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1. Introduction

Throughout this paper, a graph is a pair of sets G = (V,E), where the elements

of E are two elements subsets of V . The elements of V are vertices of the graph and

the elements of E are its edges.

Given a graph G = (V,E) on n vertices, the Laplacian matrix of G is the matrix

of order n given by L(G) = [lij ], where lij = −1 if vivj ∈ E, lii = d(vi) and lij = 0

for the remaining entries. In the survey [11], some known results about Laplacian

matrices are exhibited.

In [6], Fiedler has shown that a graph is connected if and only if the second smallest

Laplacian eigenvalue is positive. This eigenvalue is called the algebraic connectivity,

and plays a fundamental role in the field of spectral graph theory. We denote the

algebraic connectivity of G by a(G) and refer to [1] and [8], where surveys of old and

new results on this spectral parameter are presented.

An eigenvector associated with the algebraic connectivity is called a Fiedler vector,

after the pioneering work of Fiedler in [7]; these eigenvectors have proven to be very

useful tools in many areas of pure and applied sciences. An account of Fiedler’s

influence on spectral graph theory is given in [12].
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Labeling the vertices of G by v1, v2, . . . , vn and denoting a Fiedler vector by

y = [yi], the coordinates of y can be assigned naturally to the vertices of G: the

coordinate yi labels the vertex vi. (We also use the alternate notation y(vi) for

yi.) This assignment has been called a characteristic valuation and Fiedler noticed

that it induces partitions of the vertices of G that are naturally connected clus-

ters, important for applications and for characterizing the graph structure. As an

example, Fiedler [6] shows that for any Fiedler vector y, the subgraph induced by

{vi ∈ V |yi ≥ 0} is connected. In light of such results, Pothen, Simon and Liu [13]

suggested a spectral graph partitioning algorithm based on the entries of a Fiedler

vector.

After some terminology and notation is introduced, we recount some of Fiedler’s

findings, in order to state the kind of results we discuss in this paper.

If G is a connected graph, a vertex v is called an articulation point if the graph

G \ v, formed from G by deleting v and all edges incident with it, is disconnected.

A graph G is said to be k-connected (k ∈ N), if |G| > k and G \X is connected for

each set X ⊂ V with |X| < k. In other words, no two vertices can be separated

by the removal of less than k vertices (and their incident edges). A block in G is

any maximal induced connected subgraph with no articulation points. A vertex v is

called a characteristic vertex of G with respect to the Fiedler vector y if y(v) = 0

and there is a vertex u adjacent to v such that y(u) ̸= 0. An edge uv is called a

characteristic edge of G with respect to y if y(u)y(v) < 0.

Fiedler’s monotonicity theorem [7] shows (among other results) that, given a con-

nected graph G and characteristic valuation of its vertices, precisely one of the fol-

lowing cases occurs.

Case A: There is exactly one block C in G which contains both positively and nega-

tively valuated vertices. Every other block is either a positive block (i.e. all

vertices have positive valuation), or a negative block, or a zero block.

Case B: No block of G contains both positively and negatively valuated vertices. In

this case, there exists a unique characteristic vertex z. This vertex z is a

point of articulation. Each block of G is (with the exception of z) either a

positive block, or is (with the exception of z) a negative block, or is a zero

block.

(We note in passing that in [10] it is shown that cases A and B occur independently

of the choice of the Fiedler vector – i.e. either case A holds for every Fiedler vector

of G, or case B holds for every Fielder vector of G.)

Fiedler [7] further extends these partition properties and shows that if vk is an

articulation point of G, with components of G \ {vk} given by C0, . . . Cr, then the

following hold.
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(a) If yk > 0 then exactly one of the components C0, . . . , Cr has some vertices

valuated negatively in y. For all other vertices vi in the remaining compo-

nents, yi > yk.

(b) If yk = 0 and there is a component Ci with both negatively and positively

valuated vertices, then it is the only component with that property; all other

vertices vi have yi = 0.

(c) If yk = 0 and there is no component Ci with both negatively and positively

valuated vertices, then each component Ci is either positively valuated or

negatively valuated or zero valuated in y.

Some 20 years after Fiedler’s work appeared, Kirkland, Neumann, Shader and

Fallat used Fiedler’s theory and the Perron values of matrices associated to the

components G \ {v} (v an articulation point) in order to characterize the algebraic

connectivity of trees [9] and of graphs with articulation points [10]. A further exten-

sion of this work appears in [4], which deals with irreducible matrices all of whose

off–diagonal entries are nonpositive.

