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Abstract

For a Markov chain described by an irreducible stochastic matrix A of order
n, the mean first passage timemi,j measures the expected time for the Markov
chain to reach state j for the first time given that the system begins in state
i, thus quantifying the short-term behaviour of the chain. In this article, a
lower bound for the maximum mean first passage time is found in terms of
the stationary distribution vector of A, and some matrices for which equality
is attained are produced. The main objective of this article is to characterise
the directed graphs for which any stochastic matrix A respecting this directed
graph attains equality in this lower bound, producing a class of Markov chains
with optimal short-term behaviour.
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1. Introduction

A stochastic matrix A is an entrywise nonnegative matrix whose rows sum
to 1, i.e. A1 = 1, where 1 represents the vector of all ones. Stochastic matri-
ces are central to the study of Markov chains, which are a type of probabilistic
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model describing dynamical systems which move between some finite num-
ber of states in discrete time-steps, where these transitions between states
depend only on the present state occupied by the system. The connection
with stochastic matrices is the following: given a Markov chain describing a
system with a finite state space indexed by the integers {1, 2, . . . , n}, con-
struct a matrix such that the (i, j)th entry is the probability of the system
transitioning from state i to state j in a single time step. This is a stochastic
matrix, referred to as the probability transition matrix, or simply transition
matrix of the chain. This transition matrix A wholly represents the Markov
chain, in that given an initial vector u0 describing the probabilities that the
process is in one of the various states at time 0, the probability distribution
across all states after k time-steps is the vector u>0 A

k, for k ≥ 1.
Representing a Markov chain by a stochastic matrix in this way enables

us to analyse the long-term behaviour of the modelled system using basic
techniques from linear algebra. If the transition matrix A is irreducible –
i.e. for any pair of indices i, j, there exists some m ∈ N such that the (i, j)th

entry of Am is positive – then by the Perron-Frobenius theorem, A must have
a strictly positive left eigenvector w = [w1w2 · · · wn]> corresponding to the
eigenvalue 1. This eigenvector, when normalised so that the entries sum to
1 (thus producing a probability distribution) is referred to as the stationary
distribution vector of the chain. It is an important quantity for the following
reason: in the case that the transition matrix A is also primitive – i.e. there
exists some m ∈ N for which every entry of Am is positive – the iterates of the
chain converge to w> independent of the initial distribution. This is powerful
in analysing the underlying system, since we can then say that the probability
the Markov chain is in the ith state in the long term is the ith entry wi of
this eigenvector w>. Thus the long-term behaviour of the modelled system is
summarised by a fundamental feature of the corresponding stochastic matrix.

The short-term behaviour of a system modelled by a Markov chain is
considered as follows. Define Fi,j to be a random variable representing the
first passage time from state i to state j; i.e. the number of time steps
elapsed (≥ 1) before the system reaches state j for the first time, given that
it began in state i. The expected value of this random variable, then, is a
key quantity of interest. It is referred to as the mean first passage time from
i to j, denoted mi,j. In the special case that i = j, mi,i is referred to as
the mean first return time to state i. This facilitates the construction of the
matrix of mean first passage times M = [mi,j] which is the unique solution
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(see [15, Section 6.1]) to the equation

M = A(M −Mdiag) + J, (1.1)

where Mdiag is the diagonal matrix diag([m1,1 · · · mn,n]) and J is the matrix
containing all ones. It is the off-diagonal entries of M which are the main
subject of this article. We find a lower bound (in terms of the stationary
distribution vector) for the maximum mean first passage time between any
two distinct states in the system, thus giving some insight into how “well-
connected” the Markov chain is.

Remark 1.1. Another measure of “connectivity” in a Markov chain with
transition matrix A is the quantity κi(A) given for some index 1 ≤ i ≤ n by

κi(A) =
n∑

j=1
j 6=i

mi,jwj,

which may be interpreted as the expected length of time to reach a randomly-
chosen destination state from initial state i. Remarkably, this was shown to
be independent of the choice of i in [11], and so κi(A) is referred to as
Kemeny’s constant (for any i), and denoted instead by K(A). An alternative
formula for Kemeny’s constant was given in [17] as

K(A) =
n∑

i=1

n∑
j=1
j 6=i

wimi,jwj,

admitting the interpretation of Kemeny’s constant as the expected number
of time-steps it takes the Markov chain system to move from a randomly-
selected initial state to a randomly-selected destination state (where selection
occurs with probabilities given by the stationary distribution). Thus a low
value of Kemeny’s constant observed for a transition matrix A implies that
the Markov chain represented by A is, in a sense, “well-connected”. A lower
bound for K(A) (for A a stochastic matrix of order n) is given in [10] by
K(A) ≥ n−1

2
, while more recently, a lower bound in terms of the stationary

distribution vector of A was determined in [14]. We will pursue a similar
result here, but for the more widely-ranging mean first passage times, giving
an alternate understanding of how “well-connected” the system is in the short
term.
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We begin by determining a lower bound on the maximum mean first pas-
sage time into state j in terms of the jth entry of the stationary distribution
vector.

Proposition 1.2. Let A = [aij] be an n× n stochastic irreducible transition
matrix, with stationary vector w and mean first passage matrix M. Then for
every 1 ≤ j ≤ n,

max
1≤i≤n
i 6=j

mi,j ≥
1

wj

− 1.

Equality is attained in this lower bound if and only if

1. ajj = 0; and

2. ajk is nonzero only if mk,j = 1
wj
− 1.

Proof. Without loss of generality, suppose j = n. Partition off the last row
and column of A:

A =

[
T (I − T )1
r> 1− r>1

]
.

From the eigen-equation for w>, it follows readily that

wn =
1

1 + r>(I − T )−11
. (1.2)

Now suppose the mean first passage matrix M is partitioned conformally, so
that

M =

[
M̂ y
s> mn,n

]
.

By examining the matrix equation (1.1) using these block-partitioned matri-
ces, it is easily seen that y = (I − T )−11, i.e.

(I − T )−11 =


m1,n

m2,n
...

mn−1,n

 .
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Hence

r>(I − T )−11 =
n−1∑
i=1

rimi,n

≤
n−1∑
i=1

ri

(
max

1≤i≤n−1
mi,n

)
= r>1

(
max

1≤i≤n−1
mi,n

)
≤ max

1≤i≤n−1
mi,n,

(1.3)

since r>1 ≤ 1, and so we may conclude from (1.2) that

max
1≤i≤n−1

mi,n ≥
1

wn

− 1. (1.4)

To investigate when equality holds in (1.4), simply examine the string of
inequalities in (1.3), and observe that equality holds in the first one if and
only if ri > 0 ⇒ mi,n is maximum. Equality holds in the second inequality
in (1.3) if and only if r>1 = 1; i.e. ann = 0.

