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α-KURAMOTO PARTITIONS FROM THE
FRUSTRATED KURAMOTO MODEL GENERALISE

EQUITABLE PARTITIONS

Stephen Kirkland, Simone Severini

The Kuramoto model describes the collective dynamics of a system of coupled
oscillators. An α-Kuramoto partition is a graph partition induced by the
Kuramoto model, when the oscillators include a phase frustration parameter.
We prove that every equitable partition is an α-Kuramoto partition, but that
the converse does necessarily not hold. We give an exact characterisation of
α-Kuramoto bipartitions.

1. INTRODUCTION

The Kuramoto model is a mathematical model of collective dynamics in a
system of coupled oscillators [9, 4]. It has been applied in many contexts to describe
synchronisation phenomena: e.g., in engineering, for superconducting Josephson
junctions, and in biology, for congregations of synchronously flashing fireflies [1];
the model has also been proposed to simulate neuronal synchronisation in vision,
memory, and other phenomena of the brain [2].

We consider a twofold generalisation of the Kuramoto model: firstly, while
in the standard case every oscillator is coupled with all the others, we associate
the oscillators to the vertices of a graph, as in [8]; secondly, with the purpose of
including an effect of the graph structure on the dynamics, we take into account a
phase frustration parameter, as in [5].

Let G = (V,E) be a connected graph on n vertices without self-loops or
multiple edges. Let A(G) be the adjacency matrix of G. For each vertex i ∈ V (G),
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we shall study the following equation, which defines a frustrated Kuramoto model
(or, equivalently, frustrated rotator model) as introduced in [7]:

(1) θ′i(t) := ω + λ

n∑
j=1

Ai,j sin(θj(t)− θi(t)− α), t ≥ 0,

where α ∈ [0, π/2) is a fixed, but arbitrary, phase frustration parameter; this is
chosen to be equal for every i ∈ V (G). The parameter ω is the natural frequency
and λ > 0 is the strength of the interaction, when looking at the system as a set
of oscillators. We set ω = 0 and λ = 1; note that for our purposes, there is no real
loss of generality in doing so. By taking α = 0, we obtain the standard Kuramoto
model [4]. We shall consider the case α ∈ (0, π/2).

Let θi(t) be a global smooth solution to the frustrated Kuramoto model for
a vertex i ∈ V (G). There are two natural notions of phase synchronisation:

• Two vertices i, j ∈ V (G) are said to exhibit phase synchronisation when
θi(t) = θj(t), for every t ≥ 0;

• Two vertices i, j ∈ V (G) are said to exhibit asymptotic phase synchronisation
when limt→∞(θi(t)− θj(t)) = 0.

We study graph partitions suggested by these notions. Section 2 contains the
definition of an α-Kuramoto partition. We show that such partitions are a gener-
alisation of equitable partitions. In Section 3, we exactly characterise α-Kuramoto
bipartitions. We also illustrate our results with several examples, revisiting and
extending the mathematical analysis done in [5]. Some open problems are posed
in Section 4.

As a remark, notice that in the standard Kuramoto model (alpha = 0) the
oscillators can have different natural (or internal) frequencies. Without this the
synchronization is reached for any value of lambda > 0; instead in the standard
Kuramoto model there is a phase transition towards synchronization after some
critical coupling, which is related to the natural frequencies distribution.

1. α-KURAMOTO PARTITIONS

Phase synchronisation in the frustrated Kuramoto model induces a partition
of a graph. Such a partition will be called an α-Kuramoto partition (see the for-
mal definition below). The α-Kuramoto partitions are closely related to equitable
partitions, a well-known object of study in graph theory [3]. Theorem 1 states that
every equitable partition corresponds to phase synchronisation in the frustrated
Kuramoto model. However, not every partition induced by phase synchronisation
in the model is an equitable partition.

A partition of a graph G is a partition of V (G), i.e., a division of V (G) into
disjoint, non-empty sets that cover V (G). The sets of a partition are called parts.
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Definition 1 (Equitable partition). A partition S of a graph G with parts S1, ..., Sk

is equitable if the number of neighbours in Sj of a vertex v ∈ Si depends only on
the choice of the parts Si and Sj. In this case, the number of neighbours in Sj of
any vertex in Si is denoted γij.

