a (0, 1) matrix satisfying (1), and partitioned confor-
mally with E as

A =

[
A1,1 A1,2

A2,1 A2,2

]
.

Then necessarily ẼAT
1,1 +A1,1Ẽ

T + ẼẼT = 0, ẼT A1,1 +AT
1,1Ẽ + ẼT Ẽ =

0, ẼAT
2,1 = 0 and ẼT A1,2 = 0.

Here is one of the main results of this Section.

Theorem 2.1. Suppose that E =
[

ei,j

]
is an m × n (0, 1,−1) ma-

trix such that E1 = 0 and 1T E = 0T . For each pair of indices i, j ∈
{1, . . . ,m} with i < j, consider the following sets:

R1(i, j) = {l|ei,l = 1, ej,l = 0},
R2(i, j) = {l|ei,l = 0, ej,l = 1},
R3(i, j) = {l|ei,l = −1, ej,l = 0},
R4(i, j) = {l|ei,l = 0, ej,l = −1},
R5(i, j) = {l|ei,l = 1, ej,l = 1},
R6(i, j) = {l|ei,l = −1, ej,l = −1}.

Similarly, for each pair of indices p, q ∈ {1, . . . , n} with p < q, consider
the sets

C1(p, q) = {l|el,p = 1, el,q = 0},
C2(p, q) = {l|el,p = 0, el,q = 1},
C3(p, q) = {l|el,p = −1, el,q = 0},
C4(p, q) = {l|el,p = 0, el,q = −1},
C5(p, q) = {l|el,p = 1, el,q = 1},
C6(p, q) = {l|el,p = −1, el,q = −1}.

There is an m × n (0, 1) matrix A such that A + E is also (0, 1) with
AAT = (A + E)(A + E)T and AT A = (A + E)T (A + E) if and only if
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there is a (0, 1) solution to the following linear system:∑
l∈R1(i,j)

aj,l +
∑

l∈R2(i,j)

ai,l −
∑

l∈R3(i,j)

aj,l −
∑

l∈R4(i,j)

ai,l =

|R6(i, j)| − |R5(i, j)|, 1 ≤ i < j ≤ m,∑
l∈C1(p,q)

al,q +
∑

l∈C2(p,q)

al,p −
∑

l∈C3(p,q)

al,q −
∑

l∈C4(p,q)

al,p =

|C6(p, q)| − |C5(p, q)|, 1 ≤ p < q ≤ n.

(2)

Proof. Observe that the existence of a (0, 1) matrix A with the desired
properties is equivalent to the existence of a (0, 1) matrix A satisfying
(1).

Suppose that such an A exists. Applying the condition that A + E
is a (0, 1) matrix, we find that necessarily ai,j = 0 whenever ei,j =
1, and ai,j = 1 whenever ei,j = −1. Fix a pair of indices i, j with
1 ≤ i < j ≤ m. Then the (i, j) entry of EAT + AET + EET is given
by

∑n
l=1 ei,laj,l +

∑n
l=1 ej,lai,l +

∑n
l=1 ei,lej,l. Setting R7(i, j) = {l|ei,l =

1, ej,l = −1} and R8(i, j) = {l|ei,l = −1, ej,l = 1}, we find that

n∑
l=1

ei,laj,l =∑
l∈R1(i,j)

ei,laj,l +
∑

l∈R3(i,j)

ei,laj,l +
∑

l∈R6(i,j)

ei,laj,l +
∑

l∈R7(i,j)

ei,laj,l =

∑
l∈R1(i,j)

aj,l −
∑

l∈R3(i,j)

aj,l − |R6(i, j)|+ |R7(i, j)|.

Similarly we find that

n∑
l=1

ej,lai,l =
∑

l∈R2(i,j)

ai,l −
∑

l∈R4(i,j)

ai,l − |R6(i, j)|+ |R8(i, j)|.

Considering the (i, j) entry of EET , it follows that
∑n

l=1 ei,lej,l = |R5(i, j)|+
|R6(i, j)|−|R7(i, j)|−|R8(i, j)|. Consequently, the (i, j) entry of EAT +
AET + EET is equal to∑
l∈R1(i,j)

aj,l +
∑

l∈R2(i,j)

ai,l−
∑

l∈R3(i,j)

aj,l−
∑

l∈R4(i,j)

ai,l + |R5(i, j)|− |R6(i, j)|.
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Fixing p, q with 1 ≤ p < q ≤ n, an analogous argument shows that the
(p, q) entry of ET A + AT E + ET E is equal to∑
l∈C1(p,q)

al,q+
∑

l∈C2(p,q)

al,p−
∑

l∈C3(p,q)

al,q−
∑

l∈C4(p,q)

al,p+|C5(p, q)|−|C6(p, q)|.

Consequently, if there is a (0, 1) matrix with the desired properties,
then the linear system (2) has a (0, 1) solution.

The converse is straightforward.

Henceforth we let J denote a (possibly rectangular) all–ones matrix;
the dimensions will always be clear from the context.

Remark 2.1. Given any (0, 1,−1) matrix E such that E1 = 0 and
1T E = 0T , it turns out that for the linear system (2), there is always
an entrywise nonnegative solution. This is most easily seen by observing
that if we set B = 1

2
(J − E) (whose entries are in the set {0, 1, 1

2
}),

then EBT + BET + EET = 0 and ET B + BT E + ET E = 0. Observe
that in this setting, B + E is also nonnegative.