Remark 1.3. In the proof of Proposition 1.2 an expression is obtained for
mi,n as

mi,n = e>i (I − T )−11, for i = 1, . . . , n− 1.

The same techniques of partitioning may be applied after an appropriate
permutation of the rows and columns of A and M to produce the following
expressions for mi,j:

mi,j =

{
e>i (I − A(j))

−1
1, if i < j

e>i−1(I − A(j))
−1
1, if j < i,

where A(j) denotes the principal submatrix of order n−1 obtained by deleting
the jth row and column from A. We also note that by examining (1.2) along
with (1.1) in block-partitioned form, it may be determined that mn,n = 1

wn
,

and in general,

mi,i =
1

wi

for all i = 1, . . . , n.

The interested reader can find alternative derivations of these expressions
using so-called absorbing chain techniques in [18, Theorem 4.5, pp.128-130].
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Proposition 1.2 furnishes a lower bound on the overall maximum mean
first passage time.

Corollary 1.4. Let A be an n × n stochastic irreducible matrix, with sta-
tionary vector w and mean first passage matrix M = [mi,j]. Then

max
i 6=j

mi,j ≥
1

mink wk

− 1. (1.5)

Observe that we can think of this result in terms of an optimisation
problem – if the stationary distribution has been specified, then that places
a lower bound on the maximum off-diagonal entry in the mean first passage
matrix. Thus, if A yields equality in (1.5) then A has optimal performance
(in terms of mean first passage times) subject to having a specified long-term
behaviour (i.e. stationary distribution).

Such a result is of great value in many applications of Markov chains,
particularly in those where mean first passage times may be used to determine
some key feature of the modelled system. For example, Markov chains can
be used as a model for traffic on an urban road network (see [6]) by letting
the state space be a set of road segments and transition probabilities be
determined by “turning probabilities” observed in reality. In this context,
the mean first passage times represent average travel times between locations,
a key aspect in the efficiency of the network. By producing a lower bound
on the maximum expected travel time between two locations, we provide an
indication of how well-connected the network might be.

Example 1.5. Let w be any probability vector, ordered so that w1 is the
smallest entry. Then the transition matrix

A =
1

1− w1

(1w> − w1I)

is readily seen to yield equality in (1.5).

Example 1.6. Consider a stochastic companion matrix

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
a1 a2 a3 · · · an


6



where the aj’s are nonnegative and sum to 1. It is straightforward to show
that the stationary vector w> of A is given by

wj =

∑j
k=1 ak∑n

k=1(n+ 1− k)ak
, j = 1, . . . , n.

Observe that the wj’s are nondecreasing, that a1 = w1

wn
, and that aj =

wj−wj−1

wn
, for j = 2, . . . , n. Further, it can be shown that the mean first

passage matrix M is given by

M =


1
w1

1 2 · · · n− 2 n− 1
1
w1
− 1 1

w2
1 2 · · · n− 2

1
w1
− 2 1

w2
− 1 1

w3
1 · · · n− 3

...
...

...
. . .

...
1
w1
− (n− 1) 1

w2
− (n− 2) 1

w3
− (n− 3) · · · 1

wn−1
− 1 1

wn

 .

In particular, w1 is the minimum entry in w>, and since w1 ≤ 1
n
, we also

have 1
w1
− 1 ≥ n− 1; hence the maximum off-diagonal entry in M is 1

w1
− 1,

so that equality holds in (1.5).

The next example we consider is a very particular family of stochas-
tic matrices, first discussed in [14] in the context of the characterisation of
stochastic matrices A for which equality is attained in the following lower
bound on Kemeny’s constant:

K(A) ≥
n∑

j=1

(j − 1)wj, (1.6)

where the stationary vector w> =
[
w1 · · · wn

]
is ordered so that the entries

are in nondecreasing order. As we have already discussed, Kemeny’s constant
provides a measure of efficiency in a Markov chain, and so if this family of
matrices can also be shown to attain equality in the lower bound on the mean
first passage times given in (1.5), then these transition matrices represent
Markov chains that can be considered to have optimal performance in two
ways, subject to their having a specified stationary distribution.

Example 1.7. Let A be an irreducible stochastic matrix of order n with
stationary distribution vector w, and suppose that the entries of w are in
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nondecreasing order. Then equality holds in (1.6) for A if and only if A is
permutation equivalent to a matrix in the following family, for a fixed index
k, 1 ≤ k ≤ n− 1:

0 0 · · · 0 1 0 · · · 0 0 0
w1

w2
0 · · · 0 w2−w1

w2
0 · · · 0 0 0

. . .
...

...
...

...
...

0 · · · wk−1

wk
0 wk−wk−1

wk
0 · · · 0 0 0

0 0 · · · 0 0 1 · · · 0 0 0
0 0 · · · 0 0 0 1 0
...

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 · · · 0 1 0
0 0 · · · 0 0 0 · · · 0 0 1

0 · · · 0 wk

wn

wk+1−wk

wn

wk+2−wk+1

wn
· · · wn−2−wn−3

wn

wn−1−wn−2

wn

wn−wn−1

wn


.

To clarify the transition matrix, observe that the state space is partitioned
as {1, . . . , k}, {k + 1, . . . , n − 1}, {n}. Note that there are two degenerate
cases, when k = 1 and k = n− 1; each produces a stochastic matrix with a
companion matrix pattern.

To prove that these matrices also yield equality in (1.5), we present the
mean first passage matrix here, and leave it to the reader to confirm that it
is the unique solution to the equation (1.1).

Fix an index k. Then mi,j is given by:

mi,j =



1
wj

(1−
∑j−1

r=1wr) + 1
wi

(
∑i−1

r=1wr) 1 ≤ i < j ≤ k;
1
wj
− 1

wi
(
∑i−1

r=1wr) 1 ≤ j < i ≤ k;
1
wj

(1−
∑j−1

r=1wr)− (i− k) k + 1 ≤ i ≤ n, 1 ≤ j ≤ k;

(j − k) + 1
wi

(
∑i−1

r=1wr) 1 ≤ i ≤ k, k + 1 ≤ j ≤ n;

j − i k + 1 ≤ i < j ≤ n;
1
wj

+ (j − i) k + 1 ≤ j < i ≤ n;
1
wi

i = j.

It may be determined that the largest off-diagonal entry of M occurs in the
(k + 1, 1) position, and is equal to 1

w1
− 1. We remark that results from

Section 2 will render this a consequence of the fact that these matrices fall
inside a larger family of stochastic matrices for which equality holds in (1.5).
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These last examples clearly have very distinctive structure, indicating
that the combinatorial influence of the directed graph of the transition matrix
on the range of possible mean first passage times may be significant, and is
worth investigating. That is the main objective of this paper.

In the following sections, we freely make use of basic concepts and defi-
nitions from graph theory, and refer the reader to [3] for the necessary back-
ground.

