Analysis

University of Manitoba, Mathletics 2009

1 Some Facts and Examples

- Need to know definitions and properties of continuous/differentiable functions, sequences, infinite series, etc. (everything that is studied in our Calculus sequence) those concepts are not discussed here
- Equidistribution criterion (useful for convergence of infinite series): If $f : \mathbb{R} \to \mathbb{R}$ is a continuous periodic function with irrational period and if $\sum_{n} \frac{|f(n)|}{n} < \infty$, then f is identically zero.

Example 1: does the series $\sum_{n=1}^{\infty} \frac{|\sin n|}{n}$ converge? (Take home problem: provide a direct proof that this series diverges.)

• Definite integrals (pay attention to limits of integration!). Example 2: Let $f : [0, 1] \to \mathbb{R}$ be a continuous function. Prove that

$$\int_0^{\pi} x f(\sin x) \, dx = \pi \int_0^{\pi/2} f(\sin x) \, dx$$

Solution: $\int_0^{\pi} x f(\sin x) dx = \int_0^{\pi/2} x f(\sin x) dx + \int_{\pi/2}^{\pi} x f(\sin x) dx$ and using the substitution $y = \pi - x$ in the second integral we get

$$\int_{\pi/2}^{\pi} x f(\sin x) \, dx = \int_{0}^{\pi/2} (\pi - y) f(\sin y) \, dy$$

Now, adding the two integrals we get $\pi \int_0^{\pi/2} f(\sin x) dx$ as desired.

• Riemann Sums:

$$\lim_{i \to \infty} \sum_{i=1}^n f(\xi_i) \frac{b-a}{n} = \int_a^b f(x) \, dx \,,$$

where each ξ_i is a number in $\left[a + (i-1)\frac{b-a}{n}, a+i\frac{b-a}{n}\right]$. Example 3: Compute the limit

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right)$$

Solution: Rewrite the sum inside the limit as:

$$\frac{1}{n}\left(\frac{1}{1+1/n} + \frac{1}{1+2/n} + \dots + \frac{1}{1+n/n}\right) = \sum_{i=1}^{n} \frac{1}{1+\xi_i} \frac{1}{n},$$

where $\xi_i = i/n$, i = 1, ..., n. Hence, $a = 0, b = 1, f(x) = \frac{1}{1+x}$, and ξ_i is the right endpoint of $\left[(i-1)\frac{1}{n}, i\frac{1}{n}\right]$, i = 1, ..., n. Hence, this limit is equal to

$$\int_0^1 \frac{1}{1+x} \, dx = \ln 2 \, .$$

• Cauchy-Schwarz inequality:

$$\left(\int_D f(x)g(x)\,dx\right)^2 \le \left(\int_D f^2(x)\,dx\right)^2 \left(\int_D g^2(x)\,dx\right)^2$$

• Hölder's inequality: If p, q > 1 are such that $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\int_{D} |f(x)g(x)| \, dx \le \left(\int_{D} |f(x)|^p \, dx\right)^{1/p} \left(\int_{D} |g(x)|^q \, dx\right)^{1/q}$$

Equality holds if and only if there are constants α and β , not both 0, such that $\alpha |f|^p = \beta |g|^q$ a.e.

• Minkowski's inequality: If $p \ge 1$, then

$$\left(\int_{D} |f(x) + g(x)|^{p} dx\right)^{1/p} \le \left(\int_{D} |f(x)|^{p} dx\right)^{1/p} + \left(\int_{D} |g(x)|^{p} dx\right)^{1/p}$$

• Chebyshev's inequality: Let f and g be two increasing functions on \mathbb{R} . Then, for any real numbers a < b,

$$(b-a)\int_{a}^{b} f(x)g(x) dx \ge \left(\int_{a}^{b} f(x) dx\right) \left(\int_{a}^{b} g(x) dx\right)$$

Proof: Because f and g are increasing, $[f(x) - f(y)][g(x) - g(y)] \ge 0$. Integrating this over $[a, b] \times [a, b]$ and expanding, we obtain

$$\int_{a}^{b} \int_{a}^{b} f(x)g(x) \, dx \, dy + \int_{a}^{b} \int_{a}^{b} f(y)g(y) \, dx \, dy - \int_{a}^{b} \int_{a}^{b} f(x)g(y) \, dx \, dy - \int_{a}^{b} \int_{a}^{b} f(y)g(x) \, dx \, dy \ge 0$$

,

which implies what we need.

