
University of Manitoba, Mathletics 2009

Session 8: Geometry

1 Facts and definitions

Things to remember:

• Proper drawing helps.

• Vector geometry and dot product.

• Similar triangles.

• Complex numbers for planar problems.

• Calculus — applications of integration.

• Symmetry.

• Coordinate systems: cartesian, polar, spherical, cylindrical.

Heron’s formula: the area of the triangle with sides a, b, c is

A =
1
4

√
(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c).

Pappus’s theorem: the volume of a solid of revolution is equal to the product of the area of
the revolving region times the distance through which the center of mass is rotated.

Area of the spherical cap {(x, y, z) |x2 + y2 + z2 = 1, z ≥ z0} is 2π(1− z0).
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2 Examples

Example 8.1: (NCS/MAA 2003) In “La Géométrie”, Descartes gives the following geometric
construction of a square root: “If the square root of GH is desired, I add, along the same
straight line, FG equal to unity; then bisecting FH at K, I describe the circle FIH about K
as center, and draw from G a perpendicular and extend it to I, and GI is the required root.”
Assuming, as in the figure below, that GH > 1, prove that the length of GI is the required
root.

Solution: Angle FIH is right as FH is a diameter. Hence ∠GFI = π
2 −∠IHG = ∠GIH. So

the right triangles GFI and GIH are similar, and
GF

GI
=

GI

GH
, i.e., GI2 = GF · GH = GH.

Note: we have not used the assumption GH > 1.

Example 8.2: (Putnam 2006) Find the volume of the region of points (x, y, z) such that

(x2 + y2 + z2 + 8)2 ≤ 36(x2 + y2).

Solution: In cylindrical coordinates r =
√
x2 + y2 our region is

(r − 3)2 + z2 ≤ 1.

This is a solid of revolution (torus). By Pappus’s theorem, the volume is the product of the
area of the planar region (disc), which is π in our case, times the distance through which the
center of mass is rotated, which is 6π. Answer: 6π2.

Example 8.3: (Putnam 2004) Let n be a positive integer, n ≥ 2, and put θ = 2π/n. Define
points Pk = (k, 0) in the xy-plane, for k = 1, . . . , n. Let Rk be the map that rotates the
plane counterclockwise by the angle θ about the point Pk. Let R denote the map obtained by
applying, in order, R1, then R2, . . . , then Rn. For an arbitrary point (x, y), find, and simplify,
the coordinates of R(x, y).

Solution: Identify the xy-plane with the complex plane C, so that Pk is k. Denoting ζ = e2πi/n,
we get Rk(z) = k + ζ(z − k) — a linear function in z with leading coefficient ζ. Hence, the
composition R(z) = (Rn◦· · ·◦R2◦R1)(z) is a linear function in z with leading coefficient ζn = 1.
So R(z) = z + t, t ∈ C, is a translation. Since R1(1) = 1, we have 1 + t = (Rn ◦ · · · ◦ R2)(1).
But also (Rn ◦ · · · ◦R2)(1) = (Rn−1 ◦ · · · ◦R1)(0) + 1 by the symmetry of the definition of Ri.
Hence

Rn(1 + t) = (Rn ◦ · · · ◦R1)(0) +Rn(1) = t+Rn(1),

so Rn(t) = t and t = n. Answer: R(x, y) = (x+ n, y).
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3 Problems for discussion

Discussion problem 8.1: (NCS/MAA 2004) In the figure AB = 20, AC = 12, AD = DB,
angles ACB and ADE are right angles. Find the area of the quadrilateral ADEC.

Discussion problem 8.2: (Putnam 2007) Find the least possible area of a convex set in the
plane that intersects both branches of the hyperbola xy = 1 and both branches of the hyperbola
xy = −1.

Discussion problem 8.3: (NCS/MAA 1997) In the rectangle ABCD, sides AD and CD have
lengths 10 and 15, respectively. The point P lies inside the rectangle, and the lengths of AP
and BP are, respectively, 12 and 9. Prove that triangle APD is isosceles.

Discussion problem 8.4: (Putnam 2004) For i = 1, 2 let Ti be a triangle with side lengths
ai, bi, ci, and area Ai. Suppose that a1 ≤ a2, b1 ≤ b2, c1 ≤ c2, and that T2 is an acute triangle.
Does it follow that A1 ≤ A2?