Observe that the results above give no information about the characteristic val-

uation inside a block of G. Theorem 2.4 of [2], gives some information about the

behavior of the characteristic valuations on vertices of the non characteristic blocks.

Nevertheless, if G has no articulation point, i.e. if it is k-connected, with k > 1,

then G is composed of a single block containing both nonpositive and nonnegative

vertices. The main purpose of this paper is to extend the kinds of results discussed

above, to graphs without articulation points, describing the structure of the partition

arising from a characteristic valuation. In particular, we show how a set of k > 1

vertices that disconnect G may induce connected subgraphs having vertex valuations

of the same sign, introducing a natural partition of vertices in G. The technique used

is similar to Fiedler’s, but relies on a generalized notion of articulation point. This

is discussed in section 3. We also extend the result in [9] and [10] to graphs with no

articulation points. This is the topic of section 4.

The remainder of the paper is organized as follows. We start in section 2 with the

definitions and known lemmata which will be used throughout this note. Section 5

discusses an application to bounding the algebraic connectivity based on a parameter

derived from the number of connecting edges between components.

2. Definitions and Lemmata

First, we generalize the idea of an articulation point. Given a k-connected graph

(with k ≥ 1), a hinge is a set of k vertices Ĥ such that G \ Ĥ is disconnected. It is

easy to see that for any connected graph with an articulation point, the hinges are
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precisely the articulation points of that graph. Hinges will be crucial for the results

obtained in this paper.

Now we will get into the definitions that distinguish hinges and components by

means of their characteristic valuations. Let G be a graph with a characteristic

valuation y = [yi] and a hinge Ĥ. Label the vertices of Ĥ as vl1 , vl2 ,. . . ,vlk , such

that yl1 ≤ yl2 ≤ · · · ≤ ylk .

• We say that a hinge Ĥ is null if yl1 = yl2 = · · · = ylk = 0.

• We say that a hinge Ĥ is positive if yl1 > 0, that is, all vertices at Ĥ have

positive valuation.

• We say that a hinge Ĥ is nonnegative if yl1 ≥ 0 and ylk > 0.

• We say that a hinge Ĥ is mixed whenever yl1 < 0 < ylk , that is, Ĥ has

simultaneously positive and negative valuation.

Similarly, we define negative hinge and nonpositive hinge.

Now, consider a connected component C of the graph G \ Ĥ.

• We say that C is a null component if the valuation of each of its vertices is

zero.

• We say that C is a positive component if the valuation of each of its vertices

is positive.

• We say that C is a negative component if the valuation of each of its vertices

is negative.

• We say that C is a mixed component if it contains vertices with both positive

and negative valuations.

We emphasize here that the identification of C as a null (respectively positive, neg-

ative, mixed) component depends fundamentally upon the particular Fiedler vector

under consideration.

For a symmetric matrix M of order n we denote its eigenvalues by λ1(M) ≤
λ2(M) ≤ . . . ≤ λn(M).

The following results were proved by Fiedler [7].

Lemma 2.1. Consider the symmetric matrix A with nonpositive off diagonal

entries and with nonnegative eigenvalues. If A is irreducible and singular, then there

exists a unique vector y > 0 (up to a scalar multiple), such that Ay = 0.

Lemma 2.2. Let A be a real square matrix with nonpositive off diagonal entries.

If all eigenvalues of A are positive, then A−1 ≥ 0.

Lemma 2.3. Consider a connected graph G with vertex set V = {v1, v2, . . . , vn}.
Let y = [yi] be a characteristic valuation of G. For r ≥ 0, let

V1(r) = {vi ∈ V |yi ≥ −r}, V2(r) = {vi ∈ V |yi ≤ r}.
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Then both the subgraphs induced by V1(r) and V2(r) are connected.

Lemma 2.4. Let y = [yi] be a characteristic valuation of the connected graph

G = (V,E). If yi > 0, then there exists a vertex vj such that vi, vj ∈ E and yi > yj .

In the paper [4], the perturbed Laplacian matrix of a graph is defined as L(D) =

D−A, where D is any given diagonal matrix and A is the weighted adjacency matrix.

The next lemma follows from [4], where the authors studied the Fiedler vector of the

perturbed Laplacian matrix and we rewrite it in the context of Laplacian matrix to

fit our framework.