2. Directed graphs for which equality is always attained

Definition 2.1. Given an n× n matrix A, the directed graph of A, denoted
D(A), consists of n vertices labelled 1 to n, with an arc (i, j) from vertex i
to vertex j if and only if aij 6= 0, for 1 ≤ i, j ≤ n.

The directed graph of a transition matrix for a Markov chain is a con-
venient way to visualise the movement of the system. Vertices represent
states of the chain, and arcs represent possible transitions between them.
If the arcs are considered to be weighted with the corresponding transition
probabilities, this directed graph represents the Markov chain in its entirety.
This representation is even more natural in such applications as the vehicular
traffic model, where directed graph reflects the structure of the urban road
network. Of course, the directed graph plays a greater role in analysing the
transition matrix of a Markov chain than simple visual representation. To
give an example, a matrix A is irreducible if and only if D(A) is strongly
connected ; that is, for any pair of distinct vertices i, j, there exists a directed
path from i to j in D(A).

Since the network is predetermined in many applications, the following
type of question is often posed: given a directed graph D that our transition
matrix A must ‘respect’ (i.e. D(A) is some subgraph of D), what are the
properties of A? In other words, what is the influence of the directed graph
on the properties of the Markov chain? We formalise this with the following
definition: given a directed graph D, let SD denote the set of all stochastic
matrices A such that aij > 0 only if (i, j) is an arc in D. This object has been
used to determine the combinatorial influence of a given directed graph on
the stationary vector (see [2, 13]) and Kemeny’s constant (see [5, 12]) for all
A ∈ SD, and we now hope to do the same for mean first passage times. Given
the structure noticed in the examples achieving equality in the lower bound
(1.5) on the maximum mean first passage time, this seems like an appropriate
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thing to consider. We pose the following question: can we characterise the
directed graphs D for which equality holds in the lower bound (1.5) for every
irreducible A ∈ SD? An answer to this question will determine the types of
networks for which any Markov chain is “optimal” in the sense of minimising
the maximum mean first passage time between distinct states.

As previously discussed in Remark 1.1, mean first passage times and
Kemeny’s constant are related concepts, although the mean first passage
times encompass a larger quantity of information, while K(A) is a single-
valued parameter of a Markov chain. Regardless, in similar questions asked
of the range of values ofK(A) for all A ∈ SD whereD is a given directed graph
(see [5, 12]) the cycle structure of D played an important role. Indeed, we will
see a similar theme arising in the characterisation of digraphs D for which
(1.5) holds for all A ∈ SD. This is not unexpected, as the structure of D is
already known to influence the mean first passage times of transition matrices
in the family SD. Recall the following result for mean first passage times:
for a strongly connected directed graph D and some irreducible A ∈ SD with
mean first passage times denoted by mi,j, for any triple of indices i, j, k we
have

mi,j ≤ mi,k +mk,j, (2.1)

with equality if and only if k is distinct from i and j and every path in D
from vertex i to vertex j passes through vertex k. This inequality was proven
in [9] and a separate proof is given in [15, Theorem 6.2.1] which allows for
the characterisation of equality, demonstrating the influence the network can
have on mean first passage times between states of any Markov chain on that
network; i.e. regardless of the transition probabilities. We will make use of
this inequality several times in the sequel.

Remark 2.2. To demonstrate the usefulness of the ‘triangle inequality’ (2.1),
consider the mean first passage matrix M = [mi,j] derived for the transition
matrix given in Example 1.6. This could easily be derived using the observa-
tions that mj,j = 1

wj
for 1 ≤ j ≤ n; that mi,j = j − i, for 2 ≤ i < j ≤ n; and

finally, that mi,j = 1
wj
− (i− j), for 1 ≤ j < i ≤ n, with this last observation

following from the equality case of (2.1), as for j < i,

mj,i +mi,j = mj,j

since a first passage from j to j must pass through i, and mj,i = i− j.
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Our first result Proposition 2.5 is a necessary condition on the cycle struc-
ture of directed graphs D for which equality holds for all A ∈ SD. To prove
it, we require the following definitions and a technical lemma whose proof
further reinforces the idea that there is a strong relationship between the
directed graph and mean first passage times of associated Markov chains.

Definition 2.3. A directed graph D is said to be minimally strong if D
is strongly connected and the removal of any arc in D results in a digraph
which is not strongly connected.

A matrix A is said to be nearly reducible if its directed graph D(A) is
minimally strong, or equivalently, if A is an irreducible matrix such that
setting any nonzero entry of A to 0 results in a reducible matrix.

Lemma 2.4. Let D be a strongly connected directed graph on n ≥ 2 vertices,
labelled v1, v2, . . . , vn, and suppose that for some index j there exists an index
k 6= j such that for all irreducible A ∈ SD with mean first passage matrix M ,

mk,j = max
1≤l≤n
l 6=j

ml,j. (2.2)

Then:

(a) For every cycle in D which contains vk but not vj, if there is a vertex vi
on the cycle with more than one arc issuing from it, then there is an arc
from vi to vk in D.

(b) If there is a cycle in D containing both vk and vj, then there must be an
arc from vj to vk in D.

Proof. Let D be a strongly connected digraph of order n such that the hy-
pothesis (2.2) holds for all irreducible A ∈ SD. Without loss of generality,
suppose j = n, and let D \ {vn} denote the digraph obtained from D by the
removal of vn and all incident arcs. We will assume that there is a cycle in
D\{vn} containing vk which permits a vertex vi with outdegree greater than
one (recalling that the outdegree of a vertex refers to the number of arcs
issuing from it), such that (vi, vk) is not an arc in D. Then we will construct
an irreducible matrix Ã ∈ SD such that

e>k (I − Ã(n))
−1
1 < max

1≤l≤n−1
e>l (I − Ã(n))

−1
1,
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contradicting (2.2).
To this end, first consider a directed cycle of length l with the following

weighted adjacency matrix C. Here the weight of one arc in the cycle (and
corresponding matrix entry) is equal to t < 1, while the remaining arcs on
the cycle have weight 1:

C =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
t 0 0 · · · 0

 . (2.3)

We have

(I − C)−11 =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
. . . . . .

...
0 0 · · · 1 −1
−t 0 · · · 0 1


−1

1

=
1

1− t


1 1 1 · · · 1
1 t 1 · · · 1
1 t t · · · 1
...

...
...

. . .
...

1 t t · · · t

1

=
1

1− t


l

t+ (l − 1)
2t+ (l − 2)

...
(l − 1)t+ 1

 .
With t < 1 this results in a uniquely maximum entry in the first position.

