
Co-optimizing Application Partitioning and Network
Topology for a Reconfigurable Interconnect

Deepak Ajwania,∗, Adam Hackettb, Shoukat Alic, John P. Morrisond, Stephen
Kirklandb

aBell Labs, Alcatel-Lucent, Dublin 15, Ireland
bHamilton Institute, National University of Ireland Maynooth, Ireland

cExascale Systems Group, IBM Research - Ireland
dThe Centre for Unified Computing, University College Cork, Cork, Ireland

∗Corresponding author: Email deepak.ajwani@alcatel-lucent.com, Phone +353-1-8864709.
This research was supported, in part, by an Enterprise Partnership Scheme grant co-funded
by IBM and the Irish Research Council for Science, Engineering & Technology (IRCSET).
Earlier versions of portions of this research appeared in [1, 2].

Preprint submitted to Journal of Parallel and Distributed Computing June 25, 2013

Abstract

To realize the full potential of a high-performance computing system with

a reconfigurable interconnect, there is a need to design algorithms for comput-

ing a topology that will allow for a high-throughput load distribution, while

simultaneously partitioning the computational task graph of the application for

the computed topology. In this paper, we propose a new framework that ex-

ploits such reconfigurable interconnects to achieve these interdependent goals,

i.e., to iteratively co-optimize the network topology configuration, application

partitioning and network flow routing to maximize throughput for a given ap-

plication. We also present a novel way of computing a high-throughput initial

topology based on the structural properties of the application to seed our co-

optimizing framework. We show the value of our approach on synthetic graphs

that emulate the key characteristics of a class of stream computing applications

that require high throughput. Our experiments show that the proposed tech-

nique is fast and computes high-quality partitions of such graphs for a broad

range of hardware parameters that varies the bottleneck from computation to

communication. Finally, we show how using a particular topology as a seed to

our framework significantly reduces the time to compute the final topology.

2

1. Introduction

Optical circuit switches have recently been proposed as a low-cost, low-power

and high-bandwidth alternative in the design of high-performance compute clus-

ters (e.g., [3, 4, 5, 6]). At the same time, these switches allow users to configure

the network topology to suit the requirements of the application.

The option of configuring the interconnect opens up new possibilities for im-

provement in topology-aware graph partitioning approaches. Instead of asking

the question “given an application graph G, how would you partition it on a

set of compute nodes connected in topology H?” we are wondering “given an

application graph G, how would you best interconnect the compute nodes to

elicit the best possible partitioning of G from your favorite graph partitioner?”

This research addresses this question by formulating an iterative strategy for

co-optimizing the partitioning of the application graph and the configuration of

the network topology.

There are two constraints that further complicate this issue. In a real system,

a compute node has only a fixed number of ports to connect to the reconfigurable

switch. Secondly, the reconfigurable switch has a limit on the maximum number

of simultaneous links that it can maintain. Therefore, as an unavoidable part of

our strategy, we also try to minimize the maximum traffic on the interconnect

while satisfying the above two constraints. Because our framework attempts to

co-optimize topology configuration, application partitioning and interconnect

routing, we refer to it as TPR co-optimizing framework.

Our approach is not tied to a particular communication pattern within the

application. In our experimental results, we show performance gains for thou-

sands of application graphs randomly selected, (with random communication

patterns) from within the class of stream computing applications. Please note

that our algorithm works for general graphs, even though our experiments are

done on class of graphs that emulate stream computing applications.

The rest of this paper is structured as follows. We present the notations,

definitions, the problem addressed and our key contributions in Section 2. Sec-

1

tion 3 describes our main framework together with all the details of the indi-

vidual steps. Our experiments with this framework are reported in Section 4.

In Section 5, we show that seeding the framework with a good initial topology

and then conducting a restricted search around it significantly reduces the time

to compute the final topology. We describe some related work in Section 6 and

conclude with future research directions in Section 7.

2. Preliminaries

2.1. Notations

We refer to application graph as G(VG, EG) (or simply G) and to avoid

tedious notation, also use the same notation for contracted application graphs.

The notation H(VH , EH) (or simply H) is used to refer to the topology graph.

The elements of VG are referred to as vertices while elements in VH are referred

to as nodes or compute nodes. The notation NP denotes the total number

of processors in the supercomputer. Since the nodes in the topology graph

correspond to the actual compute nodes in the architecture, we have NP = |VH |

(although they need not all be connected or have some computation load). We

are interested in the mapping of vertices in application graph to nodes in the

topology graph. The weight of a vertex or node u is denoted by wv(u), while

the weights on an edge e of either the application graph or topology graph is

referred as we(e).

2.2. Problem Definition

We are given a computational task graph G(VG, EG) where the vertices

denote computational kernels and the edges capture the dependencies between

the different computational kernels. The weights on vertices denote the average

amount of computation that needs to be performed at the corresponding kernel

to produce one element of output. Similarly, the weight on an edge represents

the average amount of data transfer between the kernels (corresponding to the

two incident vertices) to produce one element of output.

2

We assume that the compute nodes in the high-performance system are

identical with the same processing speed (hereafter denoted by Scomp). These

compute nodes are connected through a reconfigurable switch, which can alter

the topology to suit the application. We also assume that bandwidth on all links

connected through the reconfigurable switch is identical (denoted by Scomm).

In order to run the application on the system, we need to map each vertex

v ∈ VG to a compute node and route each edge e ∈ EG along some path

in the network topology. Let µ(v) be a mapping that specifies the compute

node to which a particular vertex v is mapped. Let ρ(e) be the sequence of

communication links that are used to route an edge e in EG. Given such a

mapping and a routing scheme, the computation load on a compute node Pi ∈

VH is wv(Pi) =
∑

(u∈VG)∧(µ(u)=Pi)
wv(u) and the communication load over a

link e ∈ EH is we(e) =
∑

(e′∈EG)∧(e∈ρ(e′)) we(e
′). Since all computation over the

nodes and communication over the links happen concurrently, the throughput

is constrained by the slowest element. We define the throughput of a node

Pi to be Scomp/wv(Pi) and the throughput of a link e to be Scomm/we(e).

The compute throughput of the system is the minimum throughput of a node

and the communication throughput of the system is the minimum throughput

over a link. The throughput generated by the overall system is the smaller of

the compute throughput and the communication throughput. Note that our

definition of throughput arises out of stream computing applications, where we

view the compute nodes and communication links as processing units running

concurrently so that the overall throughput is equal to the throughput of the

slowest processing unit (similar to the throughput of a fetch-decode-execute

pipeline where fetch, decode and execute stages run concurrently). Nonetheless,

other problem-specific definitions can be used (with an accompanying change

to the performance vector in Section 3.2.3).

In a real system, a compute node has only a fixed number of ports to con-

nect to the reconfigurable switch. Let this constraint be called the max-degree

constraint, denoted as ∆max. Also, the reconfigurable switch has a limit on the

maximum number of simultaneous links that it can maintain. We refer to this

3

limit as max-edges constraint, denoted as Emax. Thus, the switch can configure

any topology that satisfies the constraints that maximum degree in the topology

is no more than ∆max and the total number of links is not more than Emax.

Note that these constraints on the space of configurable topologies are very nat-

ural and can easily arise in many other applications. Our goal is three-fold. (a)

Compute a network topology graph H that is likely to elicit a high throughput

mapping for the application graph G. (b) Compute a mapping of vertices in

VG to nodes in VH to achieve a high computation throughput. (c) Compute a

routing scheme for edges in EG to communication links in H so as to minimize

congestion and thereby provide high communication throughput.

A good topology is one that allows a mapping and a routing scheme to yield

a high throughput (ideally close to the optimum). Since the definition of a good

topology depends on the difficult problems of computing good mapping and

routing schemes, it is not easy to compute. We therefore propose a framework

where we derive a good initial topology based on the structural properties of

the application graph and then iteratively improve this topology by performing

local modifications.

Note that although the connections created by optical switch are directed in

nature, we treat them as undirected. This is because engineers invariably pair

these optical cables to keep the routing protocols simple. Often, the two optical

fibers in an optical cable are used for making the data-transfer bidirectional.

2.3. Key Contributions

Our key contributions are as follows.

(1) A new framework that exploits reconfigurable interconnects in order to iter-

atively co-optimize the network topology, the partitioning and routing schemes

to maximize throughput for a given application.

(2) A novel way of computing a high-throughput initial topology based on

the structural properties of the input graph without explicitly identifying those

properties. This topology is referred to as “initial” because it is used as a seed

for the framework in item 1 above.

4

(3) A rigorous empirical analysis of the goodness of our technique.

2.4. Definitions

Given an edge e = {u, v}, we define the expansion of an edge to be

Ξ(e) =
we(e)

wv(u) · wv(v)
(1)

We refer to the denominator in the expansion term as vertex-product, i.e., the

vertex-product of an edge e = {u, v} is wv(u) · wv(v).