Lemma 2.5. Let G be a connected graph. Let y be a Fiedler vector of L. Let W

be a nonempty set of vertices of G such that y(u) = 0, for all u ∈ W and suppose

G \W is disconnected with t ≥ 2 components C1, C2, . . . , Ct, such that y(Ci) ̸= 0,

i = 1, . . . , t. Then each y(Ci) is either all positive or all negative.

3. Structural Results

We begin with a convenient expression for the Laplacian matrix of the connected

graph G. Let Ĥ be a hinge of G and let C0, C1, . . . , Cr be the components of G \ Ĥ.

For convenience, we assume that the last rows and columns of the Laplacian matrix

represent the vertices of Ĥ. Therefore, the Laplacian matrix has the following format.

(3.1) L =



A0 0 · · · 0 c10 · · · ck0
0 A1 0 c11 · · · ck1
...

. . .
...

...
...

0 0 · · · Ar c1r · · · ckr(
c10
)T (

c11
)T · · ·

(
c1r
)T

d1
...

...
...

. . .(
ck0
)T (

ck1
)T · · ·

(
ckr
)T

dk


,

where Ai corresponds to vertices of the connected component Ci, for i = 0, 1, . . . , r

and cji is a (0,−1)-vector that accounts for the edges between the vertex vj of Ĥ and

the connected component Ci. We note that it is possible for a hinge to have edges

between its vertices. From now on, we shall use the format (3.1).

Theorem 3.1. Let G be connected graph and y = [yi] a characteristic valuation

of G. Let Ĥ be a hinge of G and let C0, C1, . . . , Cr be the connected components of

G \ Ĥ. Label the vertices of Ĥ as l1, . . . , lk, where yl1 ≤ yl2 ≤ · · · ≤ ylk .

(i) If Ĥ is null and there exists a mixed component Ci, then it is the only mixed

component and all the other components are null.
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(ii) If Ĥ is null and there is no mixed component, then each component is either

null, positive or negative.

(iii) If Ĥ is non-negative, then only one component has vertices with negative

valuation. All the remaining vertices vs outside the hinge and the component with

negative vertices satisfies yl1 < ys.

Proof. We first apply Lemma 2.5 withW = Ĥ. To prove (i) suppose that there exists

another component that is not null. Then by Lemma 2.5 each component is positive,

negative or null. This is a contradiction since there exists a mixed component. Hence

the only non-null component is the mixed one. This shows part (i).

To prove (ii), since 1 is an eigenvector of L(G), then
∑

yi = 0. Since there are no

mixed components there are at least two nonzero components, say C0 and C1, such

that y(C0) ̸= 0 and y(C1) ̸= 0. Therefore, Lemma 2.5 ensures that each component

C0, C1, . . . , Cr is positive, negative or null and it proves part (ii).

To prove (iii), we split the proof in two cases

Case a: yl1 = 0.

Conforming to the structure of L we can partition y as

y = [y(0), y(1), . . . , y(r), yl1 , . . . , ylk ]
T ,

where ylk > 0.

From equation (3.1) and since Ly = ay, we have Aiy
(i) +

∑k
j=1 c

j
iylj = ay(i) for

i = 0, . . . , r, so that we can write

(3.2) (Ai − aI)y(i) = −
k∑

j=1

cjiylj

for i = 0, . . . , r. As before, we see that B has at most one negative eigenvalue. Hence,

we assume that for each i = 1, . . . , r Ai − aI is positive semidefinite.

Since G is a k-connected graph the hinge has k vertices. Now, for each component

Cj and each vertex u of Ĥ, there is at least one vertex of Cj that is adjacent to u,

otherwise we could disconnect the graph by removing a proper subset of the hinge,

i.e. those vertices of Ĥ that vertices that are adjacent to some vertex of Cj . We thus

deduce that that cji ̸= 0.

If Ai − aI were singular, then by means of Lemma 2.1, there exists a vector u > 0

such that uT (Ai−aI) = 0. Hence uT (Ai−aI)y(j) = 0 implying that
∑k

j=1 c
j
iylj = 0.