Remark 2.2. Suppose that E is an m×n (0, 1,−1) matrix with all row
and column sums zero, and that r is the number of zero entries in E.
It is straightforward to see that the linear system (2) has m(m−1)+n(n−1)

2

equations and r unknowns. Specifically, for each pair of indices (i, j)
with 1 ≤ i < j ≤ m, there is one equation corresponding to the sets
R1(i, j), . . . , R6(i, j), and for each pair of indices (p, q) with 1 ≤ p < q ≤
n, there is one equation corresponding to the sets C1(p, q), . . . , C6(p, q);
the r unknowns are in one–to–one correspondence with the zero entries
in E. Further, the coefficient matrix M of (2) can be constructed
directly from E in the following manner. Fix a position (s, t) such that
es,t = 0. For indices i, j with 1 ≤ i < j ≤ m, the entry of M in the
row corresponding to the sets R1(i, j), . . . , R6(i, j) and in the column
corresponding to es,t is equal to:
ej,t if i = s; ei,t if j = s; and 0 otherwise.
Similarly for indices p, q with 1 ≤ p < q ≤ n, the entry of M in the
row corresponding to the sets C1(p, q), . . . , C6(p, q) and in the column
corresponding to es,t is equal to:
es,q if p = t; es,p if q = t; and 0 otherwise.

For concreteness, we may order the r unknowns corresponding to the
zeros in E lexicographically according to their positions in the matrix
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E; this in turn yields an ordering of the columns of the matrix M .
Similarly the equations in the linear system can be ordered with the
equations corresponding to the sets R1(i, j), . . . , R6(i, j) appearing first
and ordered lexicographically according to the pairs (i, j), followed by
the equations corresponding to the sets C1(p, q), . . . , C6(p, q) ordered
lexicographically according to the pairs (p, q); this yields an ordering
of the rows of M . We adopt those orderings for the columns and rows
of M in Examples 2.1 and 2.2.

Corollary 2.1.1. Let E be an m × n (0, 1,−1) with E1 = 0 and
1T E = 0T . The following are equivalent:
a) there is an m× n (0, 1) matrix A such that A + E is (0, 1), AAT =
(A + E)(A + E)T and AT A = (A + E)T (A + E);
b) the coefficient matrix of the linear system (2) has a (1,−1) null
vector.

Proof. Suppose that a) holds, and suppose that the number of zeros in
E is r. By Theorem 2.1, there is a (0, 1) solution to (2), say a ∈ Rr. It
follows from Remark 2.1 that the vector b = 1

2
1 ∈ Rr is also a solution

to (2). Evidently a− b has entries 1
2

or −1
2
; moreover, as the difference

between two particular solutions to (2), a−b is necessarily a null vector
for the corresponding coefficient matrix. We thus find that 2(a− b) is
the desired (1,−1) null vector.

The converse follows readily.

Remark 2.3. Inspecting the proof of Corollary 2.1.1, we see that there
is a one-to-one correspondence between (1,−1) null vectors of the co-
efficient matrix for (2), and pairs of (0, 1) matrices A, A + E such that
AAT = (A + E)(A + E)T and AT A = (A + E)T (A + E).

Example 2.1. Consider the matrix

E =


1 1 −1 −1 0
−1 0 1 0 0
0 −1 0 0 1
0 0 0 1 −1

 .

Using Remark 2.2, we find that the coefficient matrix for (2) can be
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written as

M =



0 1 −1 0 0 0 0 0 0 0
1 0 0 0 1 −1 −1 0 0 0
−1 0 0 0 0 0 0 1 1 −1
0 −1 0 1 −1 1 0 0 0 0
0 0 1 −1 0 0 0 −1 0 1
0 0 0 0 0 0 1 0 −1 0
0 −1 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 1 0 0
1 0 0 −1 1 0 0 −1 0 0
0 1 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 −1 0 1 0
1 0 0 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 0 1
−1 0 0 1 0 1 0 0 0 −1
−1 0 0 0 0 0 1 0 0 0



.

A straightforward computation shows that the null space of M consists
only of the zero vector. From Corollary 2.1.1, we deduce that there is
no (0, 1) matrix A such that A + E is also (0, 1) with AAT = (A +
E)(A + E)T and AT A = (A + E)T (A + E).

Example 2.2. Here we consider the matrix

E =


1 −1 0 0 0
−1 1 0 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 −1 0 1

 .

The coefficient matrix for the corresponding linear system (2) can be
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written as

M =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 1 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 1 −1 0 0 0 0
−1 0 1 0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 1 −1 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 −1 1 0 0 0 0
0 0 0 −1 0 1 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 −1 0 0 1 0 0 0 0 0 −1 0 0
0 1 0 0 −1 0 −1 0 0 1 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 −1 0 0 1 0 0
−1 0 0 1 0 0 0 1 0 0 0 0 0 −1 0
0 −1 0 0 1 0 0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0 0 −1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1


.

The null space of M contains eight (1,−1) vectors, and this results in
the following matrices A1, . . . , A8, for which AjA

T
j = (Aj +E)(Aj +E)T

and AT
j Aj = (Aj + E)T (Aj + E), j = 1, . . . , 8 :

A1 =


0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

 , A2 =


0 1 1 1 1
1 0 1 1 1
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

 ,

A3 =


0 1 0 0 0
1 0 0 0 0
1 1 0 1 0
1 1 0 0 1
1 1 1 0 0

 , A4 =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 0
1 1 0 0 1
1 1 1 0 0

 ,

A5 =


0 1 0 0 0
1 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0

 , A6 =


0 1 1 1 1
1 0 1 1 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0

 ,

A7 =


0 1 0 0 0
1 0 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 , A8 =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 .