The frustrated Kuramoto model as defined in (1) is naturally associated to a
partition as follows:

Definition 2 (α-Kuramoto partition). Fix α ∈ (0, π/2). A partition S = S1 ∪
S2 ∪ . . . ∪ Sk of a graph G is called an α-Kuramoto partition if there is an initial
condition

(2) θj(0) = xj , j = 1, . . . , n,

such that the solution to (1) with initial condition (2) has the following properties:

1. if i, j ∈ Sl for some l, then θi(t) = θj(t) for all t ≥ 0;

2. if i ∈ Sp, j ∈ Sq for distinct indices p, q, then as functions on [0,∞), we have
θi 6= θj.

Example 1. For each α ∈ (0, π/2), the graph in Figure 1 has an α-Kuramoto
partition with two parts: the vertices {1, ..., 6} are in one part (black); the vertices
{7, ..., 10} are in the other part (white).

12

3

4

56

7

8

9

10

Figure 1: An α-Kuramoto partition with two parts.

Remark 1. A fundamental property of the standard Kuramoto model (α = 0) is
that θi(t) = θj(t), for all t ≥ 0 and every two vertices i and j. It is then crucial
that α > 0, in order to define an α-Kuramoto partition.

The next result establishes a connection between equitable partitions and α-
Kuramoto partitions. In particular, it states that every equitable partition is also
an α-Kuramoto partition.
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Theorem 1. Let G be a connected graph on n vertices. Suppose that S is an
equitable partition of G. Then for any α ∈ (0, π/2), S is an α-Kuramoto partition
of G.

Proof. Since S = S1 ∪S2 ∪ . . .∪Sk is an equitable partition, there are nonnegative
integers γi,j , with i, j = 1, . . . , k, such that for each pair of indices i, j between
1 and k, any vertex p ∈ Si, has precisely γi,j neighbours in Sj . Given scalars
c1 < c2 < . . . < ck, we consider the following system of differential equations

(3) f ′i(t) =

k∑
j=1

γi,j sin(fj(t)− fi(t)− α), i = 1, . . . , k,

with initial condition fj(0) = cj , for j = 1, . . . , k. Observe that the right side of
(3) has continuous partial derivatives with respect to each fl. Hence by Picard’s
existence theorem [6], there is a (unique) solution to this equation with the given
initial conditions.

Next, we consider the system (1) with the following initial conditions: for each
i = 1, . . . , k and each p ∈ Si, we take θp(0) = ci. We construct a solution to this
system as follows: for each p = 1, . . . , n, with p ∈ Si, set θp(t) = fi(t). It is readily
verified that this is yields a solution to (1) with the given initial conditions, and
again using Picard’s theorem, we observe that such a solution is unique. Evidently,
for this solution, we have θp = θq if p, q ∈ Sl, for some l, and θp 6= θq if p ∈ Sl, q ∈ Sm

and l 6= m.

An automorphism of a graph G is a permutation π of V (G) with the prop-
erty that, for any two vertices i, j ∈ V (G), we have {i, j} ∈ E(G) if and only
if {π(i), π(j)} ∈ E(G). Two vertices are symmetric if there exists an automor-
phism which maps one vertex to the other. The equivalence classes consisting of
symmetric vertices are called the orbits of the graph by π.

Definition 3 (Orbit partition). A partition S of a graph G with parts S1, ..., Sk is
an orbit partition if there is an automorphism of G with orbits S1, ..., Sk.

The following is an easy fact:

Proposition 1. An orbit partition is an equitable partition. The converse is not
necessarily true.

Because of this, we have the following intuitive fact.

Proposition 2. Not every α-Kuramoto partition is an orbit partition.

The proof is by counterexample. The graph in Figure 1 does not have an
automorphism φ such that φ(1) = 3, even though vertices 1 and 3 are in the same
part of an α-Kuramoto partition.



α-Kuramoto partitions 5

Remark 2. A graph is said to be d-regular if the degree of each vertex is d. Phase
synchronisation for a d-regular graph is special. In fact, one α-Kuramoto partition
of a d-regular graph is the singleton partition (i.e., it has only one part). To show
this, we need to prove that if G is a d-regular graph then θi(t) = θj(t), for all
i, j ∈ V (G). Fix α and let θi(t) = −d sin(α)t, for every i ∈ V (G). It is now
straightforward to verify that θi(t) is a solution to the model.

