
Analysis

University of Manitoba, Mathletics 2009

1 Some Facts and Examples

• Need to know definitions and properties of continuous/differentiable functions, sequences,
infinite series, etc. (everything that is studied in our Calculus sequence) - those concepts
are not discussed here

• Equidistribution criterion (useful for convergence of infinite series): If f : R → R

is a continuous periodic function with irrational period and if
∑

n
|f(n)|

n < ∞, then f is
identically zero.
Example 1: does the series

∑∞
n=1

| sin n|
n converge? (Take home problem: provide a direct

proof that this series diverges.)

• Definite integrals (pay attention to limits of integration!).
Example 2: Let f : [0, 1] → R be a continuous function. Prove that

∫ π

0
xf(sinx) dx = π

∫ π/2

0
f(sinx) dx

Solution:
∫ π
0 xf(sin x) dx =

∫ π/2
0 xf(sin x) dx+

∫ π
π/2 xf(sinx) dx and using the substitution

y = π − x in the second integral we get

∫ π

π/2
xf(sin x) dx =

∫ π/2

0
(π − y)f(sin y) dy .

Now, adding the two integrals we get π
∫ π/2
0 f(sinx) dx as desired.

• Riemann Sums:

lim
n→∞

n
∑

i=1

f(ξi)
b − a

n
=

∫ b

a
f(x) dx ,

where each ξi is a number in

[

a + (i − 1)
b − a

n
, a + i

b − a

n

]

.

Example 3: Compute the limit

lim
n→∞

(

1

n + 1
+

1

n + 2
+ · · · + 1

2n

)

Solution: Rewrite the sum inside the limit as:

1

n

(

1

1 + 1/n
+

1

1 + 2/n
+ · · · + 1

1 + n/n

)

=

n
∑

i=1

1

1 + ξi

1

n
,

1



where ξi = i/n, i = 1, . . . , n. Hence, a = 0, b = 1, f(x) = 1
1+x , and ξi is the right endpoint

of

[

(i − 1)
1

n
, i

1

n

]

, i = 1, . . . , n. Hence, this limit is equal to

∫ 1

0

1

1 + x
dx = ln 2 .

• Cauchy-Schwarz inequality:

(
∫

D
f(x)g(x) dx

)2

≤
(
∫

D
f2(x) dx

)2(∫

D
g2(x) dx

)2

• Hölder’s inequality: If p, q > 1 are such that 1
p + 1

q = 1, then

∫

D
|f(x)g(x)| dx ≤

(
∫

D
|f(x)|p dx

)1/p(∫

D
|g(x)|q dx

)1/q

.

Equality holds if and only if there are constants α and β, not both 0, such that α|f |p =
β|g|q a.e.

• Minkowski’s inequality: If p ≥ 1, then

(
∫

D
|f(x) + g(x)|p dx

)1/p

≤
(
∫

D
|f(x)|p dx

)1/p

+

(
∫

D
|g(x)|p dx

)1/p

.

• Chebyshev’s inequality: Let f and g be two increasing functions on R. Then, for any
real numbers a < b,

(b − a)

∫ b

a
f(x)g(x) dx ≥

(
∫ b

a
f(x) dx

)(
∫ b

a
g(x) dx

)

.

Proof: Because f and g are increasing, [f(x) − f(y)][g(x) − g(y)] ≥ 0. Integrating this
over [a, b] × [a, b] and expanding, we obtain

∫ b

a

∫ b

a
f(x)g(x) dx dy+

∫ b

a

∫ b

a
f(y)g(y) dx dy−

∫ b

a

∫ b

a
f(x)g(y) dx dy−

∫ b

a

∫ b

a
f(y)g(x) dx dy ≥ 0 ,

which implies what we need.
(To think at home: what if f and g are both decreasing? what if f is increasing and g is
decreasing?)

• Fubini’s theorem: Let f : R
2 → R be a piecewise continuous function such that

∫ d
c

∫ b
a |f(x, y)| dx dy < ∞. Then

∫ d

c

∫ b

a
f(x, y) dx dy =

∫ b

a

∫ d

c
f(x, y) dy dx .
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• Tonelli’s theorem: Let f : R
2 → R be a positive piecewise continuous function. Then

∫ d

c

∫ b

a
f(x, y) dx dy =

∫ b

a

∫ d

c
f(x, y) dy dx .

Remark: Let f(x, y) = (x2 − y2)/(x2 + y2)2. Then
∫ 1
0

∫ 1
0 f(x, y) dx dy = −π/4 and

∫ 1
0

∫ 1
0 f(x, y) dy dx = π/4. In particular, by Fubini’s theorem, one can conclude that

∫ 1
0

∫ 1
0 |f(x, y)| dx dy = ∞.

• Gaussian integral formula:

∫ ∞

−∞
e−x2

dx =
√

π

(Take home problem: prove this formula. Hint: consider
∫∞
−∞ e−(x2+y2) dx dy and use

polar coordinates.)

• Cauchy’s equation: f(x+ y) = f(x)+ f(y). If f is assumed to be continuous, then the
linear functions f(x) = cx, c ∈ R, are the only solutions. (Idea of the proof: show that
f(x) = f(1)x for rational x and then use continuity.)
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2 Problems for discussion

Discussion problem 1: Compute

∫ π

0

x sin x

1 + sin2 x
dx

Discussion problem 2: Compute

lim
n→∞

(

1√
4n2 − 12

+
1√

4n2 − 22
+ · · · + 1√

4n2 − n2

)

Discussion problem 3: Let f : [a, b] → [a, b] be a continuous function. Prove that f has a
fixed point (i.e., there is a point ξ ∈ [a, b] such that f(ξ) = ξ).

