
2015 UMOMC

9TH annual University of Manitoba Open Math Challenge

15 September 2015

Are you a “mathlete”? Find out by testing your wits against these problems. This contest
is open to undergrad students in any UM program. Participation costs you nothing but
your time. You receive your results confidentially except that the overall winner receives a
book prize and $100 cash, and fame. Interested participants will receive feedback on their
own work. For more details about UM Mathletics visit our web page: http://server.

math.umanitoba.ca/~craigen/manitobamathletics/mathteam.html

Instructions:

Submit well-presented solutions before 5:00 PM Tuesday 22 September 2015 to R. Craigen
(MH 523), or D. Gunderson (MH 521) or, in a sealed envelope to the Math Office (MH
342), or by email either coach from your UM email account before the deadline (typeset or
high-quality scan of neat handwriting). Solutions will be judged according to correctness,
completeness, clarity, elegance, and proper justification. Each question is worth 10 marks.
Begin each solution on a new page. Staple solutions in the same order as questions are given.

HONOUR SYSTEM: Do not solicit or accept assistance from, or provide it to, others. Do
not consult references or use technology to solve these problems.

You are not expected to solve all questions; submit solutions only for those on which you
have made significant progress; do not submit work you consider to be worthless. DO NOT
BE DISCOURAGED by these questions—they are not designed to be “easy”.



Problem 1. The integers 1–25 are placed around the outside of a wheel in any order. Show
that there must be three adjacent numbers whose sum is at least 39.

Solution to Problem 1: Suppose the contrary. Then the sum of all 25 triples of adjacent
numbers is s < 25 · 39. However, every number is used three times in this sum, so we must
also have s = 3(1 + 2 + · · ·+ 25) = 325·26

2
= 25 · 39—a contradiction. (Essentially PHP from

first principles without explicitly invoking the principle.)

Problem 2. X is a regular 2015-gon and Y is a regular 2016-gon. Both polygons have
edges of length 2014. The area of the region between the inscribed and circumscribed circles
of X is A and the area of the annulus similarly defined by Y is B. Show that A = B and
find this common value.

Solution to Problem 2: Let PQR be a segment of length 2014, tangent to the inner circle
of an annulus at Q, with P and R lying on the outer circle. If the radii of the two circles
are r and s respectively, then by Pythagoras’ Theorem, r2 + 10072 = s2, so s2− r2 = 10072.
The area of the annulus is

πs2 − πr2 = π(s2 − r2) = 10072π,

which we see to be independent of r and s, depending only on the length 2014 of the segment.
Taking PR to be the side of either polygon shows that A = B = 10072π.

Problem 3. Find all instances of twenty-five consecutive perfect squares whose sum is a
perfect square.

Solution to Problem 3: Write and simplify the described sum as follows:

m2 = (n− 12)2 + · · ·+ (n− 1)2 + n2 + (n+ 1)2 + · · ·+ (n+ 12)2

= 25n2 + 2(12 + 22 + · · ·+ 122)

= 25n2 + 2
n(n+ 1)(2n+ 1)

6
= 25(n2 + 52).

Taking m = 5k we have k2 = n2 + 52, or (k + n)(k − n) = 52 = 22 · 13. Since k + n and
k−n have the same parity, they must both be even, so (k−n, k+n) ∈ {±(2, 26),±(26, 2)},
and so n = ±12. In both cases, the perfect squares are 02, 12, 22, . . . , 242 (and since k = 14,
their sum is (5 · 14)2 = 702 = 4900).

Problem 4. 2015 nonoverlapping disks, all of radius 1cm, are strewn on a region of a
plane. An elastic band is stretched tight around them, enclosing all 2015 disks in a single
convex closed curve C, consisting of straight line segments joined by curved segments. If the
total length of the straight line portions is 10 m, what is the exact total length of the curve?

Solution to Problem 4: The problem boils down to determining the total length of the
non-linear portions of the curve, which are all seen to be circular arcs C1, C2, . . . , Cn (for
some n ≤ 2015) with radius 1 cm. Let L be a line in the plane with C lying entirely on one



side of L. With parallel motion, move L toward C until they meet. One of two things will
occur: either L will be tangent with an entire straight segment making up C, or it will be
tangent at a uniquely determined (by the orientation of L and on which of its two sides C
is found) point on one of C1, . . . , Cn. In a finite number of orientations, L is parallel to a
linear face of C. It follows that C1, . . . , Cn can be reassembled, using parallel motion in the
plane, into a circle of radius 1 cm, omitting only a finite number of points. The sum of the
lengths of C1, . . . , Cn is therefore 2π cm = π

50
m, the circumference of this circle, and so the

length of C is 10 + π
50

m.
(NOTE: we could add one of the angle or arc-length arguments from student solutions)

Problem 5. A corner is sliced from a rectangular block of wood with a planar cut, forming
a tetrahedron having three mutually perpendicular faces of areas A,B,C respectively. The
area of the face formed by the planar cut is D. Prove that A2 +B2 + C2 = D2.

Solution to Problem 5: Let u, v, w be vectors formed by the three perpendicular edges,
with common initial vertex at the vertex where the they meet. The “cut” face is a triangle,
two of whose edges are defined by the vectors x = v− u and y = w− u. The area of that
face is obtained from x,y using the cross product formula and the fact that u× u = 0:

D =
1

2
||x× y||

=
1

2
||(v− u)× (w− u)||

=
1

2
||v×w− v× u− u×w||.