(To think at home: what if f and g are both decreasing? what if f is increasing and g is decreasing?)

• Fubini's theorem: Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a piecewise continuous function such that $\int_c^d \int_a^b |f(x,y)| \, dx \, dy < \infty$. Then

$$\int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy = \int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx$$

• Tonelli's theorem: Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a positive piecewise continuous function. Then

$$\int_{c}^{d} \int_{a}^{b} f(x,y) \, dx \, dy = \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx$$

Remark: Let $f(x,y) = (x^2 - y^2)/(x^2 + y^2)^2$. Then $\int_0^1 \int_0^1 f(x,y) \, dx \, dy = -\pi/4$ and $\int_0^1 \int_0^1 f(x,y) \, dy \, dx = \pi/4$. In particular, by Fubini's theorem, one can conclude that $\int_0^1 \int_0^1 |f(x,y)| \, dx \, dy = \infty$.

• Gaussian integral formula: $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$

(Take home problem: prove this formula. Hint: consider $\int_{-\infty}^{\infty} e^{-(x^2+y^2)} dx dy$ and use polar coordinates.)

• Cauchy's equation: f(x+y) = f(x) + f(y). If f is assumed to be continuous, then the linear functions f(x) = cx, $c \in \mathbb{R}$, are the only solutions. (Idea of the proof: show that f(x) = f(1)x for rational x and then use continuity.)

2 Problems for discussion

Discussion problem 1: Compute $\int_0^{\pi} \frac{x \sin x}{1 + \sin^2 x} dx$

Discussion problem 2: Compute

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{4n^2 - 1^2}} + \frac{1}{\sqrt{4n^2 - 2^2}} + \dots + \frac{1}{\sqrt{4n^2 - n^2}} \right)$$

Discussion problem 3: Let $f : [a,b] \to [a,b]$ be a continuous function. Prove that f has a fixed point (i.e., there is a point $\xi \in [a,b]$ such that $f(\xi) = \xi$).

Discussion problem 4: Let f be a function having a continuous derivative on [0, 1] and such that $0 < f'(x) \le 1$ and f(0) = 0. Prove that

$$\left(\int_0^1 f(x) \, dx\right)^2 \ge \int_0^1 (f(x))^3 \, dx \, .$$

Give an example in which equality occurs.

Discussion problem 5: Find the maximal value of the ratio

$$\left(\int_0^3 f(x)\,dx\right)^3 \middle/ \int_0^3 f^3(x)\,dx$$

as f ranges over all positive continuous functions on [0, 1].

Discussion problem 6: Show that for a, b > 0,

$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \, dx = \ln(b/a) \, .$$

Discussion problem 7: Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous nonzero function satisfying the equation

$$f(x+y) = f(x)f(y)$$
, for all $x, y \in \mathbb{R}$.

Prove that there exists c > 0 such that $f(x) = c^x$ for all $x \in \mathbb{R}$.

3 Solutions for discussion problems

Discussion problem 1: Compute $\int_0^{\pi} \frac{x \sin x}{1 + \sin^2 x} dx$ Solution: Use Example 2 with $f(x) = \frac{x}{1+x^2}$ to transform this integral into

$$\pi \int_0^{\pi/2} \frac{\sin x}{1 + \sin^2 x} \, dx$$

Now, use the substitution $u = \cos x$ to show that this integral is equal to

$$\pi \int_0^1 \frac{1}{2 - u^2} \, du = \frac{\pi}{2\sqrt{2}} \ln\left(\frac{\sqrt{2} + u}{\sqrt{2} - u}\right) \Big|_0^1 = \frac{\pi}{2\sqrt{2}} \ln\left(\frac{\sqrt{2} + 1}{\sqrt{2} - 1}\right) \, .$$

Discussion problem 2: Compute

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{4n^2 - 1^2}} + \frac{1}{\sqrt{4n^2 - 2^2}} + \dots + \frac{1}{\sqrt{4n^2 - n^2}} \right)$$

Solution: We have

$$s_n = \frac{1}{n} \left(\frac{1}{\sqrt{4 - (1/n)^2}} + \frac{1}{\sqrt{4 - (2/n)^2}} + \dots + \frac{1}{\sqrt{4 - (n/n)^2}} \right)$$

and so s_n is the Riemann sum of the function $f(x) = \frac{1}{\sqrt{4-x^2}}$ associated with the subdivision of [0,1] into n intervals of equal length with $\xi_i = i/n$. Therefore,

$$\lim_{n \to \infty} s_n = \int_0^1 \frac{1}{\sqrt{4 - x^2}} \, dx = \sin^{-1}(x/2) \Big|_0^1 = \pi/6 \, .$$

Discussion problem 3: Let $f : [a, b] \to [a, b]$ be a continuous function. Prove that f has a fixed point (i.e., there is a point $\xi \in [a, b]$ such that $f(\xi) = \xi$).

