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1. INTRODUCTION31

Transferring a quantum state from one location to another reliably, or generating entan-32

gled states, play important roles in quantum spin systems. We model a quantum spin33

system by an undirected weighted graph: assign a vertex to each spin, and two vertices34

are adjacent if and only if the two corresponding spins are interacting with each other,35

with the edge weight equal to the interaction strength between the two spins. The system36

evolves with time due to its own dynamics; for the one excitation subspace, the adjacen-37

cy matrix of the graph serves as the Hamiltonian of the system underXY dynamics, and38

the Laplacian matrix of the graph serves as the Hamiltonian of the system under Heisen-39

berg dynamics. Here we focus on the latter case, and refer to quantum state transfer on40

graphs instead of in a quantum system.41

For a graph X on n vertices with labelling {1, . . . , n}, its adjacency matrix A(X)42

is an n-by-n matrix with (j, k) entry 1 if vertices j and k are adjacent, and 0 otherwise.43

Its Laplacian matrix is L = D − A, where D is a diagonal matrix with j-th diagonal44

entry being the j-th row sum of A. Let H denote the Hamiltonian of the system (A or45

L, depending on the dynamics), and let U(t) = eitH. Then the fidelity of state transfer46

from vertex u to vertex v is given by pu,v(t) = |U(t)u,v|2, and is a measurement of the47

closeness of the state at vertex v at time t to the state at vertex u at time 0. If there is48

some time t1 > 0, such that pu,v(t1) = 1 for two distinct vertices u and v, then we49

say that there is perfect state transfer (PST) from u to v at time t1. It means that, up50

to a phase factor, with probability 1 the state at vertex v at time t1 is identical to the51

initial state at vertex u at time 0. There is a lot of research on perfect state transfer52

on graphs, including quantum state transfer properties with respect to graph operations,53

of weighting schema to obtain weighted graphs with PST where the unweighted ones54

do not, of adding potentials to graphs, and some special classes of graphs with PST;55

we refer the interested reader to [2, 4, 9, 10, 13, 15, 16]. Another phenomenon related56

to quantum state transfer is called fractional revival. If there is some time t2 > 0 and57

two distinct vertices u and v, such that U(t2)eu = αeu + βev for some α, β ∈ C with58

|α|2 + |β|2 = 1 and β 6= 0, we say there is fractional revival (FR) from u to v at time59

t2. Further, if |α| = |β|, the fractional revival is called balanced [7] (observe that FR60

generalizes PST). More generally, if there is some time t3 > 0 and a proper subset S61

of V (X), such that for any vertex u ∈ S, U(t3)u,v = 0 if v /∈ S, and the unweighted62

graph associated to the submatrix U(t3)[S,S] is connected, we say there is generalized63

fractional revival between vertices in S (here U(t3)[S,S] is the submatrix of entries that64

lie in the rows and columns of U(t3) indexed by elements in S).65

Fractional revival between two end vertices of a spin chain (where the underlying66

graph is a path) can also be used to transfer quantum states efficiently, and balanced67

fractional revival can be used to generate entangled states. For adjacency fractional68

revival to occur at the two end vertices of a quantum spin chain with weighted loops,69

the spectrum of the Hamiltonian H = A must take the form of a bi-lattice [11]. It is70
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shown that spin chains with adjacency fractional revival can be obtained from isospectral71

deformations of spin chains with PST (a characterization of the spectrum ofH for a spin72

chain to exhibit PST at the end vertices is known), and the deformation only changes the73

middle couplings (also weights of the loops on the middle two vertices of the path when74

n is even) of the chain with PST to get a chain with FR. In [5], a class of cubelike graphs75

and some weighted graphs obtained from hypercubes are found to exhibit fractional76

revival. In [7], some properties of adjacency fractional revival (HamiltonianH = A) on77

general graphs are studied; in particular, a characterization of fractional revival between78

cospectral vertices is given.79

Not many graphs are known to exhibit fractional revival. Here we focus on Lapla-80

cian dynamics, and characterize the parameters of a family of graphs – threshold graphs81

– that admit fractional revival under Laplacian dynamics. With these threshold graphs,82

we can produce more graphs with Laplacian fractional revival. Recall that a threshold83

graph can be constructed from the one-vertex graph by repeatedly adding a single vertex84

of two possible types: an isolated vertex, i.e., a vertex without incident edges, or a dom-85

inating vertex, i.e., a vertex connected to all other vertices. A characterization of PST in86

threshold graphs is known (see Theorem 3 below), and consequently our results on FR87

in threshold graphs, which rely heavily on techniques from spectral graph theory, can be88

seen as an extension of that theorem.89

The outline of the paper is as follows. In Section 2, we review almost equitable90

partitions of a graph, some basic graph theory, and related results about threshold graphs.91