Now construct a matrix T of order n − 1 in the pattern of D \ {vn} so
that for some permutation matrix P ,

PTP> =

[
C O
X N

]
(2.4)

where C is as in (2.3), with some row of C other than the first corresponding
to vk, and X and N chosen appropriately so that the rows sum to 1 and N
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is nilpotent. To see that such a choice of X and N is possible, let V denote
the subset of vertices in D which are not contained in the cycle represented
by C. We construct a digraph D1 of D by choosing a maximal subdigraph
for which the directed graph induced by V does not contain a cycle. Then
any matrix in SD1 has the appropriate form (2.4) when we remove the row
and column corresponding to vn; that is, the matrix N is nilpotent. This is
to ensure that (I − T )−1 exists.

We have

max
1≤i≤n−1

e>i (I − T )−11 ≥ max
1≤m≤l

e>m(I − C)−11

> e>k (I − C)−11 (2.5)

= e>k (I − T )−11.

We will now show the existence of an irreducible stochastic matrix Ã ∈ SD

such that (I − Ã(n))
−1 is ‘as close as we like’ to (I − T )−1 – that is, for a

chosen matrix norm ‖ · ‖ and given ε > 0, we can find a matrix Ã for which
‖(I − Ã(n))

−1 − (I − T )−1‖ < ε.
Without loss of generality (and for ease of notation) suppose that the

permutation matrix P above is the identity matrix. Then it is vl which has
outdegree greater than 1.

Let A be an n × n matrix such that D(A) ⊆ D, and A(n) = T . In
particular, let

A =

 C O 0
X N y
∗ ∗ ∗


where y = 1−X1−N1 (for appropriately-sized vectors 1) and the last row
may be chosen arbitrarily, so long as the row sums to 1, and ani 6= 0 only if
(vn, vi) is an arc in D. Constructed in this way, A is reducible and strictly
substochastic – the lth row sums to t < 1. Furthermore,

e>k (I − A(n))
−1
1 < max

1≤i≤l
e>i (I − A(n))

−1
1, from (2.5).

We first construct a new stochastic matrix Â from A which retains the
property that e>k (I − Â(n))

−1
1 is not maximum. To do this, we need only

focus on the lth row of A, corresponding to the vertex vl with outdegree
greater than 1.
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- Case 1: (vl, vn) is an arc in D.
Then Â may be constructed by setting Â = A + (1 − t)ele

>
n . In this

case, Â(n) = A(n).

- Case 2: (vl, vn) is not an arc in D.
It may be assumed that there is an arc from vl to vl+p, for some 1 ≤
p < n − l (as otherwise, since D is strongly connected, there is some
other vertex vm on the cycle from which such an arc exists). Then Â
is constructed by setting

Â = A+ (1− t)ele>l+p.

Then Â(n) = A(n) + (1 − t)ele>l+p (where the vectors are resized), and
by the Sherman-Morrison-Woodbury formula (see [8, Section 0.7.4]):

(I − Â(n))
−1 = (I − A(n))

−1 +
(1− t)(I − A(n))

−1ele
>
l+p(I − A(n))

−1

1− (1− t)e>l+p(I − A(n))−1el
.

The row sums of (I − Â(n))
−1 are obtained by multiplying on the right

by 1:

(I− Â(n))
−1
1 = (I−A(n))

−1
1+

(1− t)(I − A(n))
−1ele

>
l+p(I − A(n))

−1
1

1− (1− t)e>l+p(I − A(n))−1el
,

and considering only the first l row sums, we have on the right-hand
side:

1

1− t


l

t+ (l − 1)
2t+ (l − 2)

...
(l − 1)t+ 1

+ γt


1
1
1
...
t

 ,
where

γt =
(1− t)e>l+p(I − A(n))

−1
1

1− (1− t)e>l+p(I − A(n))−1el
,

i.e. a scalar. Hence the maximum entry in the first l positions of (I −
Â(n))

−1
1 still occurs in the first position, not the one corresponding to

vertex vk.
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In either case Â is a matrix in SD for which

e>k (I − Â(n))
−1
1 < max

1≤i≤n−1
e>i (I − Â(n))

−1
1. (2.6)

Next consider that Â may be a reducible member of SD. However, ir-
reducible matrices in SD are dense in SD, and so given δ > 0, there exists
Ã ∈ SD irreducible such that ‖Â(n) − Ã(n)‖ < δ.

Finally, recall that f : B 7→ B−1 is a continuous function on the set
of real invertible matrices, and so for all ε > 0 there exists δ > 0 such
that ‖B1 − B2‖ < δ implies ‖B−11 − B−12 ‖ < ε. Given ε > 0, we can find an
irreducible Ã ∈ SD so that ‖Â(n)−Ã(n)‖ < δ. Then ‖(I−Â(n))−(I−Ã(n))‖ <
δ, which implies

‖(I − Â(n))
−1 − (I − Ã(n))

−1‖ < ε.

Hence we conclude using (2.6) that there exists an irreducible matrix Ã ∈ SD

with mean first passage times M = [mi,j] for which

mk,n = e>k (I − Ã(n))
−1
1 < max

1≤i≤n−1
e>i (I − Ã(n))

−1
1 = max

1≤i≤n−1
mi,n,

contradicting our hypothesis (2.2). We conclude that if (2.2) holds for all
A ∈ SD for some digraph D, then D has the property that for any cycle
containing vk in D \ {vj}, if a vertex vi on the cycle has outdegree greater
than 1 then (vi, vk) must be an arc in D.

To prove (b), suppose that (2.2) holds for all irreducible A ∈ SD, and
that there is a cycle in D containing vk and vj, but that (vj, vk) is not an
arc in D. Let vm be the vertex on the cycle to which there is an arc from vj.

Then we can immediately construct a reducible Â ∈ SD such that for some
permutation matrix P ,

PÂP> =



N X

0 1 0 · · · 0
0 0 1 · · · 0

O
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0


15



where vj corresponds to the last row, vm to the first row in the second diag-
onal block, and vk to some other index in the second block of the partition.
Without loss of generality, assume P = I, so that j = n. Clearly, if l is the
length of the cycle in question (and hence the size of the second block in
the partition) then e>m(I − Â(n))

−1
1 = l − 1, while e>k (I − Â(n))

−1
1 < l − 1.

Using a continuity argument as before, we may conclude the existence of an
irreducible Ã ∈ SD for which mk,n < maximi,n, contradicting the hypothesis.
Hence (vj, vk) must be an arc in D.

Proposition 2.5. Let D be a minimally strong directed graph on n vertices,
with the property that for any irreducible A ∈ SD with stationary vector w
and mean first passage matrix M ,

max
1≤i,j≤n

i 6=j

mi,j =
1

mink wk

− 1.

Then D is a directed cycle.