In Section 3 we will consider a family of (0, 1,−1) matrices with zero
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row and column sums that includes E, and prove a general result about
that family.

Recall that an n × n (0, 1) matrix T is a tournament matrix pro-
vided that it satisfies the equation T + T T = J − I. Each tournament
matrix can be thought of as the record of outcomes of a round robin
competition, or equivalently as the adjacency matrix of a tournament,
i.e. a loop–free directed graph D with the property that for each pair
of distinct vertices u, v, D contains precisely one of the arcs u → v
and v → u. A tournament matrix is regular provided that each of its
row sums is equal to n−1

2
; that condition immediately implies the every

column sum is also equal to n−1
2

. Evidently n must be odd in order
for there to exist an n× n regular tournament matrix, and it is known
that for any odd n ≥ 3, there exists at least one regular tournament
matrix of order n (also see Remark 2.4 below). It is straightforward to
determine that if T is a regular tournament matrix, then TT T = T T T.
We refer the interested reader to chapter 45 of [7] for further details on
tournament matrices. Regular tournament matrices play a key role in
the following result.

Theorem 2.2. Suppose that n ∈ N and consider the following (n +
1)× 2n matrix:

E =

[
−I I
1T −1T

]
.

There is an (n+1)×2n (0, 1) matrix A such that i) A+E is also (0, 1),
ii) AAT = (A + E)(A + E)T , and iii) AT A = (A + E)T (A + E) if and
only if n is odd.

When n is odd, each (0, 1) A satisfying i)–iii) has the form

A =

[
T + I T T

0T 1T

]
, (3)

where T is a regular tournament matrix of order n. Conversely, for any
regular tournament matrix T of order n, the matrix A of (3) satisfies
i)–iii).

Proof. The case n = 1 is easily dealt with, so henceforth we consider
the case that n ≥ 2. Suppose that A is a (0, 1) matrix that satisfies
i)–iii). Adopting the notation of Theorem 2.1, we find that C1(1, 2) =
∅, C2(1, 2) = ∅, C3(1, 2) = {1}, C4(1, 2) = {2}, C5(1, 2) = {n + 1}, and

11



C6(1, 2) = ∅. Referring to (2) we thus find that −a1,2 − a2,1 = −1,
that is, one of a1,2 and a2,1 is 0 and the other is 1. Arguing similarly
with the sets C1(i, j), . . . , C6(i, j) for 1 ≤ i < j ≤ n, it follows that
necessarily the submatrix of A on rows 1, . . . , n and columns 1, . . . , n is
of the form T1 + I for some n×n tournament matrix T1. An analogous
argument shows that the submatrix of A on rows 1, . . . , n and columns
n + 1, . . . , 2n has the form T2 for some n× n tournament matrix T2.

Thus A has the general form

A =

[
T1 + I T2

0T 1T

]
,

while A + E has the form

A + E =

[
T1 T2 + I
1T 0T

]
.

Consequently we have

AAT =

[
T1T

T
1 + T2T

T
2 + J T21

1T T T
2 n

]
,

AT A =

[
T T

1 T1 + J T T
1 T2 + T2

T T
2 T1 + T T

2 T T
2 T2 + J

]
,

(A + E)(A + E)T =

[
T1T

T
1 + T2T

T
2 + J T11

1T T T
1 n

]
,

(A + E)T (A + E) =

[
T T

1 T1 + J T T
1 T2 + T T

1

T T
2 T1 + T1 T T

2 T2 + J

]
.

From iii) we find that T2 = T T
1 , while from ii), we have T21 = T11.

This last yields (n − 1)1 − T11 = T21 = T11, from which we deduce
that T11 = n−1

2
1. Thus, n is odd and T1 is regular. The form (3) now

follows.
Finally, we note that if T is a regular tournament matrix of order

n and A is given by (3), then

AAT =

[
2TT T + J n−1

2
1

n−1
2

1T n

]
= (A + E)(A + E)T , and

AT A =

[
T T T + J (T T )2 + T T

T 2 + T T T T + J

]
= (A + E)T (A + E).

12



Remark 2.4. A result of McKay [8] gives an asymptotic expression for
the number of regular tournament matrices of odd order n. Specifically,
as n →∞ (through odd values) then for any ε > 0, the number of n×n
regular tournament matrices is given by

tn ≡
(

2n+1

πn

)n−1
2 (n

e

) 1
2
(
1 + O

(
n−

1
2
+ε

))
.

Thus we see that for each (n + 1)× 2n matrix E of the form described
in Theorem 2.2, there are tn distinct pairs of (0, 1) matrices A, A + E
such that AAT = (A + E)(A + E)T and AT A = (A + E)T (A + E).

3 A permutation matrix approach

As noted in Section 1, if we have (0, 1) matrices A, B such that AAT =
BBT and AT A = BT B, then necessarily A and B have the same row
sum vectors, and the same column sum vectors. A classic paper of
Ryser [9] deals with an operation on (0, 1) matrices that is known as an
interchange. For a (0, 1) matrix M we perform an interchange in one
of two ways:

i) find a 2 × 2 submatrix of M equal to

[
1 0
0 1

]
and replace it by[

0 1
1 0

]
; or

ii) find a 2 × 2 submatrix of M equal to

[
0 1
1 0

]
and replace it by[

1 0
0 1

]
.