In Section 3, we consider Laplacian fractional revival between two vertices of a graph92

X , where we deduce that the two vertices are strongly cospectral with respect to L. In93

Section 4, we characterize threshold graphs that admit (generalized) Laplacian fractional94

revival within a subset of the vertex set. In Section 5, we produce more graphs with95

Laplacian fractional revival by making use of threshold graphs.96

2. PRELIMINARIES97

Some graphs admit some special partitions of their vertex set, and these partitions play98

important roles in quantum state transfer under Laplacian dynamics. First we introduce99

the characteristic matrix of a partition of the vertex set V (X) of the graph X , and a100

special partition of V (X) that X may admit.101

Definition [12]. If π = (C1, . . . , Ck) is a partition of V (X), the characteristic matrix
P of π is the n× k matrix

Pj` =

{
1 if vj ∈ C`,
0 otherwise.

If we scale each column of P so that its norm is 1, the resulting matrix is called the102

normalized characteristic matrix of the partition π, and is denoted by P̂ .103
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Definition [6]. For the graph X = (V,E), a partition π = (C1, . . . , Ck) of its vertex set
V , is called an almost equitable partition if ∀j, ` ∈ {1, . . . , k} with j 6= `, the number
of neighbours of a vertex v ∈ Cj has in the cell C` does not depend on the choice of v.
The generalized Laplacian matrix L(X)π with respect the the almost equitable partition
π is the k × k matrix such that

L(X)πj,` =

{
−cj` if j 6= `
sj , otherwise,

where cj` is the number of neighbours a vertex in cell Cj has in cell C`, and sj =104 ∑
6̀=j cj`.105

If the condition in the definition of almost equitable partition above also holds when-106

ever j = `, then this special almost equitable partition is called an equitable partition,107

which plays an important role in quantum state transfer under adjacency dynamics.108

An almost equitable partition of a graph X has the following characterization by109

using its characteristic matrix and the Laplacian matrix of the graph X .110

Proposition 1 [6]. Let G be a graph, L its Laplacian matrix, π = (C1, . . . , Ck) a k-
partition of V (G) and P the characteristic matrix of π. Then π is an almost equitable
partition if and only if there is a k × k matrix M such that

LP = PM

If π is an almost equitable k-partition then M is the generalized Laplacian matrix111

L(G)π.112

Now we review some graph operations: complement, union and join.113

Let X = (V,E) denote the graph with vertex set V and edge set E. Then the114

complement Xc of X is the graph that has the same vertex set as X , and two vertices115

of Xc are adjacent if and only if they are not adjacent in X . Assume X1 = (V1, E1)116

and X2 = (V2, E2) are two graphs with disjoint vertex sets. Then the union X1 ∪X2 of117

X1 and X2 is the graph with vertex set V1 ∪ V2 and edge set E1 ∪ E2, i.e., X1 ∪X2 =118

(V1∪V2, E1∪E2). The joinX1∨X2 ofX1 andX2 isX1∨X2 = (Xc
1 ∪Xc

2)c, which is119

the graph obtained by taking the union of X1 with X2 first, then connecting every vertex120

of X1 to every vertex of X2.121

By using the above two binary graph operations – union and join, we have the fol-122

lowing characterization of connected threshold graphs, where Kp denotes the complete123

graph on p vertices, and Op denotes the empty graph on p vertices.124

Proposition 2 [17]. Let X be a connected graph on at least two vertices. Then X is a125

connected threshold graph if and only if one of the following two conditions is satisfied:126

(1) there are indices m1, . . . ,m2k ∈ N with m1 ≥ 2 such that X = ((((Om1 ∨Km2) ∪127

Om3) ∨Km4) · · · ) ∨Km2k
≡ Γ(m1, . . . ,m2k);128
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(2) there are indices m1, . . . ,m2k+1 ∈ N with m1 ≥ 2 such that X = ((((Km1 ∪129

Om2) ∨Km3) ∪Om4) · · · ) ∨Km2k+1
≡ Γ(m1, . . . ,m2k+1);130

131

The Laplacian PST properties of threshold graphs are known.132

Theorem 3 [17]. Let X be a threshold graph. When X ≡ Γ(m1, . . . ,m2k) (resp.133

X ≡ Γ(m1, . . . ,m2k+1)), then there is PST between vertex j and ` at time t ∈ [0, 2π]134

if and only if (j, `) = (1, 2) and in addition: t = π/2; m1 = 2; m2 ≡ 2 (mod 4), and135

mj ≡ 0 (mod 4) for j = 3, . . . , 2k (resp. j = 3, . . . , 2k + 1).136

Throughout, we use e1, . . . , en to denote the standard basis vectors in the n-dimensional137