Proof. Let D be minimally strong, and let A ∈ SD. Then A is nearly re-
ducible, and by [3, Theorem 3.3.4] (and without loss of generality on the
ordering of the rows and columns) A has the following form:

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
... epe

>
k

0 0 0 · · · 1
0 0 0 · · · 0

aeje
>
1 T


(2.7)

where the first diagonal block has order p (1 ≤ p ≤ n − 1), and T is a
substochastic, nearly reducible matrix of order n − p. In particular, if D̂ =
D(T ), then T = T̂ − aeje>l , for some fixed T̂ ∈ SD̂, a ∈ (0, 1), and index l
such that t̂jl > a. Moreover, 1 ≤ j, k ≤ n− p, and (p+ j, p+ k) is not an arc
in D (as this would contradict the assumption that D is minimally strong).
Furthermore, note that if p = n−1 then we are done, so henceforth take p to
be at most n − 2. For ease of notation, let v1, v2, . . . , vp denote the vertices

16



corresponding to the first p rows and columns of A, and v̂1, v̂2, . . . , v̂n−p the

vertices of D̂.
The stationary vector w of this matrix A can be computed as

w> =
1

p+ e>k (I − T )−11

[
1
>
p | e>k (I − T )−1

]
, (2.8)

or using stochastic complementation (see [15, Section 5.1]) as

w> =
1

paw̃j + 1

[
aw̃j1

>
p | w̃>

]
where w̃ is the stationary vector of the stochastic complement T̃ = T +
aeje

>
l = T̂ + aej(ek − el)>. Note that for sufficiently small values of a, the

minimum entry in w occurs in the first p positions and the lower bound for
the maximum mean first passage times is 1

wp
− 1.

We claim that equality holds in the lower bound (1.5) for all matrices
A ∈ SD only if for all T̂ ∈ SD̂,

m̂k,j = max
1≤i≤n−p

m̂i,j (2.9)

where M̂ is the mean first passage matrix for T̂ .
Proof of claim: Fix T̂ ∈ SD̂ and let a ∈ (0, 1) be chosen sufficiently small

so that when A is formed as in (2.7), the minimum entry of the stationary
vector w of A occurs in the first p positions. Let M be the mean first passage
matrix for A, and suppose that equality holds in (1.5). Now consider the

17



mean first passage times into state p, recalling that mi,p = e>i (I − A(p))
−1
1:

(I − A(p))
−1 =



1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
. . . . . .

... O
0 0 · · · 1 −1
0 0 · · · 0 1

−aeje>1 I − T



−1

=



1 1 · · · 1
0 1 · · · 1 O
...

...
. . .

...
0 0 · · · 1

J (I − T )−1


where J denotes the all-ones matrix of order (n− p)× (p− 1). Then

(I − A(p))
−1
1 =


p− 1
p− 2

...
1

(p− 1)1 + (I − T )−11

 .
So

max
1≤i≤n
i 6=p

mi,p = (p− 1) + max
1≤i≤n−p

e>i (I − T )−11

while the lower bound on maxmi,p is

1

wp

− 1 = p+ e>k (I − T )−11− 1.

Hence for equality to hold in the lower bound (1.5) on the mean first passage
times of A as assumed, it is required that

e>k (I − T )−11 = max
1≤i≤n−p

e>i (I − T )−11. (2.10)

18



Observe, however, that e>i (I − T )−11 = mp+i,1, for i = 1, . . . , n − p. Fur-

thermore, since every path from a vertex in D̂ to v1 must pass through v̂j, it
follows from the equality case of (2.1) that

mp+i,1 = mp+i,p+j +mp+j,1 for all i = 1, . . . , n− p.

Hence (2.10) is equivalent to the condition that mp+k,p+j = maximp+i,p+j.
However, note that these mean first passage times are calculated as the sums
of the lower rows of (I − A(p+j))

−1 and that the principal submatrix A(p+j)

has a lower left block of zeros, and its lower diagonal block is T(j). Recall

that T = T̂ − aeje>l , and hence T(j) = T̂(j). Hence

mp+i,p+j = e>i (I − T̂(j))−11
= m̂i,j,

where M̂ is the mean first passage matrix of T̂ . Hence (2.10) is equivalent
to the condition that

m̂k,j = max
1≤i≤n−p

m̂i,j,

as claimed.

Suppose that n − p ≥ 2. Using Lemma 2.4 applied to D̂, it may be
asserted that if (2.9) must hold for all T̂ ∈ SD̂, then if C ⊆ D̂ is a cycle
through v̂k which does not contain v̂j, then there is exactly one vertex (say

v̂m) with out-degree greater than one, and (v̂m, v̂k) is also an arc in D̂. Since
v̂j is not in C, there is a path in D̂ from v̂m to v̂j which does not use the
arc (v̂m, v̂k). The existence of such a path determines the construction of a
path from v̂m to v̂k in D, via v̂j and v1, v2, . . . , vp, which does not use the
arc (v̂m, v̂k). Hence if this arc is deleted from D, the directed graph remains
strongly connected, contradicting the assumption that D is minimally strong.

In the case that there is no such cycle C – that is, every cycle through v̂k
in D̂ also contains v̂j – then from Lemma 2.4, there must be an arc from v̂j
to v̂k. This contradicts the hypothesis that D is minimally strong.

Hence we must have n − p = 1, and the lower diagonal block in (2.7)
is trivial. Therefore the only minimally strong directed graph D for which
equality can hold for all A ∈ SD is the directed cycle on n vertices.
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Since the question posed at the beginning of this section insists that
every A ∈ SD must satisfy equality in the lower bound on mean first passage
times, this result gives a great restriction on the directed graph D. Since D
is strongly connected, it must contain the directed n-cycle as a subdigraph,
and no other minimally strong digraphs may appear as a subdigraph of D.
Thus each such D satisfying our requirements is built on this underlying
cycle. Recall that such a cycle passing through every vertex of the digraph
exactly once is referred to as a Hamilton cycle.

Proposition 2.6. Let D be a strongly connected directed graph on n vertices
such that for every irreducible A ∈ SD with stationary distribution vector w
and mean first passage matrix M , equality holds in the lower bound (1.5).
Then D has a unique Hamilton cycle.

Proof. The existence of a Hamilton cycle as a subdigraph of D is a corollary
to Proposition 2.5. To show uniqueness of the Hamilton cycle, suppose that
D has two distinct Hamilton cycles as subdigraphs. The adjacency matrices
of these subgraphs are both elements of SD, which we denote A and A′ and
assume without loss of generality that the vertices of D are ordered in such
a way that

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0


and that A′ has its last row different from the last row of A.

The stationary vector of A and of A′ is clearly equal to w> = 1
n
1
>, and it

is easily seen that w is also the stationary vector of any convex combination
of A and A′; that is, any matrix in SD of the form

At := (1− t)A+ tA′, for 0 ≤ t ≤ 1.

We now consider the mean first passage times for At: in particular the
mean first passage times into state n, which are given by (I−At(n)

)−11. First,
however, note that

(I − A(n))
−1 =


1 1 · · · 1
0 1 · · · 1
...