Contracting an edge e = {u, v} means to replace vertices u and v by a new

vertex w such that wv(w) = wv(u) + wv(v). All edges of the form {u, x} or

{v, x} for x ∈ V are replaced by {w, x}. If both edges {u, x} and {v, x} exist,

we({w, x}) = we({u, x}) + we({v, x}) in the contracted graph.

A matching M ⊆ E is a set of edges that do not share any common vertex,

i.e., the graph G(V,M) has maximum degree 1. Contracting a matching refers

to contracting all edges in the matching.

3. Our Framework

In this section, we propose our framework for co-optimizing the network

topology, the partitioning and routing scheme. Co-optimization is needed be-

cause these three goals are inter-dependent. In the first phase, our framework

computes an initial topology, and corresponding partitioning of the application

graph, and an accompanying routing scheme for the computed topology. In the

second phase, we perform a number of iterations where each iteration alters the

topology and computes both a re-partitioning for the modified topology and

an accompanying re-routing. We repeat this iterative procedure till there is no

improvement in throughput for a pre-specified number of iterations.

Our framework consists of the following steps.

(1) Computing an “initial topology”. Here we first compute an architecture-

oblivious partitioning of G(VG, EG) so as to minimize the maximum volume of

5

data incident to a subdomain (i.e., a partition), together with the traditional ob-

jectives of balancing the work load on partitions and reducing the total cut-size.

No attempt is made to satisfy the max-degree and max-edges constraints. Then

we derive a network topology that accommodates the architecture-oblivious par-

titioning while satisfying the max-degree constraint on the maximum degree and

max-edges constraint on the total number of edges. This topology is referred to

as “initial” because it will go through a number of iterative improvements later.

(2) Computing an architecture-aware partitioning. We calculate a partitioning

of the graph to maximize the throughput on the given topology.

(3) Computing a low-congestion routing. We compute a routing scheme to de-

termine how each edge in the graph G can be routed in the given topology so as

to minimize the maximum congestion over any link. Note that we do not allow

the path to be split as that will require adaptively splitting the data-stream at

run-time and a system may not have such capabilities.

(4) Performing “TPR co-optimization” In the last phase, we evaluate the ex-

isting topology configuration, partitioning and routing, and decide if further

optimization is needed. If yes, we repeat the following steps until there is no

improvement for a pre-specified number of iterations: (a) Modify the network

topology based on the existing partitioning and routing of the application graph.

(b) Perform steps 2 and 3 to re-partition, from scratch, VG and re-route EG for

the modified topology.

Since we co-optimize in the above framework for topology configuration,

partitioning and routing, we refer to it as a TPR co-optimization framework in

our paper. As many of the above mentioned problems are NP-hard in general,

we need heuristics to solve them efficiently. We now present our heuristics for

engineering a good solution for the TPR co-optimization.

3.1. Computing Initial Topology

A fundamental question that we address in this section is given an appli-

cation graph, what topology will yield a high throughput. Our first idea was

6

to identify key structural properties of the application graph, use these proper-

ties to classify the input graph into a fixed number of categories, and dedicate

a possibly separate scheme for each category. However, the number of such

properties needs to be very low for such an approach to be effective and such

an approach may not be scalable. We therefore use a condensed graph based

approach to determine a good topology.

3.1.1. Computing the Architecture-Oblivious Partitioning

Given the computational task graph G(VG, EG) of the application, we first

partition it into NP subdomains to achieve the following objectives.

1. Balance the load, defined as the sum of all vertex weights mapped to a

subdomain, across all subdomains. This is to ensure that all compute nodes are

adequately utilized, assuming there is enough computational load to require all

partitions.

2. Minimize the total cut-size, i.e. the total weight of all edges between vertices

in different partitions. This ensures that inter-partition communications will be

minimized.

3. Minimize the maximum subdomain weighted degree, i.e., the total weight

of all edges in G that have exactly one incident vertex in the subdomain This

objective was chosen in the hope that the weighted degree of a subdomain is

correlated to the actual degree of the subdomain.

We use the graph partitioning library METIS [7] ver. 5.0 for this purpose

with a random seed, maximum imbalance of 1.05 and the option for minimizing

the subdomain degree. The last option relies on the algorithm by Selvakkumaran

and Karypis [8]. (While we chose to use METIS for this research, other graph

partitioning software could have been used as well, e.g., Chaco [9], JOSTLE

[10], Scotch [11] and Zoltan [12]). Figure 1 illustrates some of the steps involved

in creating the initial topology. Please refer to that as needed.

7

3.1.2. Creating Connected Condensed Graphs

Based on the topology-oblivious partitioning, we condense the input graph

G. There are as many vertices in the condensed graph as there are nodes in

H (i.e., the required number of partitions or subdomains of G). An edge exists

between two nodes Pi and Pj if and only if there exists an edge {u, v} ∈ G such

that vertex u is mapped to partition Pi and v is mapped to partition Pj . The

weight of a node Pi ∈ Gc is the sum of weights of all vertices in G that are

assigned to partition Pi and the weight of an edge {Pi, Pj} is the sum of weights

of all edges {u, v} in G such that u is assigned to Pi and v is assigned to Pj .

In our experiments, we found that the resulting condensed graph does not

always span all NP nodes in Gc. Therefore, we first ensure that Gc is connected

and spans the entire graph. To this end, we connect the different components

by inserting additional edges. The weight of the newly inserted edges is 0.

3.1.3. Satisfying the Constraint on Maximum Node Degree

Next, we impose the constraint that the degree of each node in Gc is less than

or equal to ∆max and later, we ensure that the total number of edges (i.e., the

physical communication links) in the topology is at most Emax, ensuring that

switch does not have more edges to it than are possible. A major consideration

in removing the edges from the graph, to satisfy these constraints, is to avoid

creating bottleneck links.

Let us call a node heavy if its degree is greater than ∆max. We call an edge

strongly heavy if both its incident nodes are heavy and weakly heavy if only one

of its incident node is heavy. We meet the max-degree constraint by repeatedly

removing edges till all nodes and edges are light, implying that all constraints

on degree are satisfied. For any H edge, eH , (i.e., physical communication link)

that we remove, we re-route, along a minimum-congestion path, any G edges

that were mapped on eH .

First, we consider all edges in increasing order of weight and remove those

strongly heavy edges that leave Gc connected. When removing an edge {Pi, Pj},

data-streams that were getting routed along this path need to be re-routed

8

a

b

1.0

c

1.0

1.0

j

0.2d

0.2

h

0.2

i

0.2

1.0

l

1.0

k

1.0

1.0

0.2

e

1.0

f

0.2

g

1.0

1.0

1.0

Node J

Node M Node K

Node L

a

b

1.0

c

1.0

1.0

j

0.2

d

0.2

h

0.2

i

0.2

1.0

l

1.0

k

1.0

1.0

0.2

e

1.0

f

0.2

g

1.0

1.0

1.0

J

K

0.2

L

0.2 M

0.4

0.2 0.2

J

K

0.4

M

0.4

L

0.4 0.2

Figure 1: This figure shows various steps in computing an initial topology of
the application graph shown in top left for an architecture that has 4 compute
nodes, a max-degree constraint of at most two physical communication links per
compute node, and a max-edges constraint of at most 4 physical communica-
tion links. The top right shows an architecture-oblivious (i.e., degree and edge
constraints ignored) 4-way partition. A condensed graph of the architecture-
oblivious partitioning is shown in bottom left. The initial computed topology
is shown in bottom right, where both max-degree and max-edges constraints
are met, and the maximum congestion on all 4 physical communication links is
optimized.

9

through a minimum congestion path. Since the graph Gc is still connected after

removing this edge, the existence of a path between Pi and Pj is guaranteed.

Thereafter, we consider all edges in the increasing order of weight and remove

those weakly heavy edges that leave Gc connected. As before, the flow along

these edges is re-routed through a minimum congestion path.

If there are still some heavy vertices left, we remove an arbitrary weakly

heavy edge (shown as e in Figure 2a) and let the graph be disconnected into

two components (P and Q in Figure 2b). We pick the minimum weight edges

{u, v} and {w, x} in the two components (Figure 2c), remove them and insert

{u,w} and {v, x} (Figure 2d). This “edge swap” transformation connects the

two components, preserves the degree of the vertices and does not increase the

total number of edges. As before, the new edges are initialized with a weight

0 and the flow along the removed edges is re-routed through the minimum-

congestion path.

(a) (b) (c) (d)

Figure 2: The edge swap transformation.

3.1.4. Satisfying the Constraint on Maximum Number of Edges

Our approach here is similar to that for satisfying the constraint on maxi-

mum node degree. First, we consider all edges in increasing order of their weight

and remove them if they leave the graph connected. If this still does not satisfy

the constraint on total number of edges, we let the graph be disconnected and

re-connect it using edge swaps as before. The goal here has been to preserve as

much structural information from the condensed graph as possible and re-route

as little traffic as possible.