Equivalently, we may effect an interchange by adding either

[
−1 1
1 −1

]
or

[
1 −1
−1 1

]
to a suitable submatrix of M. Ryser [9] shows that for

any pair of (0, 1) matrices M1, M2 having the same row sum vectors
and the same column sum vectors, there is a sequence of interchanges
that takes M1 to M2.

In this Section we generalise the notion of an interchange, and use it
to construct many pairs of (0, 1) matrices A, A+E satisfying (1). Here is
the idea. Suppose that we have a (0, 1) matrix M with a k×k submatrix

13



S. Suppose further that there are permutation matrices Q1, Q2 of order
k such that S ≥ Q1 (where the inequality holds entrywise) and S◦Q2 =
0 (where ◦ denotes the Hadamard product of matrices). Then we may
replace the submatrix S of M by S + Q2 − Q1, and that operation
yields another (0, 1) matrix M̃ having the same row and column sum
vectors, respectively, as M does. Evidently this ‘permutation exchange’
operation coincides with an interchange in the case that k = 2.

In order to facilitate our analysis below, we begin in a simplified
setting. Suppose that k ∈ N with k ≥ 2, let Pk denote the k × k cyclic
permutation matrix given by

Pk =



0 1 0 . . . 0 0
0 0 1 0 . . . 0
...

. . . . . .
...

0 0 . . . 0 1
1 0 . . . 0 0


.

Our next few results discuss permutation exchanges in the special case
that Q1 = I and Q2 = Pk. Specifically, we determine, for the case of
two matrices A and Ã related by a permutation exchange with Q1 = I
and Q2 = Pk, when we have AAT = ÃÃT and AT A = ÃT Ã. Ob-
serve that without loss of generality we may assume that the subma-
trix S upon which the permutation exchange operates is the leading
k × k submatrix of A, since for any permutation matrices R1, R2 of
orders m, n respectively, we have AAT = ÃÃT and AT A = ÃT Ã if and
only if R1AR2(R1AR2)

T = R1ÃR2(R1ÃR2)
T and (R1AR2)

T R1AR2 =
(R1ÃR2)

T R1ÃR2.
We begin with a useful technical result.

Lemma 3.1. Let A be an n × n (0, 1) matrix such that A ≥ I and
A ◦ Pn = 0. Let B = A − I and E = Pn − I. We have AAT = (A +
E)(A+E)T and AT A = (A+E)T (A+E) if and only if both B(I−P T

n )
and (I − P T

n )B are skew-symmetric.

Proof. From (1), we see that if AAT = (A + E)(A + E)T then EAT +
AET +EET = 0. This last can be rewritten as (Pn− I)(BT + I)+(B +
I)(P T

n − I) + (Pn − I)(P T
n − I) = 0, which simplifies to the condition

(I−Pn)BT +B(I−P T
n ) = 0. A similar argument applies to the equation

AT A = (A + E)T (A + E), and the conclusion follows.

14



Next, we present a key result.

Theorem 3.1. Let A be an n× n (0, 1) matrix A ≥ I and A ◦ Pn = 0.
Suppose that E = Pn− I. We have a) AAT = (A+E)(A+E)T and b)
AT A = (A+E)T (A+E) if and only if there are scalars α2, . . . , αn−1 ∈
{0, 1} with αj = αn+1−j, j = 2, . . . , n−1 such that A = I +

∑n−1
j=2 αjP

j
n.

Proof. Set B = A−I. In the interests of notational simplicity, through-
out the proof we suppress the dependence of Pn on n. For each j =
2, . . . , n−1, set Tj = B◦P j, and observe that B =

∑n−1
j=2 Tj. By Lemma

3.1, a) and b) hold if and only if B(I − P T ) and (I − P T )B are both
skew-symmetric.

Note that BP T = BP−1 = T2P
−1 +

∑n−1
j=3 TjP

−1 = T2P
−1 +∑n−2

j=2 Tj+1P
−1, while P T B = P−1B = P−1T2+

∑n−2
j=2 P−1Tj+1. We note

in passing that for each j = 1, . . . , n − 2, both Tj+1P
−1 and P−1Tj+1

only have nonzero entries in positions where P j is positive.
We thus find that B(I − P−1) = −T2P

−1 +
∑n−2

j=2 (Tj − Tj+1P
−1) +

Tn−1. Further, (B(I − P−1))T can be written as (B(I − P−1))T =
T T

n−1 +
∑n−2

j=2 (Tn−j − Tn−j+1P
−1)T − (T2P

−1)T . Observe that T T
n−1 is

nonzero only in positions where P is nonzero, (T2P
−1)T is nonzero only

in positions where P n−1 is nonzero, and for each j = 2, . . . , n − 2,
(Tn−j − Tn−j+1P

−1)T is nonzero only in positions where P j is nonzero.
It now follows that B(I − P−1) is skew-symmetric if and only if:
i) T2P

−1 = T T
n−1 and ii) for each j = 2, . . . , n−2, Tj+1P

−1−Tj = (Tn−j−
Tn−j+1P

−1)T . An analogous argument establishes that (I − P−1)B is
skew-symmetric if and only if:
iii) P−1T2 = T T

n−1 and iv) for each j = 2, . . . , n − 2, P−1Tj+1 − Tj =
(Tn−j −P−1Tn−j+1)

T . Consequently, we find that a) and b) hold if and
only if i)-iv) hold.