vector space, where for each j = 1, . . . , n, ej = (0, . . . , 0, 1, 0, . . . , 0)T . We use Jm,n138

to denote the all ones matrix of sizem×n, use 1n to denote the all ones vector of size n,139

and use In to denote the identity matrix of size n. We denote a p× q zero matrix by 0p,q140

and the zero vector in Cp by 0p. Subscripts denoting the sizes of matrices and vectors141

will be suppressed when they are clear from the context.142

3. LAPLACIAN FRACTIONAL REVIVAL BETWEEN TWO VERTICES143

Assume that X is a graph on n vertices and that it admits Laplacian fractional revival144

from vertex u to vertex v at time τ . Without loss of generality, assume that vertices145

u and v are labelled 1 and 2, respectively. Then U(τ) = eiτL =

[
U1 0
0 U2

]
for146

some complex symmetric unitary matrices U1 of order 2 and U2 of order n − 2, and147

the union of the spectrum of U1 and the spectrum of U2 gives the spectrum of U(τ).148

Denote the (j, `) entry of U1 by Uj,`, then for j = 1, 2, eiτLej = U1je1 + U2je2.149

Now assume the spectral decomposition of L is L =
∑q

r=0 θrEr with θ0 = 0. Then150

eiτL =
∑q

r=0 e
iτθrEr, and eiτLeu =

∑q
r=0 e

iτθrEreu for any vertex u of X . There-151

fore
∑q

r=0 e
iτθrErej = eiτLej = U1je1 + U2je2 for j = 1, 2. Premultiplying Er152

on both sides of the equation, combined with the facts that eiτL and Er commute, and153

that ErE` = δr,`Er, gives eiτθrErej = U1jEre1 + U2jEre2 for j = 1, 2. Putting154

them together, we have [Ere1Ere2](U1 − eiτθrI) = 0 for r = 0, 1, . . . , q. Therefore155

if Cr = [Ere1Ere2] 6= 0, then eiτθr is an eigenvalue of U1, and any nonzero row of156

Cr is a real left eigenvector of U1 associated to the eigenvalue eiτθr . In particular, for157

θ0 = 0, we have C0 = 1
nJn,2 6= 0, and therefore eiτθ0 = eiτ0 = 1 is an eigenvalue of158

U1. Furthermore, 1 is a simple eigenvalue of U1, since the only 2-by-2 diagonalizable159

matrix that has 1 as a multiple eigenvalue is the identity matrix I2.160

Note that for a complex symmetric matrix, each of its real eigenvectors is a left161

eigenvector at the same time, and the real eigenvectors associated to distinct eigenval-162

ues are orthogonal. To see this, assume U is a complex symmetric matrix, with a real163

eigenvector x associated to λ, and a real eigenvector y associated to µ 6= λ. Taking the164



6 S. KIRKLAND AND X. ZHANG

transpose of Ux = λx we have xTU = xTUT = (Ux)T = λxT , that is to say, x is also165

a left eigenvector of U . From λxT y = (xTU)y = xT (Uy) = µxT y and λ 6= µ, we166

conclude that xT y = 0, i.e., x and y are orthogonal to each other.167

Now consider any eigenvalue θr. Then if eiτθr 6= 1, from the facts that U1 is sym-168

metric and that Er is a real matrix for r = 0, 1, . . . , q, we know Cr12 = [Ere1, Ere2]12169

= 0, i.e., Ere1 + Ere2 = 0. Since 1 is a simple eigenvalue of U1, we have that for170

each r such that eiτθr = 1, all the rows of Cr are scalar multiples of 1T2 . That is to say,171

[Ere1, Ere2] = [Ere1, Ere1], or Ere1 = Ere2. The following theorem summarizes172

those observations.173

Theorem 4. If there is Laplacian fractional revival between two vertices u and v at time174

τ in graphX , then vertices u and v are strongly cospectral with respect to the Laplacian175

matrix L. That is, if the spectral decomposition of L is L =
∑

r θrEr, then for each r,176

either Ereu = Erev (if τθr2π ∈ Z) or Ereu = −Erev (if τθr2π /∈ Z) holds.177

While preparing this manuscript, we learned that Ada Chan and Jordan Teitelbaum178

[8] have also proved the necessity of strong cospectrality for Laplacian FR.179

Remark 5. For generalized Laplacian fractional revival between m ≥ 3 vertices, 1 is
not necessarily a simple eigenvalue of U1, but if it is, then with a similar argument as
above, we have the following.
Assume X is a graph that admits generalized Laplacian fractional revival between ver-
tices in S = {1, 2, . . . ,m} ⊂ V (X) at time τ , and that U1 = U(τ)[S,S] = (eiτL)[S,S]
has 1 as a simple eigenvalue. Let L =