10

3.2. Partitioning Input Graph for the Given Topology

Our scheme for partitioning the input graph for a given topology is based

on a multilevel scheme. Multilevel techniques (e.g., [7, 10, 9, 11]) have been

a big success both from the scalability point-of-view as well as for providing

high-quality partitions.

Our experiments with other approaches for computing the partitioning for a

topology suggested that local search heuristics could significantly improve the

quality of the partitioning (as measured by the resultant throughput), but for

the local search heuristics to be effective, they need to be able to work at coarser

levels of graph as well. At the coarser levels, these localized heuristics can move

bigger chunks of graphs around.

A multilevel scheme for graph partitioning consists of three phases. In one

round of the coarsening (or contracting) phase, we identify matchings M ⊆ EG
and contract the edges in M . These rounds are repeated till the number of

vertices is smaller than some pre-defined threshold. It is followed by an initial

partitioning phase where some expensive techniques can be used to partition

the graph into required number of subdomains. In the refinement phase, the

matchings are uncontracted. After uncontracting a matching, the refinement

algorithm uses some local search heuristics to improve the partitioning objective.

The multilevel approaches work well because the coarsening phase preserves

the structure of the input graph while reducing its size. Therefore, a good

partitioning at a coarser level leads to a good partition at the finer level as well.

Please refer to extensive literature on multilevel partitioning (e.g., [7, 10, 9, 11])

for more details.

In our case, the multilevel approach has the following components: (a)

coarsen the graph, (b) compute an initial mapping of vertices to topology nodes

and compute a routing scheme for the coarsest graph (c) refine where the local

search heuristics in the refinement phase can potentially move the vertices be-

tween different partitions as well as reroute the traffic through a different path.

We give more details of these components below.

Note that in this section, we treat the topology graph as unweighted, i.e.,

11

each node and edge in the topology graph has a weight of one. This is to ensure

that the current partitioning is not influenced by partitioning done in previous

iterations and is re-computed from scratch.

3.2.1. Coarsening

For the coarsening phase, matchings based on edge expansion have been

shown to be more effective than those based on edge weights [13]. We therefore

use a greedy maximal matching based on edge expansion for contracting the

graph. We start with an empty matching M = ∅. We consider the edges in

increasing order of their expansion values. If both end-points of an edge e have

degree 0 in G(V,M), we insert the edge e in M . We coarsen the graph till

we have only max{P 1.5, 100} vertices left, where P is the desired number of

partitions.

3.2.2. Initial Partitioning

The initial mapping of the coarsened graph to the topology graph is com-

puted by recursively bisecting both of these graphs to minimize the total edge-cut

and then mapping the bigger part of the coarsened graph to the bigger part of

the topology and the smaller part to smaller. A part is considered bigger if

it has a higher load (total weight of all vertices in it) or if the two loads are

equal, than it has more edges. The intuition behind this approach is that it

maps the sparse cut in the coarsened graph to the sparse cut in the topology

in order to avoid (or alleviate as the case may be) communication bottlenecks.

The definition of bigger graph is particularly relevant for the topology graph as

that is treated as unweighted and is typically small. Thus, the two partitions

have the same number of nodes, but the partition with higher number of edges

can deal with higher load partition of the coarsened graph as it can balance the

load among its nodes better. Note that this approach is similar to the one used

in Scotch [11].

We use METIS to partition the two graphs. However, we observed that for

very small graphs (less than 8 vertices), METIS tends to put all nodes in the

12

same partition, irrespective of the load balance required. To avoid this, we do

a brute-force partitioning for small graphs. We consider all cuts that create

balanced partitions and select the one with minimum edge-cut.

For routing the traffic, we first route using the shortest path metric and

then update the routes using minimum-congestion path. For the shortest path

routing, we consider all edges in the coarsened graph. If the incident vertices

of an edge are mapped to different nodes in the topology graph, we route the

data-stream between the vertices through the shortest path between the mapped

processors in the topology. To update it using minimum-congestion routing

scheme, we consider the edges of the coarsened graph in decreasing order of

their weight. If routing the flow of the edge through the minimum congestion

path results in increased throughput, we change the route of the corresponding

data-stream. Considering the edges in decreasing order of weight allows for the

lower weight flows (data-streams with fewer expected data) to route through

less loaded links after the distribution of heavy weight flows broadly defines the

load on the links.

The intuition behind using the shortest path routing first is that the shortest

path routing minimizes the total flow (summed over all links) and then the min-

congestion routing performs relatively minor modifications to distribute this flow

more evenly at the cost of increasing the total flow by a small amount.

3.2.3. Refinement

The coarsened graph is projected back to the original by assigning vertices

u and v that were merged to produce vertex w, to the processor to which w

was assigned at the coarser level. Similarly, the flow for edge {u, x} or {v, x}

for x ∈ VG is routed through the same path as {w, x} in the coarser graph.

This is then followed by a greedy local update procedure which either re-maps

a vertex to another processor or re-routes a flow to improve the performance of

the system till it converges to a local optimum.

For this local update step, we consider a performance vector. For a topology

graph H(VH , EH), this vector has |VH | + |EH | entries, corresponding to its

13

vertices and edges. For each node v ∈ VH , we insert Scomp/wv(v) in the vector

to denote the throughput obtained if v was the bottleneck vertex. Similarly, we

insert Scomm/we(e) for each edge e ∈ EH to denote the throughput obtained if

e was the bottleneck. A performance vector is obtained by sorting the values

in increasing order. Note that the overall throughput is the first entry in this

vector. We say a performance vector P ′ is better than a performance vector P

if P ′[i] > P [i] and P ′[j] = P [j] for 0 ≤ j < i. Clearly, the best performance

vector also yields the best throughput.

Optimizing the whole performance vector rather than just the throughput

(which is the first entry in the performance vector) helps in a more even dis-

tribution of load and communication. In our experiments, we found that quite

often, it also improves the throughput. This is because alleviating the load on

the neighbors of the bottleneck processor or link allows some load to move to

them, thereby improving the throughput.

Our greedy local update procedure considers a series of steps involving vertex

re-mappings and re-routing of flows and selects the update that results in the

best performance vector among all steps considered. The best step is actually

executed and the partitioning information and/or routing tables are modified.

The procedure of greedily selecting a locally best update and executing it is

repeated till the process converges to a locally optimum performance vector.

The steps considered for the local update procedure are as follows: (a) For

each vertex v ∈ VG mapped to processor Pi, we consider re-mapping it to all

neighboring processors of Pi in the topology graph H. (b) For each edge e ∈ EG,

we consider re-routing it through a minimum-congestion path.

3.3. Reconfiguring the Topology to Improve Partitioning

In this section, we show how we modify our topology by identifying the key

bottleneck with the partitioning computed in the previous iteration. Note that

these changes do not necessarily make the topology better and can be undone

in the next iteration.

Let the current iteration be i and the current topology graph be Hi. We

14

first identify whether computation or communication is the bottleneck. If com-

putation is the bottleneck, it could be because the partitioning algorithm could

not move the vertices of the input graph to lower weight nodes (partitions) for

the fear of increasing cut. (We understand that the reason might very well be

the fact that the partitioning algorithm is just not good enough. However, we

are choosing to make this assumption now and later test it in our experiments.)

This implies that in the topology, we need more edges between low-weight nodes

and high-weight nodes so as to alleviate the high-cut concerns of the partition-

ing algorithm and thereby enable it to find a more balanced computational load

distribution in the next iteration. We depict this situation in Figure 3. As one

solution, we select a light-weight edge between two low-weight nodes (x and z

in Figure 3) and a light-weight edge between two high-weight nodes (u and v in

Figure 3) and perform a swap operation. Note that this swap can only be done

in a setting where topology is reconfigurable. Furthermore, this swap, and the

accompanying considerations, are among the features that make this framework

a co-optimization because identification of issues with the partitioning lead to

local fixes in the topology, which elicits another round of partitioning. A swap

operation between edges {u, v} and {z, x} involves removing the two edges and

either inserting {u, z} and {v, x} or inserting {u, x} and {v, z}.

Figure 3: Changing topology to fix a computation bottleneck.

The edge ehigh with the lowest expansion value (ehigh = mine∈Hi Ξ(e)) satis-

fies the requirements of a low-weight edge between high-weight nodes. To select

the edge between two low-weight nodes, we consider the edges in increasing or-

15

der of their vertex-product and identify the first edge elow that can be swapped.

An edge pair can be swapped if all of the following conditions are true: (a)

The two edges are vertex disjoint. (b) Swapping the edges leaves the graph

connected. (c) The new edges to be inserted in the graph in the swap operation

are not already present. We then swap the edges ehigh and elow in Hi to obtain

the topology Hi+1 for the next iteration i+ 1.

If on the other hand, the bottleneck is the communication over a link eb

in the topology, we try to guess the bottleneck cut and introduce more edges

between the two sides of the cut to alleviate the bottleneck. We depict this

process in Figure 4 and explain below.