The three vectors in the above expression are mutually orthogonal, so by Pythagoras’
Theorem we have

D2 =
1

4
(||v×w||2+||v×u||2+||u×w||2) =

(
1

2
||v×w||

)2

+

(
1

2
||v× u||

)2

+

(
1

2
||u×w||

)2

which (again by the cross product formula for area of a triangle) is equal to A2 +B2 + C2.
Comment: this is doable by a more brute force approach by anyone with a moderate ability
with algebra. I don’t see the value in adding the brute force approaches. However, it might
be considered simpler to start by taking the three vectors to be (a, 0, 0), (0, b, 0) and (0, 0, c)
and doing explicit calculations.

Problem 6. Two congruent ellipses have semi-minor axes a and semi-major axes b and are
initially externally tangent to each other and positioned so that their foci A, B, C and D are
colinear and lie in that sequential order. The ellipse with foci A and B remains fixed while
the ellipse with foci C and D rolls along it, without slipping. Describe, with justification,
the locus of each of C and D.

Solution to Problem 6: With the second ellipse in general position let P be the point
of tangency of the two ellipses. By symmetry segment BP makes the same angle with the
common tangent T as segment CP . By the reflective property of ellipses this is equal to the
angle made by DP and T . It follows that B, P and D are colinear. Further, by symmetry



|AP | = |DP | so |BD| = |BP | + |PD| = |BP | + |AP | = 2b, since the sum of the distance
from the foci of an ellipse to any point on the ellipse is constant, easily seen to be 2b. It
follows that the locus of C is a circle of radius 2b centered at B and the locus of C is a circle
of radius 2b centered at A.

Problem 7. Let f : R → R denote a function whose first derivative f ′ is continuous, and
satisfies the equation

(f(x))2 =

∫ x

0

[f(s)2 + f ′(s)2]ds+ 2015

for all real numbers x. Find all such functions f .

Solution to Problem 7: Differentiating with the chain rule and the FTC we obtain that
2f(x)f ′(x) = f(x)2 + f ′(x)2 so that (f(x) − f ′(x))2 = 0. It follows that f(x) = f ′(x),
for which it is well known the only solutions are multiples of ex. Setting f(x) = Cex and
evaluating the given expression for x = 0 yields f(0)2 = 2015.

Answer: f(x) = ±
√

2015ex.

Problem 8. Show that there are infinitely many positive integers x so that 2x2 + 1 is a
perfect square.

Solution to Problem 8: There is at least one solution, namely x = 2. Let a be a solution,
i.e., 2a2 + 1 = b2. Let x = 2ab and k = 2b2 − 1. Then

2x2 + 1 = 2(2ab)2 + 1 = 8a2(2a2 + 1) + 1 = 16a4 + 8a2 + 1 = (4a2 + 1)2.

Since x = 2ab > a, this is strictly larger solution than the one from which it was obtained.
Iterating this procedure yields an infinite number of distinct solutions.

Comment: it may be of value to show Suraj’s approach, which gives a simple, direct
derivation of this solution rather than pulling it from a hat.

Problem 9. Show that if an n× n matrix has entries 1, 2, . . . , n2 in any order, then there
are two neighbouring entries (i.e., appearing consecutively in some row or column) which
differ by at least n.

Solution to Problem 9: Let m be the smallest number so that some row/column is filled
with numbers ≤ m. WLOG, assume that the first row beginning with m in position (1,1)
is such a row. Since none of the columns 2, 3, . . . n uses only numbers from 1 to m, every
column but the first has two neighbouring entries, one of which is at most m − 1 and the
other at least m + 1. The max of all numbers in these pairs is at least m + n− 1, and the
other number in that pair is at most m − 1, so the difference of those two numbers is at
least n.

Comment: it was a good point that the choice to put m in the (1, 1) position is not so much
because there is no loss in generality (it depends what one means by “generality”) but as a
matter of convenience so we needn’t discuss the less elegant cases. It is quite true, regardless,
that once one sees this case it is clear how to handle the messier ones; this was merely a
device to avoid talking about them. Should the presentation change?



Problem 10. Show that there are no solutions to

m3 = n4 − 4,

where m and n are both integers.

Solution to Problem 10:
First observe that if such solutions exist, either both m and n are even or both are odd.
Suppose first that m and n are even, say m = 2k and n = 2`. Then equation (10)

becomes
8k3 = 16`4 − 4,

which, after division by 4, yields 2k3 = 4`4 − 1, which is impossible since the left side is
even, and the right side is odd.

So suppose that both m and n are odd, say m = 2k + 1 and n = 2`+ 1. Then equation
(10) becomes

(2k + 1)3 = (n2 − 2)(n2 + 2) = (4`2 + 4`− 1)(4`2 + 4`+ 3).

The right side is congruent to 1 mod 4. So is the left. However, the only prime that divides
both a number N and N − 4 is 2, and since all terms are odd, this is impossible. So, any
prime dividing the left side divides only one of n2 − 2 or n2 + 2, so all primes dividing the
right side occur three times in only one of these terms. So both n2−2 and n2 +2 are perfect
cubes. However, perfect cubes differ by at least 7, not 4, so no such n exists.

(General Comment: In addition to finding typos and places to tighten up presentations
we should consider if there are worthy alternative proofs in the students’ papers or other
things we should add to give them credit).