...
. . .

...
0 0 · · · 1

 , (2.11)
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and that mj,n = n− j.
Now

(I − At(n)
)−1 = (I − (1− t)A(n) − tA′(n))−1

= (I − A(n) − t(A′(n) − A(n)))
−1

=
[
(I − A(n))(I − t(I − A(n))

−1(A′(n) − A(n)))
]−1

= (I − t(I − A(n))
−1(A′(n) − A(n)))

−1(I − A(n))
−1

= [I + t(I − A(n))
−1(A′(n) − A(n))](I − A(n))

−1 +O(t2)

for small values of t. The maximum mean first passage time in column n
then is given by the maximum entry of

(I − At(n)
)−11 = (I − A(n))

−1
1 + t(I − A(n))

−1(A′(n) − A(n))(I − A(n))
−1
1 +O(t2)

=


n− 1
n− 2

...
1

+ t


1 1 · · · 1
0 1 · · · 1
...

...
. . .

...
0 0 · · · 1

 (A′(n) − A(n))


n− 1
n− 2

...
1

+O(t2).

Recalling (2.11), it may be determined that the maximum entry occurs in
the first row; that is,

m1,n = (n− 1) + t1>A′(n)


n− 1
n− 2

...
1

− t [0 1 · · · 1
]

n− 1
n− 2

...
1

+O(t2).

Since the column sums of A′ are all equal to one, 1>A′(n) = 1
> − e>j , where

j is the index of the nonzero entry in the nth row of A′ (equivalently, the
index of the vertex to which an arc issues from vertex n in the Hamilton
cycle represented by A′). Hence

m1,n = n− 1 + t(1> − e>j )


n− 1
n− 2

...
1

− t n(n− 1)

2
+O(t2)

= n− 1 + t

(
n(n− 1)

2
− (n− j)− (n− 1)(n− 2)

2

)
+O(t2)

= n− 1 + t(j − 1) +O(t2),
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and since by assumption j cannot equal 1, we have that for sufficiently small
values of t, m1,n > n− 1.

Thus the existence of two Hamilton cycles in D produces a matrix At ∈
SD for which the maximum mean first passage time is strictly greater than
the lower bound, and we have a contradiction.

2.1. Hessenberg cycles

In this section we discuss a particular class of directed graphs, first re-
calling the definition of a lower Hessenberg matrix to be an n× n matrix A
such that aij 6= 0 only if i + 1 ≤ j. An analogous definition holds for up-
per Hessenberg matrices, where matrix entries are nonzero only on the first
subdiagonal and above.

Definition 2.7. Let D be a strongly connected directed graph on n vertices,
with adjacency matrix A. D is said to be a Hessenberg graph if there exists
a permutation matrix P such that PAP> is a (lower) Hessenberg matrix. D
is called a Hessenberg cycle if D is Hessenberg and e>n (PAP>) = e1; that is,
after some relabelling of the vertices, there is exactly one arc issuing from
vertex n to vertex 1.

Without loss of generality, we will assume when dealing with a Hessenberg
digraph D that the vertices have been ordered in such a way that the adja-
cency matrix A is Hessenberg, so as to remove the need for the permutation
matrix P . In addition, if D is a Hessenberg cycle, we assume without loss
of generality that e>nA = e>1 , for the same reason. If necessary, we may refer
to D as a Hessenberg cycle with respect to the index j if it is the jth vertex
which corresponds to the last row when the permutation matrix is applied.
We note also that the rows and columns of an upper Hessenberg matrix may
be simultaneously permuted to produce a lower Hessenberg matrix; for this
reason we have limited the definition above and the discussions hereafter to
lower Hessenberg matrices.

An example of a Hessenberg cycle on six vertices may be seen in Figure
1, and since this example displays all possible arcs, any Hessenberg cycle on
six vertices is a subdigraph of this one. Note in particular that a Hessenberg
cycle on n vertices contains a unique Hamilton cycle of the form

1→ 2→ · · · → (n− 1)→ n→ 1.
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1 2 3 4 5 6

Figure 1: A Hessenberg cycle on six vertices, displaying all admissible arcs.

Remark 2.8. Notice that the directed graph of the matrix in Example 1.7
is a Hessenberg cycle with respect to the first vertex. The unique Hamilton
cycle in this digraph is

(k+1)→ (k+2)→ · · · → (n−1)→ n→ k → (k−1)→ · · · → 2→ 1→ (k+1).

This may be used to re-order the rows and columns of the transition matrix
of Example 1.7 to obtain lower Hessenberg form, with last row equal to e>1 .

Proposition 2.9. Let D be a Hessenberg cycle of order n. Then for all
irreducible A ∈ SD with stationary vector w,

wn ≤ wk for all k = 1, . . . , n.

Proof. The proof uses induction on n. Suppose D is a Hessenberg cycle on
2 vertices. Then every irreducible A ∈ SD has the form[

t 1− t
1 0

]
,

for some t ∈ [0, 1). This has stationary vector

w =
[

1
2−t

1−t
2−t

]
.

In this case w2 ≤ w1 for any choice of t; i.e. for all A ∈ SD.
Now assume that for m < n, every stochastic m×m Hessenberg matrix A

with e>mA = e1 with stationary vector w satisfies wm ≤ wk for all k = 1, . . .m.
Consider a Hessenberg cycle D on n vertices. For any A ∈ SD with stationary
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vector w, we have the eigen-equation

[
w1 w2 · · · wn

]


a11 a12 0 · · · 0
a21 a22 a23 · · · 0
...

...
...

. . .
...

an−1,1 an−1,2 an−1,3 · · · an−1,n
1 0 0 · · · 0

 =
[
w1 w2 · · · wn

]

giving
a11w1 + a21w2 + . . .+ wn = w1.

Hence wn ≤ w1.
Now perform stochastic complementation (see [15, Section 5.1]) on the

first row and column of A, in which case S1 = [1] and S2 is a stochastic
Hessenberg matrix of order n− 1, with its (n− 1)th row equal to e>1 . Recall
that the stationary vector for A can be written in terms of the stationary
vectors of the stochastic complements; in particular, w> = [w1 | γw̃], where
w̃ is the stationary vector for S2. By the induction hypothesis, we know that

w̃n−1 ≤ w̃k for all k = 1, . . . , n− 1.

But this implies that

γw̃n−1 ≤ γw̃k for all k = 1, . . . , n− 1,

and hence
wn ≤ wj, for all j = 2, . . . , n

and therefore by induction, the hypothesis holds for all Hessenberg cycles
D.

Proposition 2.10. Let D be a Hessenberg cycle of order n. Then for every
irreducible A ∈ SD with stationary vector w and mean first passage matrix
M = [mi,j],

max
1≤i,j≤n

i 6=j

mi,j = m1,n =
1

wn

− 1.