Suppose now that conditions i)-iv) hold. In particular, we have
T2P

−1 = T T
n−1 = P−1T2. We claim that T2 = α2P

2 for some α2 ∈
{0, 1}. To see the claim, observe that there is a diagonal matrix D
such that T2 = DP 2. Since T2P

−1 = P−1T2, we find that DP = PD;
it is now straightforward to determine that all diagonal entries in D
must be equal, from which the claim follows. Thus T2 = α2P

2 for
some α2 ∈ {0, 1}. Hence T T

n−1 = α2P, so setting αn−1 = α2, we then
have Tn−1 = αn−1P

n−1. Since T3P
−1 − T2 = (Tn−2 − Tn−1P

−1)T , we
find that T3P

−1 − α2P
2 = T T

n−2 − α2P
2; hence T3P

−1 = T T
n−2. We

find similarly that P−1T3 = T T
n−2, which yields that for some α3 ∈
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{0, 1}, T3 = α3P
3 and that Tn−2 = α3P

n−2 ≡ αn−2P
n−2. Iterating the

argument above now shows that if conditions i)-iv) hold, then there are
constants α2, . . . , αn−1 ∈ {0, 1} such that αj = αn+1−j, j = 2, . . . , n− 1
and Tj = αjP

j for all such j. The desired conclusion for B now follows.
Conversely, if B =

∑n−1
j=2 αjP

j, and αj = αn+1−j, j = 2, . . . , n − 1,
then conditions i)-iv) are readily verified.

Remark 3.1. Suppose that E = Pn − I. From Theorem 3.1 we see
that for any choice of α2, . . . , αbn+1

2
c ∈ {0, 1}, we can then determine

αbn+3
2
c, . . . , αn−1 in order to generate a pair of (0, 1) matrices A, A +

E with AAT = (A + E)(A + E)T and AT A = (A + E)T (A + E).

Consequently we find that there are 2b
n−1

2
c pairs of such (0, 1) matrices

A, A + E.

Next, we consider a (0, 1) matrix A given as a 2×2 block partitioned

matrix A =

[
A11 A12

A21 A22

]
, and an associated (0, 1,−1) matrix E =[

Pp − I 0
0 Pq − I

]
, where p, q ∈ N. Suppose that both A and A + E

are (0, 1) matrices, and that we have

AAT = (A + E)(A + E)T and AT A = (A + E)T (A + E). (4)

Considering the diagonal blocks in (4), it follows that A11A
T
11 = (A11 +

Pp−I)(A11 +Pp−I)T and AT
11A11 = (A11 +Pp−I)T (A11 +Pp−I), and

that A22A
T
22 = (A22 + Pq − I)(A2 + Pq − I)T and AT

22A22 = (A22 + Pq −
I)T (A22 + Pq − I). Evidently Theorem 3.1 can now be applied to A11

(with associated permutation matrix Pp), and to A22 (with associated
permutation matrix Pq).

Next we consider the off–diagonal blocks of (4). It follows readily
that

A12(P
T
q −I)+(Pp−I)AT

21 = 0 and (P T
p −I)A12 +AT

21(Pq−I) = 0. (5)

We adopt the notation that for indices i, j, the (i, j) entry of A12 is
A12(i, j); a similar notation applies to the entries of A21. We can then
rewrite (5) entry–by–entry as

A12(i, j)− A12(i, j + 1) + A21(j, i)− A21(j, i + 1) = 0 and (6)

A12(i, j)− A12(i− 1, j) + A21(j, i)− A21(j − 1, i) = 0, (7)

for all i = 1, . . . , p, j = 1, . . . , q.
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Here we note that in expressions of the form A12(k, l), we are to in-
terpret k modulo p and l modulo q, while in expressions of the form
A21(m, n), we are to interpret m modulo q and n modulo p.

Set A21(1, i) = xi, i = 1, . . . , p and A12(i, 1) = yi, i = 1, . . . , p. In the
sequel, we will interpret the subscripts on the xk’s and yk’s as being
taken modulo p.

The following sequence of lemmas will be used to establish the re-
lationship between A12 and A21. For Lemmas 3.2–3.3 and Corollaries
3.1.1 and 3.1.2, we assume that A12 and A21 are (0, 1) matrices satis-
fying (5).

Lemma 3.2. For each i = 1, . . . , p and j = 2, . . . , q, we have

A12(i, j) =

2j−3∑
l=0

(−1)lx2+i−j+l +

2j−4∑
l=0

(−1)ly2+i−j+l (8)

and

A21(j, i) =

2j−2∑
l=0

(−1)lx1+i−j+l +

2j−3∑
l=0

(−1)ly1+i−j+l. (9)

Proof. We proceed by induction on j. Note that using (6) with j = 1
yields A12(i, 2) = A12(i, 1) + A21(1, i) − A21(1, i + 1) = xi − xi+1 + yi,
which agrees with (8) when j = 2. Next, we use (7) with j = 2 to find
that A21(2, i) = A21(1, i) + A12(i− 1, 2)−A12(i, 2) = xi + (xi−1 − xi +
yi−1)− (xi−xi+1 + yi) = xi−1−xi + xi+1 + yi−1− yi, which agrees with
(9) when j = 2. This establishes the base case j = 2 for the induction.