Figure 4: Changing topology to fix a communication bottleneck.

The bottleneck cut is identified by sorting the edges in decreasing order of

their weight and then removing the edges till the graph gets disconnected. After

the two sides of the cut (partitions P and Q in Figure 4) are identified, the edges

are re-inserted into the graph. We then find low-weight edges from both sides

({u, v} from P and {x, z} from Q in Figure 4) such that they can be swapped

and swap it to obtain Hi+1 (the graph in the middle in Figure 4). This process

has now introduced two more edges between P and Q that can then be used

to offload some communication from the congested links between P and Q (as

shown in the right-most subfigure in Figure 4). Figure 5 illustrates this process

for an example graph in a step-by-step fashion.

If one of the components has no edges (e.g., it might have only one node),

we identify the lightest weight edge-pair that can be swapped and swap it to get

16

Hi+1. In our experiments, we observed that the last case happens quite often as

communication bottleneck is caused by a node that needs to send vast amount

of data to the remaining nodes in the topology and it does so by distributing

the communication load roughly equally along all incident edges.

A major problem with the above technique for modifying topology is that it

tends to get stuck in small cycles, i.e., Hi+c = Hi for a small c. This restricts

the number of different topologies explored quite significantly. In order to avoid

this problem, we introduce a measure of randomization. Even if an edge pair

can be swapped, we ignore it with a certain probability and keep searching for

a new pair.

4. Experiments and Results

4.1. Summary of Results

To the best of our knowledge, we have no direct competitors of our TPR

co-optimizing framework because we are not aware of any algorithms that parti-

tion graphs for a reconfigurable topology platform while co-optimizing cut, load

balance and flow at the same time. This made it difficult to compare against

other efforts. Also, since most variants of graph partitioning are NP-hard, it is

very difficult to ascertain the quality of our solutions by comparing against a

known optimum for interestingly large problem sizes.

We therefore compare our approach with the extreme case of computation

load being equally balanced on network with no communication restrictions (i.e.,

cut minimization does not matter in this extreme case because it is assumed

that there are links of infinite bandwidth between all compute node pairs). In

our experiments, we found that in the settings when our approach is computa-

tion bound, our throughput results on our simulated streaming applications are

within a small constant factor (less than 4) of this extreme case of perfect load

balance.

By varying the ratio between Scomp and Scomm, we can alter the bottleneck

from computation to communication. A high ratio implies that computation is

17

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5: An example of modifying topology to fix a communication bottleneck.
(a) A topology with a communication bottleneck due to edges {u,m} and {u, c}.
(b) Trying to identify the bottleneck cut by removing the heaviest edge {u, c}
to see if that disconnects the graph. (c) Removing {u, c} did not disconnect the
graph, so removing the next heaviest edge {u,m}. (d) Bottleneck cut identified
as that between partitions P and Q. (e) Identified a light edge in each partition,
{u, v} and {x, z}. (f) Removed edges {u, v} and {x, z}. Inserted edges {u, x}
and {v, z}. (g) Re-routed congestion present on edges {u,m} and {u, c} through
new edges {u, x} and {v, z}.

18

less likely to be the bottleneck as the compute nodes can process the computa-

tion load faster than the links can move the data around. Our results show that

our framework provides good trade-offs between the two extremes as the ratio

between Scomp and Scomm is varied. As the ratio tends to zero, our algorithm

tends to create very few partitions with very small weight edges across them.

On the other hand, as the ratio tends to infinity, the partitioning solution tends

to produce NP partitions that are almost perfectly balanced. Note that another

major advantage of our approach is that it need not use all the processors in

the system, but can determine if grouping the computation load into bigger and

fewer partitions to alleviate the communication bottleneck provides for better

throughput.

Our experiments also show that for our simulated streaming applications,

our iterative procedure for updating the topology and the partitioning does

manage to provide some robustness to the partitioning solution. While for

the computation bottleneck, the initial topology and our computation of par-

titioning from scratch for the computed initial topology already provides good

results, our iterative updates manage to improve the throughput for the cases

with communication bottleneck.

We now explain our experiments in detail, in particular the characteristics

of the synthetic application graphs we used and our validation approach to gain

confidence in our results. We discuss both of these issues next.

4.2. Key Characteristics of Graphs Used in Experiments

While our TPR co-optimizing framework does not depend on a particular

class of applications, we performed our experiments for stream computing ap-

plications. We picked this because reconfigurable optical circuit switches are

particularly suitable for stream computing applications as these applications

generate long duration flows that easily compensate for the long (in millisecs)

time needed to reconfigure the optical switches. In addition, such applications

also benefit the most from the circuit switching (as opposed to packet switching)

offered by optical switches.

19

For simulating stream computing applications, we used a graph generator

that we wrote specifically for this purpose. The details of the generation process

and an experimental study for evaluating how well the properties of stream-

ing graphs are emulated by our generated graphs is available in a research re-

port [14]. The key properties of the graphs we have used for our experiments

are the following.

1. Our graphs are very sparse.

2. There are no vertices with more than 1 in-degree and more than 1 out-degree.

All vertices fall into one of the three types: (a) Filters: Vertices with in-degree

1 and out-degree 1. (b) Split: Vertices with in-degree 1 and out-degree greater

than 1. (c) Join: Vertices with in-degree greater than 1 and out-degree 1 A

large majority of the vertices are filters.

3. For any vertex pair (x, y), all paths from x to y have roughly the same length,

where the length is defined as the number of edges in the path independent of

the weights on the constituent edges.

4. There are more splits than joins close to the sources and there are more joins

than splits closer to the sinks.

Our graph generator takes one input parameter: the number of vertices. The

number of edges, and their placement, are determined by the graph generator

(see details at [14]).

4.3. Validation Procedure

We characterize our experiments with the following parameters: Nnodes,

Nvertices, ∆max, Emax, Scomp, and Scomm, whereNnodes is the number of compute

nodes in the topology and Nvertices is the number of vertices in the application

graph generated using Section 4.2. Let a trial be defined as one execution of the

sequence “generate an application graph of Nvertices vertices, create an initial

topology for that on Nnodes nodes assuming constraints implied by ∆max and

Emax, and iterate as given in earlier sections to optimize the throughput given

the system constraints implied by Scomp and Scomm.” Two trials differ from each

other only in the random numbers used to seed the graph generator and the

20

graph partitioner. That is, for each new trial we create a new random application

graph, and also seed both METIS and our own algorithm with new seeds. This

ensures that our results do not depend on a “lucky” selection of application

graph or the parameters for the search algorithms. To further ensure that

serendipity is not a factor in the goodness of our reported results, we consider

an experiment completed only when enough trials have been performed to give

us a certain level of confidence in the results we report. Let the imprecision,

π(x), of a set of values of x be defined as the half-width of the 95% confidence

interval divided by the mean of x. We call an experiment completed when

enough trials have been performed to give an imprecision of no more than 5%

for the measured throughput.

Output of a given trial gives the following information: the maximum through-

put achieved; iopt, the iteration in which the maximum throughput was achieved;

Φ, the improvement, if any, over the throughput achieved in the initial topol-

ogy; and an indication whether this particular value of system throughput was

limited by the processing speed of the compute nodes or by the bandwidth of

the communication links.

At the end of an experiment, we compute the following additional metrics:

Npb
trials, the fraction of total trials that had computation as the bottleneck (‘pb’

stands for ‘processor bottleneck’); Φ̄, the average value for Φ; π(Φ̄), the impre-

cision for Φ̄over Ntrialstrials; and Nnc
trials, the fraction of trials that showed no

improvement over the initial topology (‘nc’ stands for ‘no change’).

4.4. Detailed Results

We report our results in Table 1 and Table 2, for several experiments, each

with a different set of values for parameters Nnodes, Nvertices, ∆max, Emax, Scomp,

and Scomm. In Table 1, the notation rlooseub refers to the ratio of actual through-

put to the throughput for the hypothetical scenario with perfect load balance

on a topology with all-pair links of infinite bandwidth.

Table 1 shows results for some settings in which the computation is the bot-

tleneck (as shown by high values of Npb
trials). For these settings, the throughput

21

Table 1: Evaluation against the hypothetical extreme case of perfect load bal-
ance on infinite bandwidth perfectly connected network

Φ Nnodes ∆max Emax Scomp Scomm Nvertices Npb
trials π(Φ) Ntrials Nnc

trials rlooseub

1 1.074 16 4 32 100 500 100 1.000 0.009 252 0.282 0.279
2 1.040 16 4 32 100 500 200 0.991 0.004 348 0.244 0.333
3 1.029 16 4 32 100 500 300 0.996 0.004 240 0.163 0.388

of our partitioning solution is within a small constant factor (at least 27.9%) of

the throughput of the extreme case of perfect load-balance.

Table 2: Parameters for the various experiments we conducted and the corre-
sponding results.