∑q
r=0 θrEr be the spectral decomposition of the

Laplacian matrixL ofX . Then for each r = 1, . . . ,m, the vectorsEre1, Ere2, · · · , Erem
are linearly dependent, and either

Ere1 = Ere2 = · · · = Erem if eiτθr = 1, or (1)

Ere1 + Ere2 + · · ·+ Erem = 0 if eiτθr 6= 1. (2)

Example 6. Let X be the graph as shown in Figure 1, and write the spectral decompo-180

sition of its Laplacian as L(X) =
∑4

r=0 θrEr, with θ0 = 0, θ1 = 1, θ2 = 3, θ3 = 4,181

and θ4 = 5. There is Laplacian fractional revival between vertices v1 and v2, and gen-182

eralized fractional revival between vertices {v3, v4, v5, v6} at time 2π
3 . Direct observa-183

tion shows that v1 and v2 are strongly cospectral with respect to L: Ere1 = Ere2 for184

r = 0, 2, Ere1 = −Ere2 for r = 1, 3, and E4e1 = E4e2 = 06, which is in accordance185

with Theorem 4. There is also generalized Laplacian fractional revival between vertices186

{v1, v4, v5}, and between vertices {v2, v3, v6} at time π. Since 1 is a simple eigenvalue187

of U1 = U(π)[1,4,5],[1,4,5], Remark 5 implies that Ere1 = Ere4 = Ere5 for r = 0, 3188

(eiπθr = 1) and that Ere1 + Ere4 + Ere5 = 0 for r = 1, 2, 4 (since eiπθr 6= 1), which189

can be confirmed by checking the orthogonal projection matrices Er directly.190



FRACTIONAL REVIVAL OF THRESHOLD GRAPHS UNDER LAPLACIAN DYNAMICS 7

Figure 1

v1

v3

v6 v5

v4

v2

4. LAPLACIAN FRACTIONAL REVIVAL IN THRESHOLD GRAPHS191

We will only give detailed consideration to connected threshold graphs of the form192

Γ(m1,m2, . . . ,m2k) in this section; note that similar results hold for the connected193

threshold graphs Γ(m1,m2, . . . ,m2k,m2k+1), and we state them without proof.194

As shown in [17], for the threshold graph Γ(m1,m2, . . . ,m2k), its eigenvalues are:

λ0 = 0, (3)

λj = mj+1 +mj+3 + · · ·+m2k for any odd integer j ∈ {1, . . . , 2k}, (4)

and λj = σj +mj+2 + · · ·+m2k for any even integer j ∈ {1, . . . , 2k}, (5)

where σj = m1 +m2 + · · ·+mj for j = 1, 2, . . . , 2k. The multiplicity of λj is
1 if j = 0
m1 − 1, if j = 1
mj otherwise.

The orthogonal idempotents for L corresponding to λ0 = 0, λ = λ1 and λ = λj for195

j = 2, 3, . . . , 2k are: E0 = 1
σ2k

Jσ2k,σ2k ,196

E1 =


Im1 − 1

m1
Jm1,m1 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ,

Ej =


mj

σj−1σj
Jσj−1,σj−1 − 1

σj
Jσj−1,mj 0σj−1,σ2k−σj

− 1
σj
Jmj ,σj−1 Imj − 1

σj
Jmj ,mj 0mj ,σ2k−σj

0σ2k−σj ,σj−1 0σ2k−σj ,mj 0σ2k−σj ,σ2k−σj

 , respectively.
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We partition the vertex set of Γ(m1, . . . ,m2k) according to the indicesm1,m2, . . . ,m2k;197

denote the corresponding cells by C1, C2, . . . , C2k, and denote the partition by π.198

Lemma 7. If Γ(m1, . . . ,m2k) admits Laplacian fractional revival between two vertices199

u and v, then they must belong to the same cell of the partition π.200

Proof. From Theorem 4 we know that if there is fractional revival between two vertices201

u and v of Γ(m1, . . . ,m2k), then the two vertices are strongly cospectral with respect202

to L. Assume u ∈ Cj , v ∈ C`, j < `, and u is the s-th entry of cell Cj . Then203

Ejev = 0σ2k and for es ∈ Rmj , Ejeu =
[
eTs − 1

m1
1Tm1

0Tσ2k−m1

]T
if j = 1;204

Ejeu =
[
− 1
σj
1Tσj−1

eTs − 1
σj
1Tmj 0Tσ2k−σj

]T
if j > 1. In either case, u and v are205

not strongly cospectral with respect to L. Therefore u and v must be in the same cell of206

the partition π.207

Lemma 8. If X = Γ(m1, . . . ,m2k) admits Laplacian fractional revival between two208

vertices u and v, then {u, v} = {1, 2} and m1 = 2.209

Proof. From Lemma 7 we know vertices u and v are in the same cell of π; assume210

u, v ∈ Cj , with u being the s-th vertex in Cj , and v the r-th vertex in Cj . Let σ0 = 0,211

then Ejeu =
[
− 1
σj
1Tσj−1

(es − 1
σj
1mj )