Now, since cji ≤ 0 and ylk > 0, we have that cji = 0, a contradiction. Thus, Ai − aI

is invertible. Hence, by applying Lemma 2.2, its inverse is positive. Using equation

(3.2), we obtain

y(i) = −(Ai − aI)−1
k∑

j=1

cjiylj
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for i = 1, . . . , r. Since cji ≤ 0, ylj ≥ 0 and (Ai − aI)−1 ≥ 0, we have that y(i) ≥ 0 for

i = 1, . . . , r.

It remains to show that y(i) > 0 for i = 1, . . . , r. We have Aiy
(i) +

∑k
j=1 c

j
iylj =

ay(i) for i = 0, . . . , r, which can be rewritten as

1

a(G)
y(i) = A−1

i y(i) − 1

a(G)
A−1

i

 k∑
j=1

cjiylj

 .

Let 1 denote an all ones vector of the appropriate order; multiplying and dividing

the rightmost term by 1T y(i), we obtain

1

a(G)
y(i) = A−1

i y(i) − 1

a(G)1T y(i)
A−1

i

 k∑
j=1

cjiylj

1T y(i)

=

A−1
i − 1

a(G)1T y(i)
A−1

i

 k∑
j=1

cjiylj

1T

 y(i).

Since Ai is an irreducible and nonsingular M-matrix, (Ai)
−1 is a positive matrix, and

it now follows readily that the matrix M = A−1
i − 1

a(G)1T y(i)A
−1
i

(∑k
j=1 c

j
iylj

)
1T is

positive. Since y(i) is a nonnegative eigenvector of the positive matrix M, it follows

from Perron-Frobenius theory that in fact y(i) is a positive vector. Hence the vertices

of G with negative valuation are in the same component C0.This completes the proof

in case a.

Case b: yl1 > 0.

Since
∑

yi = 0, there is a vertex in G with negative valuation. Suppose that C0

contains such vertex. To prove case b, it is sufficient to show that each vertex vt
with yt ≤ yl1 is in C0 or in Ĥ.

First, suppose that yt < yl1 for some vt. Then there exists ϵ > 0 such that

yl1 − ϵ > 0. By means of Lemma 2.3, the subgraph G′ induced by the set of vertices

M = {vs ∈ V |ys ≤ yl1 − ϵ} is connected. Since G′ contains at least one negative

vertex and H ̸⊂ G′, then G′ ⊂ C0 and, therefore, vt ∈ C0. On the other hand,

suppose that yt = yl1 . By applying Lemma 2.4, there is a vertex vs ∈ G adjacent

to vt with ys < yt. Since ys ̸= yl1 , by the previous argument, we have vs ∈ C0 and

since C0 is a connected component, then vt ∈ C0 or Ĥ, which shows case b. �

In the cases of negative or nonpositive hinges, the results above may also be

applied, using a negative multiple of the Fiedler vector. For the case of mixed hinge,

the example below shows that there could be more than one mixed component or

even no mixed component.
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Example 1. The 10-vertex cycle of Figure 1 has algebraic connectivity 2−2 cos(π5 )

(with multiplicity two), and a Fiedler vector given approximately by

y = [−0.26287,−0.42533,−0.42533,−0.26287, 0, 0.26287, 0.42533, 0.42533, 0.26287, 0]T .

Figure 1. The 10-vertex cycle.

Considering the hinges Ĥ = {v1, v6} and Î = {v3, v8}, we see that at Ĥ there are

two components and none is mixed, whereas at Î there are two mixed components.

The graph of the next example illustrates the three cases of Theorem 3.1.

Example 2. The graph in the Figure 2 has algebraic connectivity 2 −
√
2 (with

multiplicity one), and a corresponding Fiedler vector is given approximately by

y = [−0.35355,−0.5,−0.35355, 0.35355, 0.5, 0.35355, 0, 0, 0, 0]T .

This graph is 2-connected and we can choose {v7, v9} as a null hinge. It has one

Figure 2. A 2-connected graph.
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mixed component and one null component in accordance with case (i) of Theorem 3.1.

Clearly, {v9, v10} is a null hinge that fulfils case (ii) of Theorem 3.1 with only

positive, negative and null components.

Finally, the set {v4, v6} forms a non-negative hinge (in fact positive) and case (iii)

of Theorem 3.1 ensures that it has only one component with negative valuation. Be-

sides, the remaining component formed by the singleton {v5} has larger characteristic
valuation than v4.

We can also provide graphs that have only one hinge that is a mixed hinge. The

next example illustrates this.