1. α-KURAMOTO BIPARTITIONS

An equitable bipartition (resp. α-Kuramoto bipartition) is an equitable par-
tition (α-Kuramoto partition) with exactly two parts. The relationship between
equitable bipartitions and α-Kuramoto bipartitions is special. We observe the
main property of this relationship in Theorem 2. First, we need a technical lemma
whose proof is elementary.

Lemma 1. Suppose that f(x) is a differentiable function on [0,∞) and that f ′(x)
is uniformly continuous on [0,∞). If f(x) → 0 as x → ∞, then f ′(x) → 0 as
x→∞.

Proof. Suppose to the contrary that f ′(x) does not approach 0 as x → ∞. Then
there is a sequence xj diverging to infinity, and c > 0 such that |f ′(xj)| ≥ c, for all
j ∈ N. Without loss of generality we assume that f ′(xj) ≥ c for j ∈ N.

Since f ′ is uniformly continuous, there is h > 0 such that for each j ∈ N all
x ∈ [xj − h, xj + h] and f ′(x) ≥ c/2. Applying the mean value theorem to f , we
see that for each j ∈ N, there is a z ∈ [xj − h, xj + h] such that

f(xj + h) = f(xj) + hf ′(z) ≥ f(xj) +
ch

2
.

But then for all sufficiently large integers j, we have f(xj + h) ≥ ch/4, contrary to
hypothesis. The conclusion now follows.

We are now ready to state the main result of this section.

Theorem 2. Let G be a connected graph on n vertices. Suppose that 1 ≤ k ≤ n−1
and define S1 = {1, . . . , k}, S2 = {k + 1, . . . , n}, and S = S1 ∪ S2. For each
i = 1, . . . , n, let δi,1 be the number of neighbours of vertex i in S1, and let δi,2
be the number of neighbours of vertex i in S2. Suppose that α ∈ (0, π/2) and θj
(j = 1, . . . , n) is a solution to the frustrated Kuramoto model. Suppose further that:

• for all i, j ∈ S1, we have θi(t)− θj(t)→ 0 as t→∞;

• for all p, q ∈ S2, we have θp(t)− θq(t)→ 0 as t→∞;

• for some i ∈ S1 and p ∈ S2, θi(t)− θp(t) does not converge to 0 as t→∞.
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Then one of the following holds:

1. the partition S is an equitable partition of G;

2. there are scalars µ1, µ2, and r such that

−δi,1 + µ1δi,2 = r for all i ∈ S1,

and
−δj,2 + µ2δj,1 = r for all j ∈ S2.

Proof. Set λ1(t) = 1
k

∑k
i=1 θi(t) and λ2(t) = 1

n−k
∑n

j=k+1 θj(t). For each i ∈ S1,
let εi = θi − λ1, and for each j ∈ S2, let εj = θj − λ2. From our hypotheses, for
each p = 1, . . . , n, εp(t)→ 0 as t→∞, while λ1(t)−λ2(t) does not converge to 0 as
t→∞. Observe that each θi is differentiable with uniformly continuous derivative,
and hence the same is true of λ1, λ2, and each of ε1, . . . , εn. In particular, applying
Lemma 1 to each εp, we find that as t→∞, ε′p(t)→ 0, for p = 1, . . . , n.

For each i ∈ S1, we have

λ′1 + ε′i =
∑

j∼i,j∈S1

sin(εj − εi − α) +
∑

j∼i,j∈S2

sin(λ2 − λ1 − α+ εj − εi)

(here we use j ∼ i to denote the fact that vertices j and i are adjacent). Now, we
rewrite this as

(4) λ′1 = −δi,1 sin(α) + δi,2 sin(λ2 − λ1 − α) + ηi.

Observe that since εp(t), ε′p(t) → 0 as t → ∞, for p = 1, . . . , n, it follows that
ηi(t)→ 0 as t→∞. Similarly, we find that for each j ∈ S2,

(5) λ′2 = δj,1 sin(λ1 − λ2 − α)− δj,2 sin(α) + ηj(t),

and that for each j ∈ S2, ηj(t)→ 0 as t→∞.
First, suppose that λ1(t)− λ2(t) does not converge to a constant as t→∞.

Fix two indices p, q ∈ S1, and note from (4) that

(δp,1 − δq,2) sin(α) + ηp − ηq = (δq,2 − δp,2) sin(λ2 − λ1 − α).