Discussion problem 8.5: (Putnam 1998) Let H be the unit hemisphere {(x, y, z) : x2 + y2 +
z2 = 1, z ≥ 0}, C the unit circle {(x, y, 0) : x2 + y2 = 1}, and P the regular pentagon inscribed
in C. Determine the surface area of that portion of H lying over the planar region inside P ,
and write your answer in the form A sinα+B cosβ, where A, B, α, β are real numbers.

3



4 Solutions for discussion problems

Discussion problem 8.1: (NCS/MAA 2004) In the figure AB = 20, AC = 12, AD = DB,
angles ACB and ADE are right angles. Find the area of the quadrilateral ADEC.

Solution: The area is 117
2 . From the Pythagorean Theorem, BC = 16. From similar triangles,

ED
BD = AC

BC = 12
16 , so ED = BD · 34 = 10 · 34 = 15

2 . The area of the triangle ABC is 1
2 ·12 ·16 = 96,

and the area of the triangle DBE is 1
2 ·ED ·10 = 75

2 . Then the area of the quadrilateral ADEC
is 96− 75

2 = 117
2 .

Discussion problem 8.2: (Putnam 2007) Find the least possible area of a convex set in the
plane that intersects both branches of the hyperbola xy = 1 and both branches of the hyperbola
xy = −1.
Solution: The minimum is 4, achieved by the square with vertices (±1,±1).

To prove that 4 is a lower bound, let S be a convex set of the desired form. Choose
A,B,C,D ∈ S lying on the branches of the two hyperbolas, with A in the upper right quadrant,
B in the upper left, C in the lower left, D in the lower right. Then the area of the quadrilateral
ABCD is a lower bound for the area of S.

Write A = (a, 1/a), B = (b,−1/b), C = (−c,−1/c), D = (−d, 1/d) with a, b, c, d > 0. Then
the area of the quadrilateral ABCD is

1
2

(a/b+ b/c+ c/d+ d/a+ b/a+ c/b+ d/c+ a/d),

which by the arithmetic-geometric mean inequality is at least 4.
Alternative solution: Choose A,B,C,D as in the first solution. Note that both the hy-
perbolas and the area of the convex hull of ABCD are invariant under the transformation
(x, y) 7→ (xm, y/m) for any m > 0. For m small, the counterclockwise angle from the line AC
to the line BD approaches 0; for m large, this angle approaches π. By continuity, for some m
this angle becomes π/2, that is, AC and BD become perpendicular. The area of ABCD is
then AC ·BD.

It thus suffices to note that AC ≥ 2
√

2 (and similarly for BD). This holds because if we
draw the tangent lines to the hyperbola xy = 1 at the points (1, 1) and (−1,−1), then A and
C lie outside the region between these lines. If we project the segment AC orthogonally onto
the line x = y = 1, the resulting projection has length at least 2

√
2, so AC must as well.

Discussion problem 8.3: (NCS/MAA 1997) In the rectangle ABCD, sides AD and CD have
lengths 10 and 15, respectively. The point P lies inside the rectangle, and the lengths of AP
and BP are, respectively, 12 and 9. Prove that triangle APD is isosceles.
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Solution: Note that ABP is a right triangle since 152 = AB2 = AP 2 +BP 2 = 122 +92. If E is
the foot of the perpendicular from P to AD, the triangle PEA is similar to the triangle ABP ,
with sides 4

5 as long. Hence, the lengths of AE, EP and ED are 36
5 , 48

5 and 14
5 , respectively.

From the Pythagorean Theorem, the length of DP is 1
5

√
142 + 482 = 10, which shows that the

triangle ADP is isosceles.

Discussion problem 8.4: (Putnam 2004) For i = 1, 2 let Ti be a triangle with side lengths
ai, bi, ci, and area Ai. Suppose that a1 ≤ a2, b1 ≤ b2, c1 ≤ c2, and that T2 is an acute triangle.
Does it follow that A1 ≤ A2?
Solution: Yes, it does follow. For i = 1, 2, let Pi, Qi, Ri be the vertices of Ti opposite the
sides of length ai, bi, ci, respectively. Since the angle measures in any triangle add up to π,
some angle of T1 must have measure less than or equal to its counterpart in T2. Without loss
of generality assume that ∠P1 ≤ ∠P2. Since the latter is acute (because T2 is acute), we have
sin ∠P1 ≤ sin ∠P2. By the Law of Sines,

A1 =
1
2
b1c1 sin ∠P1 ≤

1
2
b2c2 sin ∠P2 = A2.