T 0Tσ2k−σj

]T
and Ejev =

[
− 1
σj
1Tσj−1

∣∣ (er212

− 1
σj
1mj )

T
∣∣ 0Tσ2k−σj]T , where es, er ∈ Rmj . By Theorem 4, Laplacian fractional re-213

vival between u and v implies Ejeu = ±Ejev, which is possible only if j = 1 and214

σ1 = m1 = 2.215

Now we are going to characterize the parameters mj such that Laplacian fraction-216

al revival occurs between vertices 1 and 2 in the graph Γ(m1, . . . ,m2k) by using the217

spectral decomposition of L shown at the beginning of this section. Since all the eigen-218

values of L are integers, we know that L is periodic at all vertices at time 2π, i.e. e2πiL219

is a scalar multiple of the identity matrix (in fact it is the identity matrix here). In the220

following we will not consider this case.221

Theorem 9. The threshold graph X = Γ(m1, . . . ,m2k) admits Laplacian fractional222

revival between two vertices u and v at time τ if and only if223

i) {u, v} = {1, 2} and m1 = 2, and224

ii) (a) m1
τ
π = 2 τπ /∈ Z225

(b) (m1 +m2)
τ
2π ,mj

τ
2π ∈ Z for j = 3, . . . , 2k.226

Proof. Assume that there is Laplacian fractional revival between vertices u and v at time
τ > 0. Then Lemmas 7 and 8 imply that i) holds. Using the spectral decomposition of
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L we have

(eiτL)1,1 = eiτλ1(1− 1
2) + eiτλ2( m2

σ1σ2
) + eiτλ3( m3

σ2σ3
) + · · ·

+eiτλ2k−1(
m2k−1

σ2k−2σ2k−1
) + eiτλ2k( m2k

σ2k−1σ2k
) + 1

σ2k
,

(eiτL)1,2 = eiτλ1(−1
2) + eiτλ2( m2

σ1σ2
) + eiτλ3( m3

σ2σ3
) + · · ·

+eiτλ2k−1(
m2k−1

σ2k−2σ2k−1
) + eiτλ2k( m2k

σ2k−1σ2k
) + 1

σ2k
,

(eiτL)1,w = eiτλj (− 1
σj

) + eiτλj+1(
mj+1

σjσj+1
) + · · ·

+eiτλ2k( m2k
σ2k−1σ2k

) + 1
σ2k

for w ∈ Cj with j = 2, . . . , 2k.

Since (eiτL)1,w = 0 for w 6= 1, 2, then considering w ∈ C2k, w ∈ C2k−1, . . . , w ∈
C3, w ∈ C2, we find that τσ2k, τm2k, τ(σ2k−2 +m2k), . . . , τ(m4 +m6 + . . .+m2k),
and τ(σ2 +m4 + . . .+m2k) are all even integer multiples of π, which is equivalent to
the fact that τm2k, τm2k−1, τm2k−2, . . . , τm3, and τσ2 are all even integer multiples
of π. In this case,

(eiτL)1,1 =
1

2
eiτm2 +

1

2
, and (eiτL)1,2 = −1

2
eiτm2 +

1

2
. (6)

Hence, if in addition,227

• τm2 and therefore τm1 = 2τ is an even integer multiple of π, then the graph X228

is periodic at vertex 1 (and vertex 2);229

• τm2 and therefore τm1 = 2τ is an odd integer multiple of π, then the graph X230

admits Laplacian perfect state transfer between vertices 1 and 2;231

• τm2 and therefore τm1 = 2τ is not an integer multiple of π, then the graph X232

admits Laplacian fractional revival between vertices 1 and 2.233

Therefore the conditions are necessary. It is straightforward to show that the conditions234

are sufficient.235

With the same argument as above, we have the following.236

Remark 10. The threshold graph X = Γ(m1, . . . ,m2k,m2k+1) admits Laplacian frac-237

tional revival between two vertices u and v at time τ if and only if238

i) {u, v} = {1, 2} and m1 = 2, and239

ii) (a) m1
τ
π = 2 τπ /∈ Z240

(b) (m1 +m2)
τ
2π ,mj

τ
2π ∈ Z for j = 3, . . . , 2k, 2k + 1.241

Corollary 11. There is balanced Laplacian fractional revival between vertices u and v242

in the threshold graph X = Γ(m1, . . . ,m2k) at time τ , if and only if243

i) m1 = 2 with {u, v} = {1, 2},244
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ii) τ = 2`+1
4 π for some non-negative integer `,245

iii) m2 = 2(2s+1)
2`+1 , for the same integer ` as in ii), and for a non-negative integer s of246

distinct parity from ` such that (2` + 1)|(2s + 1) (in fact when this is true, then247