Solution: Apply the Intermediate Value Theorem to g(x) = f(x) - x. Because $f(a) \ge a$ and $f(b) \le b$, it follows that $g(a) \le 0$ and $g(b) \ge b$. Hence, there is a point $\xi \in [a, b]$ such that $g(\xi) = 0$.

Discussion problem 4: Let f be a function having a continuous derivative on [0, 1] and such that $0 < f'(x) \le 1$ and f(0) = 0. Prove that

$$\left(\int_0^1 f(x) \, dx\right)^2 \ge \int_0^1 (f(x))^3 \, dx \, .$$

Give an example in which equality occurs.

Solution: First of all, note that f is nonnegative on [0,1] since f(0) = 0 and f'(x) > 0 (i.e., f is increasing). Consider

$$F(t) = \left(\int_0^t f(x) \, dx\right)^2 - \int_0^t (f(x))^3 \, dx \,, \quad t \in [0, 1] \,.$$

We will show that $F(t) \ge 0$, for all $t \in [0, 1]$, which implies that $F(1) \ge 0$ as needed. Since F(0) = 0, it suffices to show that F is increasing. To prove this, we need to show that $F'(t) \ge 0$.

$$F'(t) = f(t) \left(2 \int_0^t f(x) \, dx - f^2(t) \right) \, .$$

So it remains to show that

$$G(t) := 2 \int_0^t f(x) \, dx - f^2(t)$$

is nonnegative on [0, 1]. Since G(0) = 0, it suffices to prove that G is increasing on [0, 1] (i.e., $G'(t) \ge 0$).

$$G'(t) = 2f(t)(1 - f'(t)) \ge 0$$

since $f'(t) \leq 1$ and f is nonnegative. An example in which equality holds is f(x) = x.

Discussion problem 5: Find the maximal value of the ratio

$$\left(\int_0^3 f(x)\,dx\right)^3 \middle/ \int_0^3 f^3(x)\,dx$$

as f ranges over all positive continuous functions on [0, 1]. Solution: By Hölder's inequality,

$$\int_0^3 f(x) \cdot 1 \, dx \le \left(\int_0^3 |f(x)|^3 \, dx\right)^{1/3} \left(\int_0^3 1^{3/2} \, dx\right)^{2/3} = 3^{2/3} \left(\int_0^3 f^3(x) \, dx\right)^{1/3} \,,$$

which implies that

$$\left(\int_{0}^{3} f(x) \, dx\right)^{3} / \int_{0}^{3} f^{3}(x) \, dx \le 9$$
.

To see that the maximum 9 can be achieved, choose $f \equiv 1$.

Discussion problem 6: Show that for a, b > 0,

$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \, dx = \ln(b/a) \, .$$

Solution: Applying Tonelli's theorem to the function $f(x, y) = e^{-xy}$, we write

$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \, dx = \int_0^\infty \int_a^b e^{-xy} \, dy \, dx = \int_a^b \int_0^\infty e^{-xy} \, dx \, dy = \int_a^b (1/y) \, dy = \ln(b/a)$$

Discussion problem 7: Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous nonzero function satisfying the equation

f(x+y) = f(x)f(y), for all $x, y \in \mathbb{R}$.

Prove that there exists c > 0 such that $f(x) = c^x$ for all $x \in \mathbb{R}$.

Solution: Because $f(x) = f^2(x/2) > 0$, the function $g(x) = \ln f(x)$ is well defined. It satisfies Cauchy's equation and is continuous. Hence, $g(x) = \alpha x$ for some $\alpha \in \mathbb{R}$. We obtain $f(x) = c^x$ with $c = e^{\alpha}$.

References

[1] Răzvan Gelca and Titu Andreescu, Putnam and beyond, Springer, New York, 2007. MR2334764 (2008c:00002)