Discussion problem 8.5: (Putnam 1998) Let H be the unit hemisphere {(x, y, z) : x2 + y2 +
z2 = 1, z ≥ 0}, C the unit circle {(x, y, 0) : x2 + y2 = 1}, and P the regular pentagon inscribed
in C. Determine the surface area of that portion of H lying over the planar region inside P ,
and write your answer in the form A sinα+B cosβ, where A, B, α, β are real numbers.
Solution: We use the fact that the surface area of the “sphere cap” {(x, y, z) |x2 + y2 + z2 =
1, z ≥ z0} is 2π(1− z0). Now the desired surface area is just 2π minus the surface areas of five
identical halves of sphere caps; these caps, up to isometry, correspond to z0 being the distance
from the center of the pentagon to any of its sides, i.e., z0 = cos π5 . Thus the desired area is
2π − 5

2

(
2π(1− cos π5 )

)
= 5π cos π5 − 3π (i.e., B = π/2).
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5 Take home problems

Take home problem 8.1: (NCS/MAA 2003) A rectangle with sides a and b is circumscribed
by another rectangle of area m2. Determine all possible values of m in terms of a and b.

Take home problem 8.2: (Napoleon’s theorem) Given a triangle, erect equilateral triangles
on all its edges. Show that the centers of the three equilateral triangles form themselves the
vertices of an equilateral triangle.

Take home problem 8.3: (Putnam 2008) What is the largest possible radius of a circle
contained in a 4-dimensional hypercube of side length 1?
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6 Take home solutions

Take home problem 8.1 solution:

Let θ, 0 ≤ θ ≤ π
2 be the angle formed by side a of the given rectangle and one of the sides of

the circumscribing rectangle. The outer rectangle is partitioned into five parts, consisting of
the inner rectangle and two pairs of congruent right triangles. Hence,

m2 = ab+ (a sin θ)(a cos θ) + (b sin θ)(b cos θ) = ab+
1
2

(a2 + b2) sin(2θ).

The range of this function on the interval [0, π2 ] is [ab, 1
2(a + b)2], so m takes all values in the

interval [
√
ab, a+b√

2
].

Take home problem 8.2 solution:

Denote all the points as in the diagram. Each point in the plane can be associated with a
complex number, which we will denote by the corresponding lower-case letter. It is easy to see
that x− b = e−i

π
3 (c− b) and l − b = 1

3((x− b) + (c− b)). A simple computation implies

l =
(1

2
− 1

2
√

3
i
)
c+

(1
2

+
1

2
√

3
i
)
b.
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Similarly, by symmetry,

m =
(1

2
− 1

2
√

3
i
)
a+

(1
2

+
1

2
√

3
i
)
c,

n =
(1

2
− 1

2
√

3
i
)
b+

(1
2

+
1

2
√

3
i
)
a.

Verifying that l − n = e−i
π
3 (m− n) completes the proof.

Take home problem 8.3 solution: The largest possible radius is
√

2
2 . It will be convenient

to solve the problem for a hypercube of side length 2 instead, in which case we are trying to
show that the largest radius is

√
2.

Choose coordinates so that the interior of the hypercube is the set H = [−1, 1]4 in R4.
Let C be a circle centered at the point P . Then C is contained both in H and its reflection
across P ; these intersect in a rectangular paralellepiped each of whose pairs of opposite faces
are at most 2 unit apart. Consequently, if we translate C so that its center moves to the point
O = (0, 0, 0, 0) at the center of H, then it remains entirely inside H.

This means that the answer we seek equals the largest possible radius of a circle C contained
in H and centered at O. Let v1 = (v11, . . . , v14) and v2 = (v21, . . . , v24) be two points on C
lying on radii perpendicular to each other. Then the points of the circle can be expressed as
v1 cos θ + v2 sin θ for 0 ≤ θ < 2π. Then C lies in H if and only if for each i, we have

|v1i cos θ + v2i sin θ| ≤ 1 (0 ≤ θ < 2π).

In geometric terms, the vector (v1i, v2i) in R2 has dot product at most 1 with every unit vector.
Since this holds for the unit vector in the same direction as (v1i, v2i), we must have

v2
1i + v2

2i ≤ 1 (i = 1, . . . , 4).

Conversely, if this holds, then the Cauchy-Schwarz inequality and the above analysis imply that
C lies in H.

If r is the radius of C, then

2r2 =
4∑
i=1

v2
1i +

4∑
i=1

v2
2i

=
4∑
i=1

(v2
1i + v2

2i)

≤ 4,

so r ≤
√

2. Since this is achieved by the circle through (1, 1, 0, 0) and (0, 0, 1, 1), it is the desired
maximum.
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