Example 3. The graph of Figure 3 has algebraic connectivity equal to the smallest

root of the cubic z3−15z2+66z−74, which is approximately 1.7101, and the algebraic

connectivity is algebraically simple. A Fiedler vector is (approximately) equal to

y = [−0.37945,−0.37945,−0.13567, 0.02565, 0.55636, 0.34601,−0.37945, 0.34601]T .

Therefore, this characteristic valuation gives a mixed hinge {v3, v4}. Further, this

Figure 3. A graph with a unique mixed-hinge

is the only hinge for this graph.

4. Characterizing the Algebraic Connectivity

In this section, we use our structure theorem to compute the algebraic connectivity

for graphs with nonnegative or null hinges. The results are natural extensions of those

in [10], where graphs with articulation points were considered.

Let G be a graph and L its Laplacian matrix. For a hinge Ĥ of G, denote the

connected components of G \ Ĥ by C0, C1, . . . , Cr. For each component, let L(Ci)

be the principal submatrix of L, corresponding to the vertices of Ci. The Perron

value of Ci is the Perron value of the positive matrix L−1(Ci) and we say Cj is

a Perron component at Ĥ if its Perron values is the largest among all components

C0, C1, . . . , Cr.
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Theorem 4.1. Let G be a connected graph and y = [yi] a characteristic valuation

of G. If there exists a null cut set W , such that G\W has no mixed component, then

there are two or more Perron components at W . In this case, a(G) =
1

ρ(L(C)−1)
for

each Perron component C at W .

Proof. Let C0, C1, . . . , Cr be the components of G \ W and assume the Laplacian

matrix is in the form (3.1). Partitioning the eigenvector y according to the char-

acteristic valuation in each component Ci as y = [y(0), y(1), . . . , y(r), 0, . . . , 0]T , and

from the relation Ly = a(G)y, we have

L(Ci)y
(i) = a(G)y(i),

where Ai = L(Ci). From the fact that
∑

yi = 0, we know there exist positive and

negative entries in y. Since there are no mixed components there are at least two

nonzero components, say Cr and Cs, such that y(r) ̸= 0 and y(s) ̸= 0. Therefore,

Lemma 2.5 ensures that each component C0, C1, . . . , Cr is positive, negative or null.

Using the Perron-Frobenius theorem, the only eigenvectors with entries of the same

sign are Perron vectors. Hence, y(r) and y(s), are Perron vectors for L(Cr)
−1 and

L(Cs)
−1, respectively. Therefore, for each non-null component we have the relation

for the Perron vector y(i)

L(Ci)
−1y(i) =

1

a(G)
y(i).

It remains to show that Cr and Cs are Perron components at W . Suppose to the

contrary, that this is not the case. Then there would exist another component, say

Ct, whose Perron value is larger than 1/a(G). Let x be the Perron vector of L(Ct)
−1,

normalized so that 1Tx = 1/
√
2, and define u = y(r)/(

√
21T ∥y(r)∥). Consider the

vector

w = [u, 0, · · · 0,−x, 0, . . . , 0]T ,

which is obviously orthogonal to 1.

Since

(4.1) wTLw = auTu+
1

ρ(L(Ct)−1)
xTx < auTu+ axTx = awwT

we obtain a contradiction with the fact that the algebraic connectivity can be char-

acterized as

(4.2) a(G) = min
∥x∥=1
x⊥1

xTLx.

Thus, we obtain that Cr and Cs are indeed the Perron components at W . �
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One question we want to address is whether or not the set of Fiedler vectors

identifies the same null hinge. One can describe other Fiedler vectors identifying the

same null hinge, as long as there is some information about a Fiedler vector. More

precisely, the following result constructs the set of all Fiedler vectors that identify

Ĥ as a null hinge.

Theorem 4.2. Let G be a graph and y = [yi] a characteristic valuation of G.

Suppose there exists a null hinge Ĥ, such that G \ Ĥ has no mixed component, and

for t ≥ 2, let C1, C2, . . . , Ct be the set of Perron components of G \ Ĥ. Assume the

Laplacian matrix is in the form (3.1). Let y(1), y(2), . . . , y(t) be the set of Perron

vectors for the set of matrices L(C1)
−1, L(C2)

−1, . . . , L(Ct)
−1 such that 1T y(i) = 1.

Define, for i = 2, .., t, the vector

(4.3) fi =


y(1)(v) v ∈ C1,

−y(i)(v) v ∈ Ci,

0 otherwise.