If δq,2 − δp,2 6= 0, we find that as t→∞, for some k ∈ N, either

λ2 − λ1 → arcsin

(
δq,1 − δp,1
δq,2 − δp,2

sin(α)

)
+ α+ 2πk

or

λ2 − λ1 → +α+ (2k + 1)π − arcsin

(
δq,1 − δp,1
δq,2 − δp,2

sin(α)

)
,

both of which are contrary to our assumption. Hence it must be the case that
δq,2 = δp,2 which immediately yields that δq,1 = δp,1. A similar argument applies
for any pair of indices p, q ∈ S2, and we deduce that S is an equitable partition.
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Now we suppose that for some constant β, λ1(t)− λ2(t)→ α+ β as t→∞.
Note that then we also have λ′1(t)−λ′2(t)→ 0 as t→∞. Fix indices p ∈ S1, q ∈ S2.
From (4) and (5), we find, upon letting t→∞ that

−δp,1 sin(α) + δp,2 sin(β) = −δq,2 sin(α) + δq,1(− sin(2α+ β)).

Letting

(6) µ1 =
sin(β)

sin(α)
and µ2 =

− sin(2α+ β)

sin(α)
,

it now follows that there is a scalar r such that, for all i ∈ S1 and j ∈ S2,

−δi,1 + µ1δi,2 = r = −δj,2 + µ2δj,1.

Remark 3. Suppose that condition 2 of Theorem 2 holds. From (6) in the proof
of Theorem 2, it is straightforward to verify that µ1 + µ2 = −2 cos(α+ β), so that
necessarily |µ1 + µ2| ≤ 2. In particular, for some k ∈ N,

(7) β = arccos

(
−µ1 + µ2

2

)
− α+ 2πk.

Observe also that

µ2 =
− sin(α) cos(α+ β)− cos(α) sin(α+ β)

sin(α)

=
µ1 + µ2

2
− cot(α) sin(α+ β)

=
µ1 + µ2

2
− cot(α)

√
1−

(
µ1 + µ2

2

)2

.

It now follows that

(8) α = arctan

(√
4− (µ1 + µ2)2

µ1 − µ2

)
.

Moreover, since α ∈ (0, π/2), in fact we must have |µ1 + µ2| < 2 and µ1 > µ2.

Remark 4. Observe that if a graph G happens to satisfy condition 2 of Theorem 2,
and if S is not an equitable partition, then the parameters µ1, µ2 and r are readily
determined, as follows. Suppose without loss of generality that |S1| ≥ 2 and that
δi,2 6= δj,2 for some i, j ∈ S1. Then we find that µ1 = (δj,1− δi,1)/(δj,2− δi,2), from
which we may find r easily. Since G is connected, δj,1 is nonzero for some j ∈ S2,
so that µ2 is then also easily determined. Since µ1, µ2 are determined by G, so
are α and β. Suppose now that the parameters µ1, µ2 so determined are such that
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|µ1 +µ2| < 2 and µ1 > µ2, and let α, β be given by (8) and (7), respectively. Select
a scalar c, and set initial conditions θi(0) = c, for i ∈ S1, and θj(0) = c + α + β,
for j ∈ S2. Then the solution to the frustrated Kuramoto model is readily seen
to be θi(t) = c + r sin(α)t (i ∈ S1) and θj(t) = c + r sin(α)t + α + β (j ∈ S2). In
particular, we find that if S is not an equitable bipartition, but satisfies condition
2 of Theorem 2, then S is an α–Kuramoto bipartition for α given by (8).

Example 2. Consider the graph G in Figure 2. Let S1 = {1, . . . , 5} and S2 =
{6, . . . , 10}. It is readily determined that G satisfies condition 2 of Theorem 2,
where our parameters are µ1 = 1/2, µ2 = 1/2 and r = 0. We find that α = π/2
and β = π/6 + 2πk (for some k ∈ N), and that for an initial condition of the form
θi(0) = c (i ∈ S1) and θj(0) = c+2π/3+2πk (j ∈ S2) the solution to (1) is constant
for all t ≥ 0. In particular, extending Definition 2 slightly to include the case that
α = π/2, we see that S1 ∪ S2 can be thought of as a π/2–Kuramoto bipartition of
G.
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Figure 2: A graph G with a partition of V (G) into {1, . . . , 5} and {6, . . . , 10}
satisfying condition 2 in Theorem 2.