Φ Nnodes ∆max Emax Scomp Scomm Nvertices Npb
trials π(Φ) Ntrials Nnc

trials

1 1.306 16 4 32 100 10 100 0.386 0.036 360 0.219
2 1.254 16 4 32 100 10 300 0.497 0.027 720 0.189
3 1.240 16 6 48 100 10 300 0.548 0.048 252 0.214
4 1.094 16 4 32 100 100 100 0.950 0.019 180 0.328
5 1.072 16 4 32 100 100 200 0.927 0.014 648 0.230
6 1.057 16 4 32 100 100 300 0.931 0.013 720 0.185
7 1.454 32 4 64 100 10 300 0.225 0.046 324 0.114
8 1.451 16 4 32 1000 10 200 0.042 0.049 168 0.214
9 1.456 16 4 32 1000 10 300 0.028 0.030 612 0.196
10 1.447 16 4 32 1000 10 1000 0.137 0.030 1253 0.229
11 1.418 16 6 48 1000 10 300 0.045 0.054 156 0.237
12 1.646 32 4 64 1000 10 1000 0.033 0.046 360 0.133

A clear trend emerges from Table 2 and Figure 6a. As the fraction of total

trials that have computation as the bottleneck decreases, the performance im-

provement given by our algorithm increases. This phenomenon produces three

distinct clusters of data. We have separated them in Table 2 with horizontal

lines, and can also be seen in Figure 2. The cluster of points with the highest

throughput was observed in experiments where most of the trials had commu-

nication as the bottleneck, i.e., Scomp and Scomm were set to give very small

values of Npb
trials. Similarly, the cluster of points with the lowest throughput was

seen in experiments where most of the trials had computation as the bottleneck,

22

i.e., Scomp and Scomm were set to give very high values of Npb
trials.

The fact that our scheme does not show much improvement over the initial

topology for high values of Npb
trialsis understandable. Recall that the initial topol-

ogy is based on a condensed graph from METIS partitioning that puts greater

emphasis on balancing the load (as maximum allowed load imbalance is 1.05).

Therefore, the initial partitioning (computed from scratch afterwards) ensures

that the computational load is still well-distributed. Our experiments confirm

that computational load is indeed well-balanced after the partitioning for the

initial topology and if the computation is the bottleneck, it already provides for

good partitioning solution (e.g., for settings in Table 1).

Since METIS minimizes the total cut value and the maximum total weight

leaving a node (maximum subdomain degree), but not the maximum commu-

nication between compute-node pairs, the initial topology may not be as good

when communication is the bottleneck. In such cases, our iterative procedure for

updating the topology and the partitioning provides significant improvements.

The largest performance improvement we saw was 65% improvement in

throughput over that given by the initial topology. This was for the 12th sys-

tem configuration in Table 2. Throughput in this particular configuration was

highly limited by the bandwidth available over links (only 3.3% of 360 trials

showed computation as a bottleneck). Another point to note here is that this

configuration saw one of the smallest values for Nnc
trialsat 13.3%. That is, our

algorithm succeeded in improving the throughput over that of initial topology

for almost 87% of all trials.

Although the results shown in this section are for input graphs with small

values of Nvertices and small number of processors Nnodes, our preliminary ex-

periments suggest that similar trends continue for the larger graphs (e.g., with

Nvertices = 64000) and for larger numbers of processors.

Figure 6b shows a typical scenario for the number of iteration in which the

best throughput was computed. In a large majority of our experiments, the

best throughput was obtained in very few iterations (less than 3). However, in

some cases, we even obtained improvements in iteration 15 or higher.

23

The time taken by TPR co-optimizing framework to execute can be tuned

by a parameter controlling the local search depth in the refinement phase. For

a system with 32 nodes and 10,000 vertices, the average time was around 3

minutes.

%
 i
m

p
ro

v
e
m

e
n
t
in

 t
h
ro

u
g
h
p
u
t

% of trials with a computation bottleneck

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

(a)

%
 o

f
tr

ia
ls

 t
h
a
t
e
n
d
e
d
 i
n
 i
te

ra
ti
o
n
 i

number of iterations

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 2 4 6 8

 1
0

 1
2

 1
4

 1
6

 1
8

(b)

Figure 6: (a) As the fraction of total trials that have computation as the bottle-
neck increases, the performance improvement given by our algorithm increases.
(b) The number of iteration in which the best throughput was computed.

5. Chordal Ring Initial Topology

There are a few shortcomings of our framework. Firstly, the initial topology

crucially relies on the computed partitioning. A bad partitioning can lead to a

condensed graph that is very different in structure than the application. Sec-

ondly, even if the condensed graph is similar in structure, the maximum allowed

number of edges or the degree may be significantly less than the condensed graph

and this may make the resultant topology very different in structure from the

condensed graph. Specifically, re-routing the traffic that originally existed on

the removed links through new paths in the topology can cause congestion in

some links leading to poor performance. There is no purpose built capacity in a

condensed graph to handle such re-routing. And most importantly, even if the

24

0
1

5

3

4

7

11

9

6

8

10

13

12

14

15

2

Figure 7: The chordal ring C(16; 4).

topology mimics the communication pattern of the application well, the pro-

cess of routing and re-routing can still lead to poor communication throughput,

particularly if the resultant topology has poor connectivity.

To overcome these shortcomings, we propose an alternative framework. Rather

than starting with a condensed graph, we initialize our topology search with

a topology with certain desirable characteristics. We focus our attention on

chordal rings. A chordal ring is a k-regular circulant graph formed by the addi-

tion of edges between pairs of vertices at specified distances along the ring. More

precisely, a ring with vertices labelled i = 0, . . . , n− 1 and an associated set of

chord lengths, Q ⊆ {q1, q2, . . . , qbn/2c}, forms the chordal ring C(n; q1, . . . , q|Q|),

if for each qj ∈ Q there is an edge from vertex i to vertex (i+ qj) mod n. The

degree of the graph is determined by the choice of Q. In general k = 2|Q| + 2

(see Fig. 7). For even values of n, chords of length n/2 yield k = 2|Q|+1. Recall

that k is the vertex degree in this k-regular graph.

This class of graphs has been used extensively in theoretical studies of in-

terconnect design (e.g., [15, 16, 17]), and it is known to possess a number of

structural properties that have traditionally been seen as vital for robustness

against node or link failures [18, 19]. Given that the maximum edge constraint

enforced by the configurable optical switch may result in removal of some edges

from our chosen initial topology (even if it is a condensed graph), it makes sense

25

to start with a topology that is known to be robust against such link failures

(intentional link removal is a type of link failure).

Recall that our optimization criterion is to maximize throughput of a stream-

ing application mapped to a (configured) network topology. To that end, ap-

plication edges are mapped to the network topology edges so as to minimize

the maximum congestion (or load) on any network topology edge. The same

characteristics of chordal rings that make them attractive for robustness against

failed links also make them attractive for robustness against congested links. In

both cases, the structure of the chordal rings makes it likely that many com-

munication paths will remain available even in the face of congestion of certain

links. Note that this is not a design feature of the condensed graphs.

We note that other graphs like de Bruijn graphs [20] or Kautz graphs [21]

also provide such robustness. However, the chordal rings provide much more

design flexibility in terms of choosing the required number of vertices while also

satisfying the maximum degree constraint. The maximum edge constraint can

then be satisfied by removing a random subset of edges (while preserving the

connectivity).

In this paper, we assume that ∆max is 4. To satisfy this particular maximum

degree constraint, we focus our discussion on simple degree four chordal rings

C(n; q) [22], i.e., a ring in which all chords have the same length, q. There is a

number of interesting properties unique to this particular subclass. Iwasaki et

al. [23] have shown that for every graph in C(n; q) there are four independent

spanning trees rooted at each vertex. In other words, between every pair of

(source, destination) vertices there are four edge-disjoint paths, the maximum

possible number for a 4-regular graph.

Another interesting property of C(n; q) is their bisection width. Bisection

width is important for our particular problem because a higher bisection width

will translate into a larger number of paths between any two bisections, thereby

permitting a better congestion alleviation between the two given bisections.

For large values of n, the bisection width of chordal rings is usually better

than that of 2-D torus. For instance, the bisection width of C(2k; 4) is known

26

to be 2k−1 [24], suggesting a linear growth as a function of n, while that of 2-D

torus is 2n1/2, a sub-linear function. This suggests that such a chordal ring may

be a better candidate for a seed topology than a 2-D torus.

Finding the bisection width of a general chordal ring is a hard problem.

Here we present a lower bound on bisection width of C(n; q). If G is a graph

on n vertices and a is its algebraic connectivity (i.e. smallest strictly positive

eigenvalue of its Laplacian matrix) then the bisection width for G is bounded

below by dna4 e [25]. For C(n; q), the algebraic connectivity is given by a =

mink=1,...,n−1{4− 2 cos
(

2πk
n

)
− 2 cos

(
2πkq
n

)
}. Substituting this value, one gets

the lower bounds of 3, 6, 8, 6, 8 and 5 for C(16; 2), C(16; 3), C(16; 4), C(16; 5),

C(16; 6), and C(16; 7), respectively.