Suppose now that for some j0 ≥ 2, (8) and (9) hold for j = 2, . . . , j0.
Using (6) with j = j0 we find that A12(i, j0+1) = A12(i, j0)+A21(j0, i)−
A21(j0, i+1). Appealing to the induction hypothesis, we thus find that

A12(i, j0 + 1) =

2j0−3∑
l=0

(−1)lx2+i−j0+l +

2j0−4∑
l=0

(−1)ly2+i−j0+l

+

2j0−2∑
l=0

(−1)lx1+i−j0+l +

2j0−3∑
l=0

(−1)ly1+i−j0+l

−
2j0−2∑
l=0

(−1)lx2+i−j0+l −
2j0−3∑
l=0

(−1)ly2+i−j0+l.
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This last now simplifies to

A12(i, j0 + 1) =

2j0−1∑
l=0

(−1)lx2+i−(j0+1)+l +

2j0−2∑
l=0

(−1)ly2+i−(j0+1)+l,

which agrees with (8) when j = j0 + 1.
Similarly, using (7) with j = j0 + 1, we have A21(j0 + 1, i) =

A21(j0, i) + A12(i − 1, j0 + 1) − A12(i, j0 + 1). Using the induction hy-
pothesis for A21 and the fact that we have already established (8) for
j0 + 1, we find that

A21(j0 + 1, i) =

2j0−2∑
l=0

(−1)lx1+i−j0+l +

2j0−3∑
l=0

(−1)ly1+i−j0+l

+

2j0−1∑
l=0

(−1)lx2+i−1−j0−1+l +

2j0−2∑
l=0

(−1)ly2+i−1−j0−1+l

−
2j0−1∑
l=0

(−1)lx1+i−j0+l −
2j0−2∑
l=0

(−1)ly1+i−j0+l.

A little simplification now yields

A21(j0 + 1, i) =

2j0∑
l=0

(−1)lx1+i−(j0+1)+l +

2j0−1∑
l=0

(−1)ly1+i−(j0+1)+l,

which completes the proof of the induction step.

For each k = 1, . . . , p, let dk = xk+1 − yk where as usual the
subscripts are interpreted modulo p. With this notation we have,
in view of Lemma 3.2, that for each i = 1, . . . , p and j = 2, . . . , q
A12(i, j) = xi+2−j −

∑2j−4
k=0 (−1)kdi+2−j+k and A21(j, i) = xi+1−j −∑2j−3

k=0 (−1)kdi+1−j+k.

Lemma 3.3. Fix an index i between 1 and p, and suppose that dk 6= 0
for some k = 1, . . . , p. We have

di =


0 if xi 6= xi+1

1 if xi = xi+1 = 1

−1 if xi = xi+1 = 0.
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Proof. Suppose that xi = 1 and xi+1 = 0. Then di = 0− yi ∈ {0,−1}.
Since A12(i, 2) = xi − di = 1 − di ∈ {0, 1} it must be the case that
di = 0. Similarly, if xi = 0 and xi+1 = 1, then di = 1 − yi ∈ {0, 1}. As
A12(i, 2) = xi − di = −di ∈ {0, 1}, we find that di must be 0. Thus, if
xi 6= xi+1, then di = 0.

Next, suppose that xi = xi+1 = 1. Since xi+1 = 1, we find as above
that di ∈ {0, 1}. Suppose that di = 0. Recall that dk 6= 0 for some k,
and let t be the smallest positive index such that di = di+1 = . . . =
di+t−1 = 0, di+t 6= 0. If t is even, then note that A12(i + t

2
, t+4

2
) =

xi−
∑t

k=0(−1)kdi+k while A21(
t+2
2

, i + t+2
2

) = xi+1−
∑t−1

k=0(−1)kdi+k+1;

on the other hand if t is odd then A21(
t+3
2

, i+ t+1
2

) = xi−
∑t

k=0(−1)kdi+k

while A12(i + t+1
2

, t+3
2

) = xi+1 −
∑t−1

k=0(−1)kdi+k+1. In either case, both

xi −
∑t

k=0(−1)kdi+k and xi+1 −
∑t−1

k=0(−1)kdi+k+1 are in {0, 1}. Since
xi −

∑t
k=0(−1)kdi+k = 1 − (−1)tdi+t, we deduce that di+t = (−1)t.

But then we have xi+1 −
∑t−1

k=0(−1)kdi+k+1 = 1 − (−1)t−1(−1)t = 2, a
contradiction. Hence it must be the case that di = 1.

Finally, we suppose that xi = xi+1 = 0. Since xi − di ∈ {0, 1}, we
find that di ∈ {0,−1}. If di = 0, let t be the smallest positive index
such that di = di+1 = . . . = di+t−1 = 0, di+t 6= 0. As above, both
xi −

∑t
k=0(−1)kdi+k and xi+1 −

∑t−1
k=0(−1)kdi+k+1 are in {0, 1}. Since

xi −
∑t

k=0(−1)kdi+k = −(−1)tdi+t, we find that di+t = (−1)t+1. But
then we have

xi+1 −
t−1∑
k=0

(−1)kdi+k+1 = −(−1)t−1(−1)t+1 = −1,

a contradiction. Hence di = −1.

Corollary 3.1.1. Suppose that dk 6= 0 for some k = 1, . . . , p. Then
xi + yi = 1 for i = 1, . . . , p.