Example 3. Suppose that p ≥ 4 is even and consider the following adjacency
matrix  0 1T

p 0T
p

1p 0p×p Ip
0p Ip B

 ,
where 0p and 1p are the zero and all ones vector in Rp, respectively, 0p×p and Ip
are the zero and identity matrices of order p, respectively, and B is the adjacency
matrix of a graph consisting of p/2 independent edges. Consider the partition
S = {1} ∪ {2, . . . , 2p+ 1}. This partition yields the following parameters: δ1,1 = 0,
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δ1,2 = p, δi,1 = 1 (i = 2, . . . , p + 1), δi,1 = 0 (i = p + 2, . . . , 2p + 1), δi,2 = 1
(i = 2, . . . , p+ 1), δi,2 = 2 (i = p+ 2, 2p+ 1). It now follows that the graph satisfies
condition 2 of Theorem 2, with parameters µ1 = −2/p, µ2 = −1, and r = −2.

Now, take

α = arctan

(√
3p2 − 4p− 4

p− 2

)
and β = arctan

(
p+ 2

2p

)
− α.

Setting up the initial condition

θ1(0) = 0,

θj(0) = arccos

(
p+ 2

2p

)
, j = 2, . . . , 2p+ 1,

it follows that the solution to (1) is given by

θ1(t) = p sin(β)t,

θj(t) = arccos

(
p+ 2

2p

)
+ p sin(β)t, j = 2, . . . , 2p+ 1.

Example 4. Here we revisit the graph of Figure 1a) in [5]. Take S1 = {1} and
S2 = {2, . . . , 7}. With this partition, it is straightforward to verify that the graph
and partition satisfies condition 2 of Theorem 2, with parameters µ1 = −1/2,
µ2 = −1, and r = −2. It now follows that for α = arctan(

√
7) and β = arccos (3/4)

and initial condition θ1(0) = 0 and θj(0) = α + β (j = 2, . . . , 7), the solution to
(1) satisfies θ1(t) = −2t and θj(t) = α+ β − 2t (j = 2, . . . , 7). The figure is drawn
below.
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Figure 3: A graph G with a partition of V (G) into {1} and {2, . . . , 7} satisfying
condition 2 in Theorem 2. This is the graph in Figure 1a of [5].

1. OPEN PROBLEMS
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Of course the first problem to address, which is central to this paper, is
that of establishing a combinatorial characterisation of α-Kuramoto partitions in
the general case. Further, we have just touched the surface of asymptotic phase
synchronisation in this paper, and more work needs to be done in that direction.
Exploring algorithmic applications of this notion is also a potentially fruitful avenue
for future research. We conclude the paper with a few specific open problems.

Problem 1. Can we characterise the degree sequences that satisfy condition 2 of
Theorem 2? Specifically, suppose that G is a connected graph and that S1 ∪ S2 is
a partition of its vertex set. Let GS1 , GS2 be the subgraphs of G induced by S1,
S2, respectively. Find necessary and sufficient conditions on the degree sequences
of G, GS1

and GS2
in order that the bipartition S1 ∪ S2 satisfies condition 2 of

Theorem 2. Observe that the sequences δi,1 (i ∈ S1), δj,2 (j ∈ S2), and δp,1 + δp,2
(p = 1, . . . , n) must all be graphic ( i.e. must be the degree sequence of some graph).

Problem 2. Let G be a connected graph, suppose that the bipartition S1 ∪ S2

satisfies condition 2 of Theorem 2, and let α be given by (8). Determine the initial
conditions such that the solutions of the corresponding frustrated Kuramoto model
(1) exhibit asymptotic synchronisation with limt→∞(θi(t)− θj(t)) = 0 for all i, j ∈
S1 and all i, j ∈ S2.

Problem 3. Determine the values of α ∈ (0, π/2) such that for some connected
graph G, there is a bipartition of its vertex set as S1 ∪ S2 so that condition 2 of
Theorem 2 holds and in addition α is given by (8).

Problem 4. We have seen that any regular graph admits a trivial α-Kuramoto
partition. Adding pendant vertices or small subgraphs to a regular graph may well
change the picture. In the same spirit, it would be interesting to study the behaviour
of α-Kuramoto partitions of graph products and other graph operations.

Problem 5. What is the family of graphs for which equitable and α-Kuramoto
partitions correspond?
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