To compute the exact bisection width of these chordal rings, we conducted

an exhaustive search by considering the cut value of all possible equal size bipar-

titionings and taking the minimum. From this, we concluded that the bisection

width of C(16; 2), C(16; 3), C(16; 4), C(16; 5), C(16; 6), and C(16; 7) is exactly

6, 8, 8, 8, 10 and 8, respectively. As a matter of comparison, note the bisection

width of 2-D torus with 16 vertices is 8.

5.1. Experiments with Chordal Ring Initial Topologies

We characterize our experiments with the following parameters: Tinit, Nnodes,

Nvertices, ∆max, Emax, Scomp, and Scomm, where Tinit is the initial topology, Let

T be the set of seed topologies being compared in an experiment. Let a trial

be defined as one execution of the sequence “generate an application graph of

Nvertices vertices, fork |T | ways, use Ti as Tinit in the i-th fork as an initial

topology, satisfy constraints implied by ∆max and Emax, and search the space

around this initial topology using the iterative procedure in Section 3” As in

Section 4.3, two trials differ from each other only in the random numbers used

to seed the application graph generator and the graph partitioner.

We focus on 16-node topologies with ∆max = 4 and 22 ≤ Emax ≤ 32. Note

that even for this restricted setting, the number of graphs satisfying the two

constraints is quite large and exploring the entire search space (every time we

27

2 3 4 5 6 7
−0.24

−0.2

−0.16

−0.12

−0.08

−0.04

0

0.04

chord length (q)

∆
 ith

ru

 E
max

=22, S
L
=500

(a)

2−D torus

C(16,q)

2 3 4 5 6 7
−0.24

−0.2

−0.16

−0.12

−0.08

−0.04

0

0.04

chord length (q)

∆
 ith

ru

 E
max

=28, S
L
=500

(d)

2−D torus

C(16,q)

2 3 4 5 6 7
−0.24

−0.2

−0.16

−0.12

−0.08

−0.04

0

0.04

chord length (q)

∆
 ith

ru

 E
max

=22, S
L
=200

(b)

2−D torus

C(16,q)

2 3 4 5 6 7
−0.24

−0.2

−0.16

−0.12

−0.08

−0.04

0

0.04

chord length (q)

∆
 ith

ru

 E
max

=28, S
L
=200

(e)

2−D torus

C(16,q)

2 3 4 5 6 7
−0.24

−0.2

−0.16

−0.12

−0.08

−0.04

0

0.04

chord length (q)

∆
 ith

ru

 E
max

=22, S
L
=100

(c)

2−D torus

C(16,q)

2 3 4 5 6 7
−0.24

−0.2

−0.16

−0.12

−0.08

−0.04

0

0.04

chord length (q)

∆
 ith

ru

 E
max

=28, S
L
=100

(f)

2−D torus

C(16,q)

Figure 8: The effect on throughput improvement, ∆thru
i , of changes in the chord

length of the 16-node chordal ring.

2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

chord length (q)

∆
 iti

m
e

 E
max

=22, S
L
=500

(a) 2−D torus

C(16,q)

2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

chord length (q)

∆
 iti

m
e

 E
max

=28, S
L
=500

(d) 2−D torus

C(16,q)

2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

chord length (q)

∆
 iti

m
e

 E
max

=22, S
L
=200

(b) 2−D torus

C(16,q)

2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

chord length (q)

∆
 iti

m
e

 E
max

=28, S
L
=200

(e) 2−D torus

C(16,q)

2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

chord length (q)

∆
 iti

m
e

 E
max

=22, S
L
=100

(c) 2−D torus

C(16,q)

2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

chord length (q)

∆
 iti

m
e

 E
max

=28, S
L
=100

(f) 2−D torus

C(16,q)

Figure 9: The effect on convergence time, ∆time
i , of changes in the chord length

of the 16-node chordal ring.

re-configure the switch) is infeasible.

We report here results for several experiments. By varying the ratio between

28

Scomp and Scomm, we can alter the bottleneck from computation to communica-

tion. A high ratio implies that computation is less likely to be the bottleneck as

the compute nodes can process the computation load faster than the links can

move the data around. An experiment is completed when enough trials have

been performed to give an imprecision of no more than 5% for the measured

throughput.

The initial topology of a condensed graph is used as our baseline in this

paper. All other topologies are compared to this baseline. Output of a given

trial gives the following information for each seed topology Ti: δthru
i , the ratio

of improvement in throughput achieved by Ti over the condensed graph to the

throughput achieved by condensed graph, and δtime
i , the ratio of improvement

in time to convergence achieved over the condensed graph to time to conver-

gence for topology Ti. At the end of an experiment, we compute the following

additional metrics for each seed topology Ti: ∆thru
i , the average value of δthru

i

over all trials and ∆time
i , the average value of δtime

i over all trials.

Figure 8 shows results for a subset of experiments in which only the seed

topology, Tinit, maximum number of allowed edges, Emax, and the speed of the

network links, SL, were changed while other parameters were kept at Nnodes

= 16, Nvertices = 300, and ∆max = 4. These results show that, in general,

throughput is better if the seed topology is a condensed graph. However, using

a suitable chordal ring as a seed topology gave, for most of these experiments,

an average throughput that was no worse than 95% of that obtained using the

condensed graph, but did so in a much shorter time.

There are also some specific insights highlighted in Fig. 8, which shows results

for 6 experiments. For easier navigation, the subplots have been arranged so that

the experimental set-up becomes more and more challenging communication

wise if one moves either to the right or the top. That is, Fig. 8(c) has the most

communication wise challenging (hereafter referred to as just ‘challenging’) set-

up. This is because (i) the link speed is the lowest, at 100, of three speeds (100,

200 and 500) shown in this figure, and (ii) the number of edges simultaneously

allowed in the network is the smaller, at 22, of the two values shown here (22

29

and 28). Figure 9 has been set up similarly to Fig. 8 except that it shows the

effect on convergence time of the choice of initial topology. Notice that any move

from a less challenging to a more challenging set-up shows that the rings with

higher chord lengths generally do better. Specifically, one can see the following.

(1) A rightward movement from (a) to (b) to (c) in Fig. 8 shows that the

number of chordal rings that achieve a throughput that is within 8% of the

baseline drops from 4 to 3 to 2.1 While C(16; 6) and C(16; 7) reach 92% of

the baseline throughput for all three scenarios, C(16; 5) drops out of the “well-

performing” set of rings when Scomm is decreased from 500 to 200. And both

C(16; 4) and C(16; 5) drop off this set when Scomm is further decreased from 200

to 100. That is, for subplot (c), the chord lengths of 2, 3, 4, and 5 are all in a

set that does not give throughput competitive to that of the condensed graph.

A similar change in performance is seen when one moves ‘up’ in Fig. 8, from

(d) to (a), from (e) to (b), or from (f) to (c). For example, when we move from

(d) to (a) in Fig. 8 (i.e., decreasing Emax to 22 while keeping Scomm constant

at 500), the rings with the smaller chord lengths, C(16; 2) and C(16; 3), start

performing quite poorly. As a specific example, the throughput improvement

worsens by about 18% for C(16; 2).

(2) A similar rightward movement in Fig. 9 shows that the improvement in time

taken to converge has in general gotten better. Note that the savings in the

convergence time are quite significant. For example, for Fig. 9(a), the iterative

algorithm converged sooner, as compared to the baseline, by about 19% to

31%, depending on the choice of chord length. The corresponding value for 2-D

torus was 20%. When we move one step right to Fig. 9(b), the convergence time

improvement for the chordal rings gets in the range of 28% to 31%; for 2-D torus,

31%. Note that the apparent much higher improvements, 116% (not shown to

reduce congestion on y-axis) and 54%, in convergence times for C(16; 2), and

C(16; 3), respectively, are meaningless here because their performance was worse

1The number 8% is chosen here arbitrarily to make our point. It just needs to be a small

number.

30

by more than 8% of the baseline. After another step to the right, in Fig. 9(c),

we see time improvements of 51% and 68% for the only two rings, C(16; 6)

and C(16; 7), respectively, that have survived falling off the so-called “well-

performing” set. The 2-D torus saves 55% in time in this case.

(3) The 2-D torus as an initial topology works just well as an appropriate

chordal ring as far as the throughput improvement is concerned. However, for

savings in convergence time, an appropriate chordal ring may be better (see

Fig. 9(a), (e), and (f)).