2s+1
2`+1 ≡ 3 (mod 4)), and248

iv) mj ≡ 0 (mod 8) for j = 3, . . . , 2k.249

Proof. From Theorem 9 and equation (6), we know that if balanced fractional revival in250

X takes place between vertices u and v, then it is between vertices 1 and 2. In this case,251

m1 = 2, cos (m2τ) = 0, and τ(m1+m2), τm3, . . . , τm2k are all even integer multiples252

of π. Therefore τm2 = 2s+1
2 π for some integer s. Since τ(m1 +m2) is an even integer253

multiple of π, we have 2τ = 2`+1
2 π for some integer `, where ` has different parity254

than s. Hence τ = 2`+1
4 π and m2 = 2(2s+1)

2`+1 for integers s and ` with distinct parity.255

Combining with the fact that τmj is an even integer multiple of π for j = 3, . . . , 2k, we256

find that mj ≡ 0 (mod 8) for j ≥ 3.257

Conversely, if mj ≡ 0 (mod 8) for j ≥ 3, and τ = 2`+1
4 π for some integer `, then258

mjτ = mj
2`+1
4 π is an even integer multiple of π for j ≥ 3. Furthermore, if m2 =259

2(2s+1)
2`+1 for integer s of different parity than ` such that (2` + 1)|(2s + 1), then (m1 +260

m2)τ = (s+ ` + 1)π is an even integer multiple of π, and cos(m2τ) = cos(2s+1
2 π) =261

0. Again from Theorem 9 and equation (6), we know that there is balanced fractional262

revival in X between vertices 1 and 2 at time τ .263

Remark 12. There is balanced Laplacian fractional revival between vertices u and v in264

the threshold graph X = Γ(m1, . . . ,m2k,m2k+1) at time τ , if and only if265

i) m1 = 2 with {u, v} = {1, 2},266

ii) τ = 2`+1
4 π for some non-negative integer `,267

iii) m2 = 2(2s+1)
2`+1 , for the same integer ` as in ii), and for a non-negative integer s of268

distinct parity from ` such that (2` + 1)|(2s + 1) (in fact when this is true, then269

2s+1
2`+1 ≡ 3 (mod 4)), and270

iv) mj ≡ 0 (mod 8) for j = 3, . . . , 2k, 2k + 1.271

Remark 13. Since if there is PST between vertices u and v, then u and v are strongly272

cospectral [13], the proof of Theorem 9 can be used to prove Theorem 3: the second of273

the three cases in the proof gives us Theorem 3.274

Now we address generalized Laplacian fractional revival within some subset of ver-275

tices in threshold graphs.276
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Theorem 14. Consider the threshold graph X = Γ(m1, . . . ,m2k), and let C`, ` =277

1, . . . , 2k denote the cells of the partition π of V (X) according to the parameters278

m`, ` = 1, . . . , 2k. Then X admits generalized Laplacian fractional revival between279

vertices in S ⊂ V (X) at some time τ > 0 if and only if, for some integer j < 2k,280

τm2k, τm2k−1, . . . , τmj+2 and τσj+1 are all even integer multiple of π, while τmj+1281

is not. In this case, S = C1 ∪ · · · ∪ Cj , and X is periodic at all vertices in the cells282

Cj+1, . . . , C2k.283

Proof. AssumeX admits generalized Laplacian fractional revival between vertices in S
at time τ , with j being the largest index of the cells such that S ∩ Cj 6= ∅. Let u be any
vertex in S ∩ Cj . Now

(eiτL)u,w = eiτλ`(− 1
σ`

) + eiτλ`+1( m`
σ`σ`+1

) + · · ·+ eiτλ2k( m2k
σ2k−1σ2k

) + 1
σ2k

= eiτλ`(− 1
σ`

) + eiτλ`+1( 1
σ`
− 1

σ`+1
) + · · ·+ eiτλ2k( 1

σ2k−1
− 1

σ2k
) + 1

σ2k
,

for any w ∈ C`, with ` = j + 1, . . . , 2k, and

(eiτL)u,v = eiτλj (− 1

σj
) + eiτλj+1(

1

σj
− 1

σj+1
) + · · ·+ eiτλ2k(

1

σ2k−1
− 1

σ2k
) +

1

σ2k
,

for any v ∈ C1 ∪ C2 ∪ · · · ∪ Cj with v 6= u, and

(eiτL)x,x = eiτλ`(1− 1

σ`
) + eiτλ`+1(

1

σ`
− 1

σ`+1
) + · · ·+ eiτλ2k(

1

σ2k−1
− 1

σ2k
) +

1

σ2k
,

for any x ∈ C`, with ` = 1, . . . , 2k.
Since (eiτL)u,w = 0 for w ∈ C2k, C2k−1, . . . , Cj+1, we find that