Then f2, f3, . . . , ft is a set of linearly independent eigenvectors associated with a(G)

and each Fiedler vector that identifies Ĥ as a null hinge is a linear combination of

fi, therefore it has no mixed component.

Proof. It is easy to see that 1T fi = 0 and that f2, f3, . . . , ft is a linearly independent

set of vectors. Further, 1
ρ(L(C1)−1) is the eigenvalue of L(C1) associated with y(i), for

i = 2, . . . , t. By the construction of fi, we conclude that 1
ρ(L(C1)−1) is the eigenvalue

associated with fi. Then, we have

fT
i Lfi
fT
i fi

=
1

ρ(L(C1)−1)
.

Using Theorem 4.1, we obtain

fT
i Lfi
fT
i fi

= a(G),

for i = 2, . . . , t, therefore f2, f3, . . . , ft is a set of linearly independent eigenvectors

associated with a(G).

Now let z be a Fiedler vector that identifies Ĥ as a null hinge. From the relation

Lz = a(G)z, it follows for each component Ci at Ĥ that L(Ci)z(Ci) = a(G)z(Ci).

Since L(Ci)y
(i) = a(G)y(i), by the Perron-Frobenius theorem 1

ρ(L(C1)−1) is a simple

eigenvalue of L(Ci)
−1. Hence, it follows that z(Ci) is a scalar multiple of y(i). That

implies that z is a linear combination of the fis. �
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We note that the proof of the last theorem can also be obtained using results of

[5]. Since we construct the whole set of Fiedler vectors that identify the same null

hinge, it is natural to ask whether or not it is possible to have other Fiedler vectors

that do not identify the same hinge as null. The answer is positive, and the following

example shows that.

Example 4. Consider the complete bipartite graph K3,3. It is readily determined

that the eigenvalues of the corresponding Laplacian matrix are 0, 6 and 3, the latter

with multiplicity four. In particular, K3,3 has algebraic connectivity 3. If we label

the vertices in one partition as v1, v2 and v3, then the set Ĥ = {v4, v5, v6} is a

hinge. At Ĥ, we have three Perron components, namely Ci = {vi}, i = 1, 2, 3,

with ρ(L(Ci)
−1) = 1

3 , i = 1, 2, 3. It is easy to see that a set of eigenvectors which

spans the Fiedler eigenspace is given by w = [1,−1, 0, 0, 0, 0]T , x = [1, 0,−1, 0, 0, 0]T ,

y = [0, 0, 0, 0,−1, 1]T and z = [0, 0, 0,−1, 0, 1]T . Now, we can see that w and x

identify Ĥ as null, but that Ĥ is not null for y and z.

For the case where null hinges have mixed components we can also describe the

algebraic connectivity in terms of its components.

Theorem 4.3. Let G be graph and y = [yi] a characteristic valuation of G.

Suppose that there exists a null cut set W , such that G \W has a mixed component

C, then a(G) = λ2(L(C)).

Proof. By part (i) of Theorem 3.1 all components are null, except for the mixed one.

If we use the Laplacian matrix in the form (3.1) and set A0 = L(C), we can write y

such that

y = [y(0), y(1), . . . , y(r), yl1 , . . . , ylk ]
T .

By the fact that Ĥ is null, we have yli = 0, i = 1, . . . , k. From the relation Ly =

a(G)y, we obtain

(4.4) A0y
(0) = a(G)y(0)

And hence, a(G) is an eigenvalue of A0. By the eigenvalue interlacing theorem,

we have a(G) ≤ λ2(A0). Since the smallest eigenvalue of A0, say λ1(A0), satisfies

λ1(A0) =
1

ρ(L(C)−1)
, we find that the eigenvector of A0 associated with λ1(A0) has

all entries with the same sign. Therefore, by applying equation (4.4), a(G) can not

be the smallest eigenvalue of A0. Therefore we have a(G) = λ2(A), as desired. �

Corollary 4.4. Under the hypotheses of Theorem 4.3, C is the only Perron com-

ponent at W .
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Proof. Consider the submatrix of L

L∗ =


A0

A1

. . .

Ar

 .

