Mathletics Tools I

R. Craigen

October 13, 2019
"Never use a formula you can't prove". We can't all live by this rule, but let us strive toward it as a goal to be able to produce, on demand, proofs for every elementary formula we might use in a competition (forget about trying to prove the Four Colour Theorem and the Continuum Hypothesis...).

Also, know their names. And cite them properly when used.
Here are a few to start with.

1. State and prove Pythagoras' theorem.
2. Prove the converse of Pythagoras' theorem.
3. Let a, b be the sides adjacent to angle θ in a triangle, and c the opposite side. State and prove Pythagoras-like inequalities for the cases $\theta<\frac{\pi}{2}$ and $\theta>\frac{\pi}{2}$.
4. State and prove the cosine law.
5. State and prove the sine law.
6. Prove that $(u \cdot v) /(\|u\|\|v\|)=\cos \theta$, where θ is the angle between u and v, for any vectors u and v in \mathbb{R}^{2} or \mathbb{R}^{3}. Why is the result also valid in \mathbb{R}^{n} ?
7. State and prove Cauchy's inequality (including the case of equality).
8. State and prove the AM/GM inequality (including the case of equality).
9. State and prove the triangle inequality for vectors in \mathbb{R}^{n}. What can be said about the case of equality?
10. Prove that if f is a polynomial and a, b, n are integers such that $a \equiv$ $b \bmod n$, then $f(a) \equiv f(b) \bmod n$.
11. Prove the rearrangement inequality:

If $a_{1} \leq a_{2} \leq \cdots \leq a_{n}, b_{1} \leq b_{2} \leq \cdots \leq b_{n}$, and $c_{1}, c_{2}, \ldots, c_{n}$ is some rearrangement of $b_{1}, b_{2}, \ldots, b_{n}$ (preserving multiplicity), then

$$
\sum_{k=1}^{n} a_{k} b_{n-k} \leq \sum_{k=1}^{n} a_{k} c_{k} \leq \sum_{k=1}^{n} a_{k} b_{k}
$$

That is,
$a_{1} b_{n}+a_{2} b_{n-1}+\cdots+a_{n} b_{1} \leq a_{1} c_{1}+a_{2} c_{2}+\cdots+a_{n} c_{n} \leq a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}$.

Mathletics Tools II R. Craigen
Jensen's inequality: A multi-purpose inequalities tool