Proof. Fix an index i between 1 and p. We consider three cases. First,
suppose that xi 6= xi+1, so that necessarily xi+1 = 1 − xi. Then by
Lemma 3.3, di = 0. Then we have yi = xi+1− di = xi+1 = 1− xi. Next,
suppose that xi = xi+1 = 1; by Lemma 3.3 we then have di = 1, so that
yi = xi+1 − di = 0. Finally, suppose that xi = xi+1 = 0. Then di = −1,
so that yi = 1.

Corollary 3.1.2. Suppose that dk 6= 0 for some k = 1, . . . , p. Then
A12 = J − AT

21.
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Proof. For each i = 1, . . . , p, we have A12(i, 1)+A21(1, i) = yi +xi = 1,
by Corollary 3.1.1. For each j = 2, . . . , q, we have, by Lemma 3.2 and
Corollary 3.1.1 that

A12(i, j) + A21(j, i) =
2j−3∑
l=0

(−1)lx2+i−j+l +

2j−4∑
l=0

(−1)ly2+i−j+l

+

2j−2∑
l=0

(−1)lx1+i−j+l +

2j−3∑
l=0

(−1)ly1+i−j+l

= −xi+j−1 +

2j−4∑
l=0

(−1)l + xi+j−1 +

2j−3∑
l=0

(−1)l

= 1,

as desired.

We are now in a position to describe A12 and A21 when some dk is
nonzero.

Proposition 3.1. Suppose that for some k = 1, . . . , p we have dk 6= 0.

Then the vector x =

 x1
...
xp

 satisfies P q
p x = x and xk + xk+1 6= 1.

Further, A12 = J − AT
21 and

AT
21 =

[
x Ppx P 2

p x . . . P q−1
p x

]
.

Proof. From (9) and Corollary 3.1.1 we have

A21(j, i) =

2j−2∑
l=0

(−1)lx1+i−j+l +

2j−3∑
l=0

(−1)ly1+i−j+l = xi+j−l +

2j−3∑
l=0

(−1)l

= xi+j−l

whenever j ≥ 2. It now follows that we may write AT
21 as

AT
21 =

[
x Ppx P 2

p x . . . P q−1
p x

]
.
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Corollary 3.1.2 establishes the fact that A12 = J − AT
21. Using that

fact, in conjunction with (5), we deduce that AT
21P

T
q = PpA

T
21, which is

equivalent to[
Ppx P 2

p x . . . P q−1
p x x

]
=

[
Ppx P 2

p x . . . P q−1
p x P q

p x
]
.

Hence P q
p x = x. Finally we note that since dk 6= 0 by hypothesis, we

have 0 6= xk+1 − yk = xk + xk+1 − 1.

Here is the characterisation of A12 and A21 when each dk is zero.

Proposition 3.2. Suppose that dk = 0 for k = 1, . . . , p. Then the
(0, 1) vector x satisfies P q

p x = x. Further,

AT
21 =

[
x P−1

p x P−2
p x . . . P−q+1

p x
]

and
A12 =

[
Ppx x P−1

p x . . . P−q+2
p x

]
.

Proof. The formulas for A12 and AT
21 are readily established, so we need

only show that P q
p x = x. From (5) we find that A12(I − P T

q ) + (I −
Pp)A

T
21 = 0. From the formulas for A12 and AT

21, and considering the
last column of A12(I−P T

q )+(I−Pp)A
T
21, it now follows that necessarily

P q
p x = x.

Remark 3.2. It is readily verified that if A12 and A21 are constructed
as in Proposition 3.1, or as in Proposition 3.2, then the equations (5)
are satisfied.

Remark 3.3. If p and q are relatively prime, it is straightforward to see
that the only (0, 1) vectors that are solutions to the equation P q

p x = x
are x = 0 and x = 1. Suppose now that gcd(p, q) ≡ g ≥ 2, say with
p = ag for some a ∈ N. Then the solution space to the equation P q

p x = x

is spanned by the vectors x(j) =
∑a−1

i=0 ej+iq, j = 1, . . . , g (which are
obviously linearly independent). We deduce that the (0, 1) solutions to
P q

p x = x are of the form
∑g

j=1 ajx(j), where aj ∈ {0, 1}, j = 1, . . . , g.
Hence there are 2g (0, 1) vectors x such that P q

p x = x.

Here is the main result of this Section. Observe that it is foreshad-
owed by Example 2.2.
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Theorem 3.2. Suppose that A is an m × n (0, 1) matrix, E is a
(0, 1,−1) matrix such that A + E is also (0, 1). Suppose further that

E =


Pm1 − I

. . . 0
Pmk

− I
0 0


and that

A =


A11 . . . A1k
...

. . .
... B

Ak1 . . . Akk

C D

 ,

where E and A have been partitioned conformally. Then A and E
satisfy (4) if and only if all of the following conditions hold.
Condition 1– For each i = 1, . . . , k, there are scalars αj,i ∈ {0, 1}, j =
2, . . . ,mi − 1 such that αj,i = αmi+1−j,i, j = 2, . . . ,mi − 1 and Aii =
I +

∑mi−1
j=2 αj,iP

j
mi

.
Condition 2– There are (0, 1) vectors u1, . . . , uk, v1, . . . , vk such that

B =

 1uT
1

...
1uT

k

 and C =
[

v11
T . . . vk1

T
]
.