By the eigenvalue interlacing theorem, we have a(G) ≤ λ2(L
∗). Since λ1(L(C)) =

1

ρ(L(C)−1)
is a simple eigenvalue of A0, by Theorem 4.3 we have λ1(L(C)) <

λ2(L(C)) ≤ λ2(L
∗). Assume to the contrary that there exists another component at

W , say D, that is a Perron component. We get ρ(L(C)−1) ≤ ρ(L(D)−1) and, fur-

thermore, it is easy to see that λ1(L(C)) =
1

ρ(L(C)−1)
and λ1(L(D)) =

1

ρ(L(D)−1)
are eigenvalues of L∗. Therefore, we obtain

λ1(L(D)) ≤ λ1(L(C)) < λ2(L(C)) ≤ λ2(L
∗).

This is a contradiction, because we have two eigenvalues of L∗ smaller than λ2(L
∗).

�

Next example provides a concrete case where Theorem 4.3 applies.

Example 5. Recalling graph G of Figure 2, it has algebraic connectivity ap-

proximately 0.58579. Also, {v7, v9} is a null hinge with one mixed component

C = {v1, v2, v3, v4, v5, v6, v8, v10, }. Its corresponding Laplacian submatrix is given

by

L(C) =



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 0 0 0 0 −1

0 0 0 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 0 −1

0 0 0 0 0 0 2 0

0 0 −1 0 0 −1 0 3


and L(C) has eigenvalues (approximately) equal to

0.32487, 0.58579, 1.46081, 2, 2, 3, 3.41421, 4.21431.

Therefore, a(G) = λ2(L(C)) in accordance with Theorem 4.3.
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For nonnegative or nonpositive hinges, it is also possible to describe the algebraic

connectivity by using the Perron value of some matrices. The following theorem

describes how it can be done.

Theorem 4.5. Let G be a graph and y = [yi] a characteristic valuation of G. Let

Ĥ be a nonnegative (nonpositive) or null hinge of G. For each positive (or negative)

component C at Ĥ, there is a nonnegative matrix M of rank at most 1, and a scalar

γ > 0, such that

ρ(L(C)−1 + γM) =
1

a(G)
.

Furthermore, M = 0 if and only if Ĥ is null.

Proof. If we use the Laplacian matrix in the form (3.1) and set A0 = L(C), we can

write y such that

y = [y(0), y(1), . . . , y(r), yl1 , . . . , ylk ]
T .

Since C is positive, then y(0) ≥ 0 (when C is negative the proof is similar). By the

fact that Ĥ is nonnegative, we have yli ≥ 0 and from the relation Ly = a(G)y, we

obtain

A0y
(0) +

k∑
j=1

cj0ylj = a(G)y(0)

or, equivalently,

1

a(G)
y(0) = A−1

0 y(0) − 1

a(G)
A−1

0

 k∑
j=1

cj0ylj

 .

Now, multiplying and dividing the rightmost term by 1T yA0 , we obtain

1

a(G)
y(0) = A−1

0 y(0) − 1

a(G)1T y(0)
A−1

0

 k∑
j=1

cj0ylj

1T y(0)

= (A−1
0 + γM)y(0),

where γ = 1
a(G)1T y(0) and M = −A−1

0

(∑k
j=1 c

j
0ylj

)
1T . Since C is a positive com-

ponent, then y(0) > 0 and, hence, γ > 0. By applying Lemma 2.2, we have A−1
0 ≥ 0

and by the fact that
∑k

j=1 c
j
0ylj ≤ 0, we obtain M ≥ 0. Since cj0 ≤ 0, M = 0 if, and

only if, ylj = 0 for each j = 1, . . . , k, that is, whenever Ĥ is null. �

Example 6. Figure 2, provides a graph G where the set {v4, v6} forms a non-

negative hinge with one positive component formed by the singleton C = {v5}. In

order to characterize the algebraic connectivity using Theorem 4.5, the proof gives

a description of γ and M .
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The graph G has Fiedler vector (approximately)

y = [−0.35355,−0.5,−0.35355, 0.35355, 0.5, 0.35355, 0, 0, 0, 0]T

and a(G) = 0.58579 (also approximately). Using the notation of the proof of The-

orem 4.5, we have L(C) = [2] and y(0) = [0.5]. Therefore, again using approximate

values, we have γ = 1
a(G)y0 = 3.41419 and

M = −L(C)−1

 2∑
j=1

−ylj

 = − [0.5] ([−0.35355] + [−0.35355]) = [0.35355].