τm2k

2π
,
τm2k−1

2π
, . . . ,

τmj+2

2π
,
τσj+1

2π
∈ Z. (7)

In this case, we have

(eiτL)w,w = 1, for w ∈ Cj+1 ∪ . . . ∪ C2k

(eiτL)u,u = eiτλj (1− 1

σj
) +

1

σj
, and (8)

(eiτL)u,v = eiτλj (− 1

σj
) +

1

σj
for v ∈ C1 ∪ . . . ∪ Cjand v 6= u.

Therefore X is periodic at any vertex w ∈ Cj+1 ∪ . . . ∪ C2k. The fact that u is284

involved in generalized Laplacian fractional revival implies that |(eiτL)u,u| 6= 1. Com-285

bining with (7) and (8), we find τmj+1

2π /∈ Z irrespective of whether j is even or odd, and286

therefore (eiτL)u,v 6= 0 for any v ∈ C1, . . . , Cj−1, Cj (if (eitL)u,u = 0, then σj = 2,287

j = 1 and there is Laplacian PST between vertices 1 and 2, which is not the case we288

are considering). Hence S = C1 ∪ . . . ∪ Cj and the conditions are necessary. The other289

direction follows directly.290
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Remark 15. For the threshold graphX = Γ(m1, . . . ,m2k,m2k+1), letC`, ` = 1, . . . , 2k+291

1 denote the cells of the partition of V (X) according to the parametersm`, ` = 1, . . . , 2k+292

1. Then X admits generalized Laplacian fractional revival between vertices in S ⊂293

V (X) at some time τ > 0 if and only if, for some integer j < 2k + 1, τm2k+1, τm2k,294

τm2k−1, . . . , τmj+2 and τσj+1 are all even integer multiples of π, while τmj+1 is295

not. In this case, S = C1 ∪ · · · ∪ Cj , and X is periodic at all vertices in the cells296

Cj+1, . . . , C2k, C2k+1.297

Example 16. Consider the threshold graph X = Γ(2, 2, 2, 2, 4, 4), direct computation298

shows that there is generalized Laplacian fractional revival between set S = {1, 2, . . . , 6}299

at τ = π/2. The result agrees with the one stated in Theorem 14, since τm5 = τm6 and300

τσ4 = 8τ are even integer multiples of π, while τm4 = π is not. Similarly Γ(1, 2, 1, 4)301

admits Laplacian fractional revival between the first 4 vertices at time τ = π
4 , and302

Γ(2, 2, 6, 2, 4, 4) admits Laplacian fractional revival between the first 10 vertices at time303

τ = π
2 .304

Remark 17. Note that Theorem 14 implies Theorem 9, but the strong cospectrality of305

the two vertices involved in Laplacian fractional revival makes the proof more clear as306

shown in Theorem 9.307

5. CONSTRUCTING GRAPHS WITH LAPLACIAN FRACTIONAL REVIVAL308

More graphs with Laplacian fractional revival can be obtained from those threshold309

graphs that admit Laplacian fractional revival. For this result, we need to make use310

of almost equitable partitions of a graph. First note that apart from Proposition 1, there311

are other characterizations of an almost equitable partition of a graph. The proof is es-312

sentially the same as that for the characterization for equitable partitions [14], but we313

include it for completeness.314

Proposition 18. Suppose π = (C1, . . . , Ck) is a partition of the vertices of the graph315

X , and that P̂ is its normalized characteristic matrix. Denote the Laplacian of X by316

L(X). Then the following are equivalent:317

(a) π is an almost equitable partition.318

(b) The column space of P̂ is L(X)-invariant.319

(c) There is a matrix B of order k × k such that L(X)P̂ = P̂B.320

(d) L(X) and P̂ P̂ T commute.321

Proof. Assume P is the characteristic matrix of the partition π. From Theorem 1 we322

know that π is an almost equitable partition if and only if L(X)P = PM , i.e., the323

column space of P is L(X)-invariant. Since P and P̂ have the same column space, it324

follows that (a) and (b) are equivalent.325

Since (c) is an equivalent way of saying that the column space of P̂ is L(X)- invari-326

ant, (b) and (c) are equivalent. Furthermore, L(X)P̂ = P̂B implies that P̂ TL(X)P̂ =327
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P̂ T P̂B = IkB = B, from which we see that the matrix B in (c) is symmetric.328

Now if (c) is true, and using the fact that B is symmetric, we have L(X)P̂ P̂ T =329