Condition 3– For each pair of distinct indices i, j between 1 and k, there
is a (0, 1) vector x(i,j) in Rmi such that P

mj
mi x(i,j) = x(i,j), and either

a) Aij = J − AT
ji, A

T
ji =

[
x(i,j) Pmi

x(i,j) . . . P
mj−1
mi x(i,j)

]
or
b) Aij =

[
Pmi

x(i,j) x(i,j) . . . P
−mj+2
mi x(i,j)

]
and

AT
ji =

[
x(i,j) P−1

mi
x(i,j) . . . P

−mj+1
mi x(i,j)

]
.

Proof. By considering the blocks of (A+E)(A+E)T and (A+E)T (A+
E), it follows that (4) holds if and only if all of the following conditions
are satisfied.
i) For each i = 1, . . . , k we have (Aii +I−Pmi

)(Aii +I−Pmi
)T = AiiA

T
ii

and (Aii + I − Pmi
)T (Aii + I − Pmi

) = AT
iiAii.
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ii)

C

 I − P T
m1

. . .

I − P T
mk

 = 0 and

 I − P T
m1

. . .

I − P T
mk

B = 0.

iii) For each pair of distinct indices i, j between 1 and k, Aij(I−P T
mj

)+

(I − Pmi
)AT

ji = 0 and (I − P T
mi

)Aij + AT
ji(I − Pmj

) = 0.
Applying Theorem 3.1, we find that i) is equivalent to Condition 1,
while it is readily established that ii) is equivalent to Condition 2. The
equivalence of iii) with Condition 3 follows from Propositions 3.1, 3.2
and Remark 3.2.

Remark 3.4. In this remark we maintain the notation of Theorem 3.2.
From Remark 3.1 we find that for each i = 1, . . . , k there are 2b

mi−1

2
c ma-

trices Aii satisfying Condition 1. It is clear that there are 2k(n−
Pk

i=1 mi)

matrices B satisfying Condition 2 and 2k(m−
Pk

i=1 mi) matrices C satis-
fying Condition 2. Next, fix a pair of distinct indices i, j ∈ {1, . . . , k},
and let gij = gcd(mi, mj). It follows from Remark 3.3 and Theorem 3.2
that there are 2gij+1 pairs of matrices Aij, Aji satisfying Condition 3 for
those indices.

Assembling these observations we find that there are

Πk
i=12

bmi−1

2
c × Π1≤i<j≤k2

gij+1 × 2k(m+n−2
Pk

i=1 mi)

matrices satisfying each of Conditions 1–3.

Remark 3.5. Suppose that we have two m × n (0, 1) matrices A, Ã
that are related by performing a permutation exchange on an r × r
submatrix S of A. As explained in the earlier part of this Section, there
is no loss of generality in assuming that S consists of the leading r× r
principal submatrix of A. For concreteness, we suppose that we have
r × r permutation matrices Q1, Q2 such that S ≥ Q1 and S ◦ Q2 = 0,
and that in order to generate Ã from A, we replace S by S + Q2 −Q1.

Let R be the m×m permutation matrix given by R =

[
QT

1 0
0 I

]
,

set B = RA and B̃ = RÃ. Evidently AAT = ÃÃT and AT A = ÃT Ã if
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and only if BBT = B̃B̃T and BT B = B̃T B̃. Observe also that

B̃ = B +

[
QT

1 Q2 − I 0
0 0

]
≡ B + E.

Next, we recall that the permutation matrix QT
1 Q2 is itself permuta-

tionally similar to direct sum of cyclic permutation matrices, i.e. there
is an r×r permutation matrix U and indices m1, . . . ,mk ∈ N such that

UQT
1 Q2U

T =

 Pm1

. . .

Pmk

 .

Consequently, by performing a suitable permutation similarity trans-
formation on B and B̃ simultaneously (which only affects the first r
rows and columns of B and B̃) we see that our perturbing matrix E
can be taken to have the form

Pm1 − I
. . . 0

Pmk
− I

0 0


that appears as part of the hypothesis of Theorem 3.2.

It now follows that by performing suitable row and column permu-
tations on both A and Ã, the question of whether or not AAT = ÃÃT

and AT A = ÃT Ã is resolved by an application of Theorem 3.2.

4 Conclusion

Corollary 1.1.1 makes it clear that examples of two–mode networks
that exhibit data loss are rare from a probabilistic standpoint. Never-
theless, by using tools from combinatorial matrix theory, we are able
to construct large infinite families of two–mode networks such that the
corresponding incidence matrix A cannot be reconstructed from knowl-
edge of AAT and AT A (see Theorem 2.2 and Remark 2.4, as well as
Theorem 3.2 and Remark 3.4). Given a (0, 1,−1) matrix E with zero
row and column sums, Corollary 2.1.1 and Remark 2.2 provide a linear
algebraic technique for determining whether or not there is a pair of
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(0, 1) matrices A, B whose difference is E such that AAT = BBT and
AT A = BT B. However, we have not addressed the more subtle ques-
tion of how one might determine, for a given (0, 1) matrix A whether
or not it exhibits data loss; we note in passing that [3] describes how
the singular value decomposition can be used to provide some insight
on that question. Finally we note that the families of matrices arising
in Theorems 2.2 and 3.2 possess a tremendous amount of structure. It
remains to be seen whether there are two–mode networks that arise in
empirical settings where data loss takes place.
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