Hence, L(C)−1 + γM = [1.707087864] which has Perron vector [0.5] and satisfies

ρ(L(C)−1 + γM) = 1
a(G) .

5. Bounding the algebraic connectivity

In this section we introduce some concepts which will help us to better understand

how the algebraic connectivity is bounded. More specifically, we want to investigate

the algebraic connectivity as a function of the number of edges between a hinge and

its components, as an attempt to generalize the well known fact (see [6]) that, for a

k-connected graph, a(G) ≤ k.

Let Ĥ be a hinge of the graph G and let C be a component at Ĥ. Let v1, v2, . . . , vt
be the vertices in the component C. We shall denote by dĤ(vi) the number of edges

connecting vi to the vertices of Ĥ. Similarly, for each vertex u of Ĥ, we let dC(u)

denote the number of vertices in C that are adjacent to u.

Further, we define the quantity

SC = max
vi∈C

{
dĤ(vi)

}
(5.1)

which shall be named strength of the component C.

Denoting the set of components at Ĥ by H, we define the quantity

SĤ = max
C∈H

{SC}(5.2)

which shall be named strength of the hinge Ĥ.

Theorem 5.1. Let G be a graph and let Ĥ be a hinge of G. For each j = 0, . . . , r,

let the component Cj have pj vertices. Then we have the following conclusions.

a) a(G) ≤ SĤ .

b) If a(G) = SĤ , then each vertex of G \ Ĥ is adjacent to SĤ vertices in the hinge
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Ĥ and for each i, j = 0, . . . , r and each u ∈ Ĥ we have pidCj (u) = pjdCi(u).

c) If each vertex of G \ Ĥ is adjacent to SĤ vertices in the hinge Ĥ and for each

i, j = 0, . . . , r and each u ∈ Ĥ we have pidCj (u) = pjdCi(u), then SĤ is a Laplacian

eigenvalue of G. In this case, the multiplicity of SĤ as an eigenvalue is at least r.

Proof. We write the Laplacian matrix L in the form (3.1). Let xT be the vector

given by [
p11

T −p01
T 0T . . . 0T

]
,

where the partitioning of x conforms with that of L in (3.1). Clearly 1Tx = 0. Since

1TA01 ≤ p0SĤ and 1TA11 ≤ p1SĤ , it is readily determined that xTLx ≤ xTxSĤ .

Conclusion a) now follows readily.

To establish conclusion b), suppose that a(G) = SĤ . Then necessarily the vector

x above must be an eigenvector of G. In that case, we find that each vertex of C0∪C1

is adjacent to SĤ vertices in the hinge Ĥ, and in addition, for each vertex u ∈ Ĥ

we have p1dC0(u) = p0dC1(u). Evidently the argument above applies to any pair of

components Ci, Cj , and b) now follows.

To establish c), suppose that each vertex of G \ Ĥ is adjacent to SĤ vertices

in the hinge Ĥ, and further if for each i, j = 0, . . . , r and each u ∈ Ĥ we have

pidCj (u) = pjdCi(u). Then 1TA01 = p0SĤ and 1TA11 = p1SĤ , which implies x

is an eigenvector for the eigenvalue SĤ . Since we can associate a suitable vector x

to the pair of components C0, Cj , j = 1, . . . , r, we can thereby construct r linearly

independent eigenvectors for the eigenvalue SĤ . �

Example 7. Consider the graph G1 of the Figure 4. The hinge Ĥ = {9, 10} has

two Perron components C and D, each one with SC = SD = 1. Therefore, SĤ = 1

and Theorem 5.1 a) ensures a(G1) ≤ 1. It turns out that a(G1) = 1 in this example;

the conditions in Theorem 5.1 b) may be verified by inspecting Figure 4.

Figure 4. Illustration of Theorem 5.1

On the other hand, consider the graph G2 of the Figure 5, which also has {9, 10}
as a hinge. By a similar application of Theorem 5.1 a) it follows that a(G2) ≤ 1. In

fact, a(G2) = 3 −
√
6 < 1, while Theorem 5.1 c) ensures that 1 is an eigenvalue of

G2.
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Figure 5. Illustration of Theorem 5.1

These examples show that conditions in Theorem 5.1 c) are not enough to have

a(G) = SĤ and that it depends not only on the strength of a hinge, but also on the

structure of the components as well. Thus, finding necessary and sufficient conditions

to ensure a(G) = SĤ remains an open problem.
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