Proof. Let D be a Hessenberg cycle and let A ∈ SD with mean first passage
matrix M and stationary vector w. First, observe from the equality case of
(2.1) that

mn,n = mn,1 +m1,n,
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as every path from n to n must go through vertex 1. Furthermore, since the
only arc issuing from vertex n is to vertex 1, it follows that mn,1 = 1. Given
that the mean first return time mn,n = 1

wn
, we obtain

m1,n =
1

wn

− 1.

Next, note that for a Hessenberg cycle D (as shown for example in Figure
1) it is clear that for i < j, any path from vertex i to vertex j must pass
through every vertex indexed by integers between i and j. Therefore by (2.1),

mi,j = mi,k +mk,j, for any k, i < k < j. (2.12)

We now show that m1,n ≥ mi,j, for all i, j = 1, . . . , n, i 6= j. First,
suppose that i < j. Then it follows from (2.12) that

mi,n = mi,j +mj,n

and hence mi,n > mi,j for i < j < n. It also follows from (2.12) that

m1,n = m1,i +mi,n

and hence m1,n > mi,n. Therefore if i < j, we have shown that

m1,n > mi,j.

Now suppose that i > j. By (2.1),

mi,j ≤ mi,n +mn,j.

Since we have observed that mn,1 = 1, and mn,j = mn,1 +m1,j by (2.12), we
have

mi,j ≤ mi,n +m1,j + 1.

Now, any mean first passage time is at least 1. So mj,i ≥ 1, and hence from
the above

mi,j ≤ m1,j +mj,i +mi,n.

But if i > j, then every path in D from vertex 1 to vertex i passes through
vertex j. Hence m1,j + mj,i = m1,i. We also observe that every path from
vertex 1 to vertex n passes through vertex i, and so m1,i + mi,n = m1,n.
Therefore

mi,j ≤ m1,n.
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Proposition 2.11. Let D be a strongly connected directed graph such that
the following hold:

(a) D has a unique Hamilton cycle;

(b) there exists an index l such that for all irreducible A ∈ SD with stationary
vector w, wl = mink wk.

Then D is a Hessenberg cycle (with respect to the index l).

Proof. Let D be such a directed graph, satisfying conditions (a) and (b).
Without loss of generality, we can assume

1. The unique Hamilton cycle is 1→ 2→ · · · → n→ 1;

2. The index l for which wl = mink wk for all A ∈ SD with stationary
vector w is l := n.

Now suppose that D is not a Hessenberg cycle. Then there are two cases to
consider: either there is an arc (j, k) in D with j + 1 < k, or there is more
than one arc issuing from vertex n.

Case 1: Suppose there is an arc (j, k) in D with j + 1 < k. Then there
exists a family of matrices At ∈ SD such that D(At) consists only of the
directed cycle as above, and the arc (j, k). Then for any t ∈ (0, 1), At is of
the form:

At =



0 1 0 · · · · · · 0 0
0 0 1 · · · · · · 0 0
...

...
. . .

1− t · · · t
...

...
. . .

1
1 0 0 · · · · · · 0 0


.

It is easily seen by examination that w>At = w> gives

wn = wj, and (1− t)wj = wj+1.

That is, wn = 1
1−twj+1. Hence wn > wj+1 for any choice of t, 0 < t < 1,

contradicting (b).
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Case 2: Suppose that D contains an arc (n, k), some k 6= n. Then there
exists a family of matrices At ∈ SD of the form

At =



0 1 0 · · · · · · 0
0 0 1 · · · · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · · · · 1

1− t 0 · · · t · · · 0


.

Then the eigenequation for the stationary vector w of At produces

w1 = (1− t)wn,

and hence w1 < wn, contradicting (b) as before.

This final corollary summarises the results from this section and provides
a characterisation of all directed graphsD for which equality is attained in the
lower bound (1.5) on maxi 6=j mi,j for all A ∈ SD, with the extra stipulation
that the stationary vectors of matrices in SD must always have the minimum
entry occurring in the same position.

Corollary 2.12. D is a strongly connected directed graph on n vertices such
that for every irreducible A ∈ SD with stationary vector w and mean first
passage matrix M :

(a) wn = mink wk;

(b) max
1≤i,j≤n

i 6=j

mi,j =
1

wn

− 1,

if and only if D is a Hessenberg cycle.

Remark 2.13. Let D be the Hessenberg cycle on n vertices with all possible
arcs, and suppose we are given some probability vector w = [w1w2 · · · wn]>

with w1 ≥ w2 ≥ · · · ≥ wn. Then it is not difficult to show that there exists a
parametrised family of matrices in SD with w as their stationary distribution
vector. This is determined simply by examining the eigenequation w>A = w>
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for an arbitrary matrix A with the Hessenberg cycle pattern. In particular,
the entries on the superdiagonal may be expressed as

aj,j+1 =
wj+1

wj

j∑
k=1

aj+1,k +
wj+2

wj

j∑
k=1

aj+2,k + · · ·+ wn

wj

=

n−j∑
i=1

j∑
k=1

wj+1

wj

aj+1,k.

Considering the diagonal entries of A to be constrained so that aj,j = 1 −∑j−1
k=1 aj,k − aj,j+1, we can consider every entry below the main diagonal to

be free parameters, constrained only by the fact that the matrix must be
nonnegative and stochastic. Certainly this family is nonempty, as we may
set all of these parameters to zero and still obtain a matrix A ∈ SD with
w>A = w>.

2.1.1. M/G/1 queues

Stochastic upper Hessenberg matrices arise as transition matrices for
a Markov chain model of a certain type of queueing system, where cus-
tomers arrive to the system, spend a certain amount of time waiting for
service, and leave after they have been served. The model is as follows: let
S = {s0, s1, s2, . . .} be our state space, where si denotes the state that there
are i customers in the system, including one who is being served. Transi-
tions between states are governed by arrivals and departures to and from the
system; i.e. new customers joining the queue or customers leaving the queue
once they have been served. Suppose that the length of a time-step is chosen
so that at most one customer is served in a single time-step. Then si → sj is
a permitted transition if and only if j > i (new arrivals), j = i (one arrival
and one departure), or j = i − 1 (no arrivals, one departure). Hence the
transition matrix A is upper Hessenberg.

This Markov chain model of a queue is a description of the embedded
Markov chain for an M/G/1 queue (see [1, Chapter 5]). This is a stochastic
process of arrivals and departures where arrivals are assumed to be Markovian
(governed by a Poisson process), service times have a general distribution,
and there is one server. These assumptions allow the above Markov chain
construction to describe the behaviour of the queueing system. Such models
can be applied to familiar, mundane queues such as patients at a doctor’s
office, or vehicles awaiting service at a mechanic. They can also be used to
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1 2 3 4 5

Figure 2: A non-Hessenberg digraph D on 5 vertices for which equality is attained in our
lower bound for all A ∈ SD.

examine communication systems, where ‘customers’ are voice or data traffic
awaiting transmission. These applications have existed since the very first
publication on queueing theory (see [7]) and are adapted in recent times to
be of use with modern technology, such as video transmission (see [16]) and
web server performance (see [4]).