One explanation of the above effect of larger chord length chordal rings

“holding out” longer in the face of increasingly adverse communication envi-

ronments is offered by the average shortest path length, Lasp, of chordal rings

(Fig. 10). The number of links in the topology path that are loaded to route

a given application edge is smaller for a chordal ring with a smaller Lasp. This

reduces the maximum load on a given topology link, and subsequently increases

the communication throughput. Also, as the links are removed from the topol-

ogy to satisfy the constraint on the total number of edges, the load on the

removed links has to be re-routed through another path. For a topology with a

smaller Lasp value, fewer links get loaded in the process of re-routing and this

results in less congestion overall.

As Fig. 10 shows, the Lasp value decreases from chord length 2 to 6, except

for chord length of 5. This pattern is consistent with the throughput increase

pattern shown in Fig. 8. Note that this consistency between the throughput

pattern and average shortest path is more prominent for Emax = 22 case as

compared to Emax = 28 case because more links are removed to satisfy the

Emax = 22 constraint and the flow over the removed links get re-routed through

shorter paths.

The relatively large performance difference between C(16; 2) and C(16; 6)

may also be attributed to a large difference in their bisection widths. For i ∈

{2, ..., 7}, bisection width of C(16; i) is always 8 except for C(16; 2) and C(16; 6)

where it is 6 and 10, respectively (cf. Sec. 5). A larger bisection width means

that the minimum number of links that have to be removed to bisect the ring

31

2 3 4 5 6 7
1.9

2.1

2.3

2.5

chord length (q)

L
as

p

2−D torus

C(16,q)

Figure 10: Lasp against chord length

is larger. The task of optimizing for throughput is in part a task of finding a

larger set of paths that go from one bisection of the graph to another. These

are the paths that will be used to balance a large streaming load, to, in turn,

increase its throughput.

Another trend that emerges from Fig. 9 is that when Scomm is decreased for a

constant Emax, the convergence advantage of the chordal rings becomes greater.

This convergence advantage of chordal rings can also be seen by stressing the

system in a different way, specifically, by increasing the size of the application

graph. A larger sized application graph makes it more critical for the iterative

algorithm to co-optimize routing more carefully. Table 3 shows the effect on

throughput improvement and convergence when application graphs of size 1000

are used. All other parameters are the same as in Fig. 8 except that Emax has

been set to 26 in this case. It can be seen that moving to the larger application

graph makes C(16; 2) (i.e., a 16-node chordal ring with chord length of 2) per-

form even worse with respect to throughput. For the other chordal rings, how-

ever, the throughput improvement over the baseline case of condensed graphs

does not change much. But the convergence time does improve significantly in

most cases.

6. Related Work

We are not aware of any work that configures a topology to match the

communication requirements of a given application. We are also not aware

of any work that co-optimizes the partitioning and routing. There is how-

32

Table 3: The effect on throughput improvement and convergence time of using

larger application graphs.

SL
1000 vertices 300 vertices
∆thru
i ∆time

i ∆thru
i ∆time

i

C(16; 2) 200 -0.27 1.43 -0.16 0.68
C(16; 3) 200 -0.04 0.43 -0.04 0.27
C(16; 4) 200 -0.02 0.51 -0.03 0.35
C(16; 5) 200 -0.07 0.37 -0.06 0.36
C(16; 6) 200 -0.02 0.47 -0.01 0.22
C(16; 7) 200 -0.03 0.36 -0.02 0.24

2-D Torus 200 -0.02 0.31 -0.02 0.30

ever considerable work on computing a partitioning of the input graph for

a given architecture, both serial and parallel, and static and dynamic (e.g.,

[26, 12, 27, 28, 11, 29]). In the context of heterogeneous architectures that

have compute nodes with variable processing speed and links with variable

bandwidth (such as grid infrastructures), the problem is also referred to as

architecture-aware partitioning. This problem is considered difficult even for

designing efficient problem-specific heuristic approaches. As such, generic local

search heuristics have been used for solving this problem, such as genetic algo-

rithms [30] and cross-entropy methods [31]. The few problem-specific heuristics

include MinEx [32], MiniMax [33] and a variant of METIS [34].

Our subproblem of computing a topology-aware partitioning (within the host

of problems solved under the TPR co-optimizing framework) is actually simpler

than the partitioning for completely heterogeneous architecture as we assume

that the compute nodes are identical and that the links between them have the

same bandwidth. We, however, believe that the technique developed in this

paper will also be effective for fully heterogeneous architectures such as those

from the domain of grid computing.

The work in [4] is very much related to ours, in the sense that it substan-

tiates our contribution. Our contribution almost starts where the contribution

of [4] finishes. Specifically, an important contribution of [4] is doing a very

33

detailed study of different applications used in high performance computing,

and showing that their communication requirements do not need as powerful a

network as a fat tree. They argue that a fat tree can be pruned into a more

economical fit tree. Based on their analysis of communication requirements of

different applications, they make an excellent case for the potential of utilizing

a reconfigurable interconnect. This study, and some others like it, motivate our

present paper on how to utilize a reconfigurable interconnect.

Another closely related technique is the MiniMax approach ([33]) as that

technique is also multilevel. But our approach differs in the way it coarsens

the graph, it does the initial partitioning, performs refinement, as well as in the

objective function itself.

Unlike some previous efforts (e.g., [5]) that have investigated the use of

reconfigurable interconnect in high performance computing, our framework does

not focus on, or assume, a certain class of applications or certain communication

patterns.

7. Conclusions and Future Work

In this paper, we have proposed new algorithms for iteratively co-optimizing

the network topology configuration, application partitioning and network flow

routing to maximize throughput for a given application for systems that employ

reconfigurable interconnects.

We show the value of our TPR co-optimizing framework on synthetic graphs

that emulate the key characteristics of stream computing applications that re-

quire high throughput. We perform statistically rigorous, serendipity-free ex-

periments to show that (a) TPR co-optimizing framework achieves a throughput

within a small constant factor (less than 4) of a loose upper bound calculated for

a system with no communication bottleneck (b) TPR co-optimizing framework

consistently improves (ranging from 42% to 65%) upon the initial throughput

for the more relevant cases of communication bound systems.

Our work can be extended to the dynamic setting, where the weights on

34

vertices and edges can change over time. This can be done by an iteration of

modifying the topology and updating the partitioning as is done in our frame-

work. However, the current partitioning update procedure re-computes the

partitioning from scratch. Ignoring the previous partitioning allows our frame-

work to consider radically different partitioning solutions and may lead to better

throughput. But it might not be desirable in a dynamic scenario as this is a

slow procedure and more importantly, it might involve a large data-migration

between the processors. The cost of data-migration may be more than the ac-

tual benefit accrued from re-balancing the load. Therefore, we would like to

investigate techniques that use the partitioning from the previous iterations to

compute a new partitioning efficiently such that the data-migration requirement

between the two partitioning solutions is low.

Another direction of future research is to improve the scalability of the above

approach. This may include parallelization, either using MPI interface with

threads or using distributed paradigms such as map-reduce and/or making it

more cache-efficient.

Our eventual goal is to incorporate this framework in a high-performance

computing system with a reconfigurable switch. Given an application with

dynamically changing weights on the task graph (possibly because of imprecise

estimates on the work load), such a system will decide at the run-time when

and how to re-balance the load, re-route the network flows, and re-compute and

reconfigure the topology for the best overall throughput. This system will help

make the power-efficiency and bandwidth goals of future Exascale systems a

reality.

Acknowledgements

The authors are grateful to Kostas Katrinis, Rolf Riesen, Dilma M. da Silva and

Cheng-Hong Li for their valuable feedback. In particular, they helped us build a better

understanding of the optical circuit switches.

35

References

[1] D. Ajwani, S. Ali, and J. P. Morrison, “Graph partitioning for reconfig-
urable topology,” in 26th IEEE Int’l Parallel and Distributed Processing
Symposium (IPDPS ’12), 2012.

[2] A. Hackett, D. Ajwani, S. Ali, S. Kirkland, and J. P. Morrison, “Seeds for
a heterogeneous interconnect,” in 22nd IEEE Heterogeneous Computing
Workshop (HCW 2013) in the proceedings of the 27th IEEE Int’l Parallel
and Distributed Processing Symposium Workshops (IPDPSW 2013), 2013.

[3] L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S.-P. Chang, J. R.
Giles, K. Hildrum, D. M. Kuchta, J. L. Wolf, and E. Schenfeld, “A re-
configurable interconnect fabric with optical circuit switch and software
optimizer for stream computing systems,” in Optical Fiber Communication
Conference. Optical Society of America, 2009.

[4] S. Kamil, A. Pinar, D. Gunter, M. Lijewski, L. Oliker, and J. Shalf,
“Reconfigurable hybrid interconnection for static and dynamic scientific
applications,” in Proceedings of the 4th international conference on
Computing frontiers, ser. CF ’07. New York, NY, USA: ACM, 2007, pp.
183–194. [Online]. Available: http://doi.acm.org/10.1145/1242531.1242559

[5] K. J. Barker, A. F. Benner, R. R. Hoare, A. Hoisie, A. K. Jones, D. J.
Kerbyson, D. Li, R. G. Melhem, R. Rajamony, E. Schenfeld, S. Shao, C. B.
Stunkel, and P. Walker, “On the feasibility of optical circuit switching for
high performance computing systems,” in ACM/IEEE Conference on High
Performance Networking and Computing (SC), 2005, p. 16.