P̂BP̂ T = P̂ (P̂B)T = P̂ (L(X)P̂ )T = P̂ P̂ TL(X), and therefore (c) implies (d).330

To prove that (d) implies (b), we note that if L(X) commutes with a matrix S, then the331

column space of S is L(X)-invariant. Combined with the fact that P̂ P̂ T and P̂ have the332

same column space, we get the desired result.333

If a graphX1 admits an equitable partition π1 with vertices a and b being singletons,334

then (eitA(X1))a,b = (eit
̂A(X1)π1 ){a},{b}, where ̂A(X1)π1 = P̂A(X1)P̂ , with rows and335

columns indexed by the cells of the partition π1, and the undirected weighted graph with336

adjacency matrix ̂A(X1)π1 is called the symmetrized quotient graph ofX with respect to337

π1 [4]. Now if a graphX admits an almost equitable partition, then a parallel result holds338

betweenL(X) and L̂(X)π with exactly the same argument, where L̂(X)π = P̂ TL(X)P̂339

(note that L̂(X)π is not a Laplacian matrix in general).340

Theorem 19. Let X = (V,E) be a graph with an almost equitable partition π where
two distinct vertices a and b belong to singleton cells. Let L(X) denote its Laplacian
matrix. Let u, v be either a or b, then for any time t,

(eitL(X))u,v = (eitL̂(X)π){u},{v}

where {u} and {v} are the corresponding singleton cells of π, and are used to index341

the rows and columns of L̂(X)π. Therefore, the system with Hamiltonian L(X) has342

fractional revival (resp. perfect state transfer) from a to b at time t if and only if the343

system with Hamiltonian L̂(X)π = P̂ TL(X)P̂ has fractional revival (resp. perfect344

state transfer) from {a} to {b} at time t.345

The above result was used in an example in [1]. Now we can construct more graph-346

s with Laplacian fractional revival (resp. Laplacian perfect state transfer) from given347

graphs.348

Corollary 20. Suppose that the graph X = (V,E) has an almost equitable partition π349

of V , with vertices a and b belonging to singleton cells. If there is Laplacian fractional350

revival (resp. Laplacian perfect state transfer) from a to b in X , then for any graph Y351

obtained from X by adding or deleting any collection of edges within the cells of π, Y352

also admits Laplacian fractional revival (resp. Laplacian perfect state transfer) from a353

to b.354

Proof. The almost equitable partition of the vertex set of X is also an almost equitable355

partition of V (Y ). From the fact that P̂ TL(Y )P̂ = P̂ TL(X)P̂ and Theorem 19, the356

result follows.357
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Remark 21. The partition π of a threshold graph according to the parameters mj is an358

almost equitable partition, and so is any refinement of this partition. In particular, for359

a threshold graph X that admits Laplacian fractional revival at time τ , partitioning the360

cell C1 = {1, 2} of π into two smaller cells C1,1 = {1} and C1,2 = {2} and keeping361

all the other cells unchanged, results in the partition π′, that is still an almost equitable362

partition of V (X), but now the two vertices involved in Laplacian fractional revival are363

singletons. Therefore, we can produce more graphs with Laplacian fractional revival364

from the threshold graph X by adding or deleting edges inside the cells of the partition365

π′ of V (X). Similarly, if a threshold graph X admits generalized Laplacian fractional366

revival at time τ between vertices {1, . . . , `} = C1 ∪ · · · ∪ Cj , where C1, . . . , C2k367

(C2k+1) are the cells of the partition π, then the refinement π′′ of π, which partitions368

C1 ∪ · · · ∪ Cj into singletons as {1}, . . . , {`} and keeps the other cells of π unchanged,369

is still an almost equitable partition of V (X), but with all the vertices involved in the370

revival as singletons. Again, adding or deleting vertices inside the cells of the partition371

π′′ results in graphs that admit generalized Laplacian fractional revival between vertices372

{1, . . . , `} at time τ .373

Example 22. For any threshold graph X = Γ(m1, . . . ,m2k) with Laplacian fractional374

revival (resp. Laplacian PST), and for odd integer p > 1, even integer q ≥ 2, the graph375

Y obtained from X by adding edges in the induced subgraphOmp on cell Cp or deleting376

edges in the induced subgraph Kmq on cell Cq of the equitable partition π, still admits377

Laplacian fractional revival between the two vertices, by Corollary 20 and Remark 21.378

For example, we know without calculations that the complete bipartite graphK2,6 admits379

Laplacian fractional revival at time π/4 (and admits Laplacian PST at time π/2), since380

it can obtained from the threshold graph O2 ∨ K6 (which admits Laplacian fractional381

revival at time π/4 by Theorem 9, and which admits Laplacian PST at time π/2 by382

Theorem 3) by removing all the edges inside K6.383
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