The result we have proven in this section applies to M/G/1/K queues –
that is, an M/G/1 queue with finite capacity, resulting in a finite state space
and transition matrix. This means that if the system has reached capacity,
any arriving customers must leave without joining the queue. The Hessenberg
cycle which we have examined in this section represents a queueing system
with the particular feature that once the system is empty, with zero customers
waiting in the queue, it then fills to full capacity, in a ‘bulk arrival’. Our
result says that for queues of this type, the expected time to reach the state
that there are no customers in the queue from the state that the queue is full
is optimal, relative to the given stationary vector.

2.2. Non-Hessenberg digraphs which achieve equality

Our initial objective was to characterise all directed graphs D for which
equality held in the lower bound (1.5) for all irreducible A ∈ SD. The results
of the previous section determine the family of so-called Hessenberg cycles as
the characterisation of all such digraphs for which the additional condition
holds: that the minimum entry of the stationary vector of a transition matrix
in SD always occurs in the same position.

Consider now the example D in Figure 2, which is not Hessenberg due
to the arc (2, 4) (and there is no permutation of the vertices resulting in a
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Hessenberg cycle). Any matrix A in SD is of the form

A =


0 1 0 0 0
0 0 a 1− a 0
0 0 0 1 0

1− b 0 0 0 b
1 0 0 0 0


for some 0 < a, b < 1. The stationary vector of A is computed as

w> = 1
3+a+b

[
1 1 a 1 b

]
and the mean first passage matrix is

M =


3 + a+ b 1 3+b

a
− 1− b 2 + a 3+a

b

2 + a+ b 3 + a+ b 3+b
a
− 2− b 1 + a 3+a

b
− 1

2 + b 3 + b 3+b
a

+ 1 1 3+a
b
− 1− a

1 + b 2 + b 3+b
a

3 + a+ b 3+a
b
− 1− 2a

1 2 3+b
a
− b 3 + a 3+a

b
+ 1

 .
The minimum entry of the stationary vector is either w3 or w5, depending

on whether a > b or a < b. Further, the maximum entry in the mean first
passage matrix is either

m4,3 =
3 + b

a
or m1,5 =

3 + a

b
,

which are 1
w3
− 1 and 1

w5
− 1 respectively. Moreover, when a < b, w3 is

minimum and maxi 6=j mi,j = m4,3, and when a > b, w5 is minimum and
maxi 6=j mi,j = m1,5, and hence equality holds in the lower bound (1.5) for all
A ∈ SD.

This example of order five can be generalised to a directed graph of order
n with the same properties as D, shown in Figure 3. The stationary vector
of a matrix in this family is

w> = 1
3+a+b

[
1 1 a 1 · · · 1 b

]
and the mean first passage matrix is

(n− 2) + a+ b 1 (n−2)+b
a
− (n− 4)− b 2 + a · · · (n− 3) + a (n−2)+a

b

(n− 3) + a+ b (n− 2) + a+ b (n−2)+b
a
− (n− 3)− b 1 + a · · · (n− 4) + a (n−2)+a

b
− 1

(n− 3) + b (n− 3) + a+ b (n−2)+b
a

+ 1 1 · · · (n− 4) (n−2)+a
b
− 1− a

(n− 4) + b (n− 3) + b (n−2)+b
a

(n− 2) + a+ b · · · (n− 5) (n−2)+a
b
− 2− a

...
...

...
...

...
...

2 + b 3 + b (n−2)+b
a
− (n− 6) 4 + a+ b · · · 1 (n−2)+a

b
− (n− 4)− a

1 + b 2 + b (n−2)+b
a
− (n− 5) 3 + a+ b · · · (n− 2) + a+ b (n−2)+a

b
− (n− 3)− a

1 2 (n−2)+b
a
− (n− 5)− b 3 + a · · · (n− 2) + a (n−2)+a

b
+ 1


.
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1 2 3 4 n− 2 n− 1 n· · ·

Figure 3: A non-Hessenberg digraph D on n vertices for which equality is attained in our
lower bound for all A ∈ SD.

Again, the minimum entry of the stationary vector depends on whether a > b
or a < b, and in either case, the maximum off-diagonal entry of the mean
first passage matrix is 1

mink wk
− 1.

2.2.1. Some observations

From the existence of the above class of examples, we can observe that the
digraph characterisation problem becomes significantly more difficult when
we relax the constraint that the minimum entry of the stationary vectors
of these matrices occurs in a common position over the whole class. In
particular, equality is attained in this class of examples due to the following
features of the directed graphs in this class: letting J denote the index set
of indices j for which it is possible wj is minimum for some A ∈ SD, we have

- for all j ∈ J , the maximum entry in the jth column of the mean first
passage matrix (bar mj,j) is mj+1,j;

- for all j ∈ J , mj+1,j = 1
wj
− 1;

- the set of candidates for maximum off-diagonal mean first passage time
is {mj+1,j | j ∈ J }, and mj+1,j is the overall maximum precisely when
wj = mink wk.

For these reasons, it would seem that to answer the more general ques-
tion, results are sought on directed graphs for which equality holds in the
column lower bound of Proposition 1.2 for all transition matrices respect-
ing the digraph. Further, showing that these mean first passage times are
maximum in the whole mean first passage matrix becomes difficult without
the particular structure of a Hessenberg digraph and hence the tools used in
Proposition 2.10, particularly the ‘triangle inequality’ for mean first passage
times in (2.1).
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1 2 3 4 1 2 v 3 4

Figure 4: An illustration of a process for constructing the previous order 5 example from
an order 4 Hessenberg cycle

A reasonable starting point would be to determine a method for con-
structing new families of directed graphs from the Hessenberg cycles, thereby
using some of the tools we have already produced. Notice in Figure 4 that
our order 5 example above is constructed from an order 4 Hessenberg cycle by
introducing a new vertex v between vertices 2 and 3 on the Hamilton cycle,
but retaining the original arc from 2 to 3. This produces a non-Hessenberg
directed graph which can then be examined for the property that mean first
passage times are limited by the stationary vector, using the information we
have about the mean first passage times of transition matrices respecting the
original Hessenberg cycle. Note that a similar construction exists to create
the order n non-Hessenberg digraph in Figure 3 from a Hessenberg cycle of
order n − 1. A developed construction method which is proven to produce
families of new non-Hessenberg directed graphs with equality attainment in
(1.5) would shed some light on the general characterisation question.

Acknowledgement: The authors would like to express their thanks to an
anonymous reviewer, whose constructive comments helped to improve this
paper.
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