[6] P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow,
M. Taubenblatt, B. Offrein, and A. Benner, “Towards exaflop servers and
supercomputers: The roadmap for lower power and higher density optical
interconnects,” in 36th European Conference on Optical Communications
(ECOC), 2010, pp. 19–23.

[7] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” Journal on Scientific Computing, vol. 20,
no. 1, pp. 359 – 392, 1999.

[8] N. Selvakkumaran and G. Karypis, “Multiobjective hypergraph-
partitioning algorithms for cut and maximum subdomain-degree minimiza-
tion,” IEEE Transactions on Computer Aided Design of Integrated Circuits
and Systems, vol. 25, no. 3, pp. 504–517, 2006.

[9] B. Hendrickson and R. Leland, “A multilevel algorithm for partitioning
graphs,” in 1995 ACM/IEEE Conference on Supercomputing, 1995.

[10] C. Walshaw and M. Cross, “Parallel Optimisation Algorithms for Multilevel
Mesh Partitioning,” Parallel Comput., vol. 26, no. 12, pp. 1635–1660, 2000.

36

[11] F. Pellegrini, “Contributions au partitionnement de graphes parallle multi-
niveaux / contributions to parallel multilevel graph partitioning,” LaBRI,
Universit Bordeaux, 2009.

[12] U. Catalyurek, E. Boman, K. Devine, D. Bozdag, R. Heaphy, and L. Riesen,
“Hypergraph-based dynamic load balancing for adaptive scientific compu-
tations,” in 21st IEEE International Parallel and Distributed Processing
Symposium, Mar. 2007.

[13] M. Holtgrewe, P. Sanders, and C. Schulz, “Engineering a scalable high qual-
ity graph partitioner,” in 24th IEEE International Parallel and Distributed
Processing Symposium, 2010.

[14] D. Ajwani, S. Ali, and J. P. Morrison, “Application-agnostic generation of
synthetic task graphs for stream computing applications,” IBM Research,
Tech. Rep. RC25181 (D1107-003), 2011.

[15] S. Bujnowski, B. Dubalski, and A. Zabludowski, “Analysis of chordal
rings,” in Mathematical Techniques and Problems in Telecommunications
(MTPT ’03). Centro Int’l de Mathematica, Tomar, 2003, pp. 257–279.

[16] L. Narayanan, J. Opatrny, and D. Sotteau, “All-to-all optical routing in op-
timal chordal rings of degree four,” in 10th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA ’99), 1999.

[17] J. M. Pedersen, T. M. Riaz, B. Dubalski, and O. B. Madsen, “A com-
parison of network planning strategies,” in 10th Int’l Conf. on Advanced
Communication Technology (ICACT ’08), 2008.

[18] B. Parhami, “A class of odd-radix chordal ring networks,” CSI Journal on
Computer Science and Engineering, vol. 4, no. 2&4, pp. 1–9, 2006.

[19] ——, “Periodically regular chordal rings are preferable to double-ring net-
works,” J. of Interconnection Networks, vol. 9, no. 1, pp. 99–126, 2008.

[20] N. G. de Bruijn, “A combinatorial problem,” Koninklijke Nederlandse
Akademie v. Wetenschappen, vol. 49, pp. 758–764, 1946.

[21] D. Li, X. Lu, and J. Su, “Graph-theoretic analysis of Kautz topology and
DHT schemes,” in Network and Parallel Computing: IFIP Int’l Conf., 2004.

[22] R. F. Browne and R. M. Hodgson, “Symmetric degree-four chordal ring
networks,” Computers and Digital Techniques, IEE Proc. E, vol. 137, no. 4,
1990.

[23] Y. Iwasaki, Y. Kajiwara, K. Obokata, and Y. Igarashi, “Independent span-
ning trees of chordal rings,” Information Processing Letters, vol. 69, pp.
155–160, 1999.

37

[24] X. Yang, D. J. Evans, and G. M. Megson, “Maximum induced subgraph
of a recursive circulant,” Information Processing Letters, vol. 95, no. 1, pp.
293–298, 2005.

[25] R. B. Boppana, “Eigenvalues and graph bisection: An average-case anal-
ysis,” in 28th Annual Symposium on Foundations of Computer Science,
1987.

[26] G. Karypis and V. Kumar, “Parallel multilevel series k-way partitioning
scheme for irregular graphs,” SIAM Review, vol. 41, no. 2, pp. 278–300,
1999.

[27] U. Catalyurek, E. Boman, K. Devine, D. Bozdag, R. Heaphy, and L. Riesen,
“A repartitioning hypergraph model for dynamic load balancing.” J. Par-
allel Distrib. Comput., vol. 69, no. 8, pp. 711–724, 2009.

[28] R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, J. Wolf, K.-L. Wu, H. An-
drade, and B. Gedik, “COLA: optimizing stream processing applications
via graph partitioning,” in 10th ACM/IFIP/USENIX International Con-
ference on Middleware, 2009.

[29] A. J. Soper, C. Walshaw, and M. Cross, “A combined evolutionary search
and multilevel optimisation approach to graph partitioning,” J. Global Op-
timization, vol. 29, no. 2, pp. 225–241, 2004.

[30] A. Jain, S. Sanyal, S. K. Das, and R. Biswas, “Fastmap: A distributed
scheme for mapping large scale applications onto computational grids,” in
2nd IEEE International Workshop on Challenges of Large Applications in
Distributed Environments (CLADE), 2004.

[31] S. Sanyal and S. K. Das, “Match : Mapping data-parallel tasks on a het-
erogeneous computing platform using the cross-entropy heuristic,” in 19th
IEEE International Parallel and Distributed Processing Symposium, 2005.

[32] D. J. Harvey, S. K. Das, and R. Biswas, “Design and performance of a
heterogeneous grid partitioner,” Algorithmica, vol. 45, no. 3, pp. 509–530,
2006.

[33] S. Kumar, S. K. Das, and R. Biswas, “Graph partitioning for parallel ap-
plications in heterogeneous grid environments,” in 16th IEEE International
Parallel and Distributed Processing Symposium, 2002.

[34] I. Moulitsas and G. Karypis, “Architecture aware partitioning algorithms,”
in Proceedings of the 8th International Conference on Algorithms and Ar-
chitectures for Parallel Processing (ICA3PP), ser. Lecture Notes in Com-
puter Science, vol. 5022. Springer, 2008, pp. 42–53.

38

Dr. Deepak Ajwani is a Postdoctoral researcher at Bell Labs Ireland.
Prior to that, he was a Postdoctoral researcher at the Centre for Unified Com-
puting, University College Cork, Cork, Ireland and at Aarhus University, Aarhus,
Denmark. He received his Ph.D. from Max Planck Institute for Informatics,
Saarbruecken, Germany in 2008. His research interest include algorithms for
processing massive data including external memory and parallel algorithms,
graph algorithms and algorithm engineering.
Dr. Adam Hackett is a posdoctoral research fellow at the Hamilton Institute,
National University of Ireland, Maynooth. He received his Ph.D. in Applied
Mathematics from the University of Limerick in January 2012. While there, he
was a member of the Stochastic Dynamics and Complex Systems research group
and an associate member of the Mathematics Applications Consortium for Sci-
ence and Industry. His current research interests include application of matrix
and graph theory to exascale computing.
Dr. Shoukat Ali is a Research Staff Member at IBM Research - Ireland where
he is a part of the Exascale Systems Group. His current research interests in-
clude system software for large-scale computers, software-defined infrastructures
(including data centers), large-scale FPGA-based emulation, energy-efficient
HPC systems, graph partitioning for reconfigurable topologies, and performance
analysis. He has over 40 publications in these areas. Before joining IBM Re-
search, he worked at Intel, CA, on partitioning some of the largest graphs in
the CAD industry. Before Intel, he worked at the University of Missouri-Rolla
on various issues in robust resource allocation. He received his PhD and MS from
Purdue University, West Lafayette, IN.
Stephen J. Kirkland is a Stokes Professor at the National University of Ire-
land, Maynooth. He is editor-in-chief of Linear and Multilinear Algebra and
serves on the editorial boards of several other journals. His research interests are
primarily in matrix theory and graph theory, with an emphasis on the intercon-
nections between these two areas. He has over 100 journal publications in these
areas.
Prof. John P. Morrison is the founder and director of the Centre for Unified
Computing and a co-founder and co-Director of Boole Centre for Research in
Informatics and Grid-Ireland. He is a Science Foundation of Ireland investigator
award holder and has published widely in the field of parallel distributed and
grid computing. He has served on dozens of international conference programme
committees and is a co-founder of the International Symposium on Parallel and
Distributed Computing.

39