Discussion problem 4: Let f be a function having a continuous derivative on [0, 1] and such
that 0 < f ′(x) ≤ 1 and f(0) = 0. Prove that

(
∫ 1

0
f(x) dx

)2

≥
∫ 1

0
(f(x))3 dx .

Give an example in which equality occurs.

Discussion problem 5: Find the maximal value of the ratio

(
∫ 3

0
f(x) dx

)3
/

∫ 3

0
f3(x) dx ,

as f ranges over all positive continuous functions on [0, 1].

Discussion problem 6: Show that for a, b > 0,

∫ ∞

0

e−ax − e−bx

x
dx = ln(b/a) .

Discussion problem 7: Let f : R → R be a continuous nonzero function satisfying the
equation

f(x + y) = f(x)f(y) , for all x, y ∈ R .

Prove that there exists c > 0 such that f(x) = cx for all x ∈ R.
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3 Solutions for discussion problems

Discussion problem 1: Compute

∫ π

0

x sin x

1 + sin2 x
dx

Solution: Use Example 2 with f(x) = x
1+x2 to transform this integral into

π

∫ π/2

0

sinx

1 + sin2 x
dx

Now, use the substitution u = cos x to show that this integral is equal to

π

∫ 1

0

1

2 − u2
du =

π

2
√

2
ln

(√
2 + u√
2 − u

)∣

∣

∣

∣

∣

1

0

=
π

2
√

2
ln

(√
2 + 1√
2 − 1

)

.

Discussion problem 2: Compute

lim
n→∞

(

1√
4n2 − 12

+
1√

4n2 − 22
+ · · · + 1√

4n2 − n2

)

Solution: We have

sn =
1

n

(

1
√

4 − (1/n)2
+

1
√

4 − (2/n)2
+ · · · + 1

√

4 − (n/n)2

)

,

and so sn is the Riemann sum of the function f(x) = 1√
4−x2

associated with the subdivision of

[0, 1] into n intervals of equal length with ξi = i/n. Therefore,

lim
n→∞

sn =

∫ 1

0

1√
4 − x2

dx = sin−1(x/2)
∣

∣

1

0
= π/6 .

Discussion problem 3: Let f : [a, b] → [a, b] be a continuous function. Prove that f has a
fixed point (i.e., there is a point ξ ∈ [a, b] such that f(ξ) = ξ).

Solution: Apply the Intermediate Value Theorem to g(x) = f(x) − x. Because f(a) ≥ a and
f(b) ≤ b, it follows that g(a) ≤ 0 and g(b) ≥ b. Hence, there is a point ξ ∈ [a, b] such that
g(ξ) = 0.

Discussion problem 4: Let f be a function having a continuous derivative on [0, 1] and such
that 0 < f ′(x) ≤ 1 and f(0) = 0. Prove that

(
∫ 1

0
f(x) dx

)2

≥
∫ 1

0
(f(x))3 dx .

Give an example in which equality occurs.
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Solution: First of all, note that f is nonnegative on [0, 1] since f(0) = 0 and f ′(x) > 0 (i.e., f
is increasing). Consider

F (t) =

(
∫ t

0
f(x) dx

)2

−
∫ t

0
(f(x))3 dx , t ∈ [0, 1] .

We will show that F (t) ≥ 0, for all t ∈ [0, 1], which implies that F (1) ≥ 0 as needed. Since
F (0) = 0, it suffices to show that F is increasing. To prove this, we need to show that F ′(t) ≥ 0.

F ′(t) = f(t)

(

2

∫ t

0
f(x) dx − f2(t)

)

.

So it remains to show that

G(t) := 2

∫ t

0
f(x) dx − f2(t)

is nonnegative on [0, 1]. Since G(0) = 0, it suffices to prove that G is increasing on [0, 1] (i.e.,
G′(t) ≥ 0).

G′(t) = 2f(t)(1 − f ′(t)) ≥ 0 ,

since f ′(t) ≤ 1 and f is nonnegative. An example in which equality holds is f(x) = x.

Discussion problem 5: Find the maximal value of the ratio

(
∫ 3

0
f(x) dx

)3
/

∫ 3

0
f3(x) dx ,

as f ranges over all positive continuous functions on [0, 1].

Solution: By Hölder’s inequality,

∫ 3

0
f(x) · 1 dx ≤

(
∫ 3

0
|f(x)|3 dx

)1/3(∫ 3

0
13/2 dx

)2/3

= 32/3

(
∫ 3

0
f3(x) dx

)1/3

,

which implies that
(
∫ 3

0
f(x) dx

)3
/

∫ 3

0
f3(x) dx ≤ 9 .

To see that the maximum 9 can be achieved, choose f ≡ 1.

Discussion problem 6: Show that for a, b > 0,

∫ ∞

0

e−ax − e−bx

x
dx = ln(b/a) .

Solution: Applying Tonelli’s theorem to the function f(x, y) = e−xy, we write

∫ ∞

0

e−ax − e−bx

x
dx =

∫ ∞

0

∫ b

a
e−xy dy dx =

∫ b

a

∫ ∞

0
e−xy dx dy =

∫ b

a
(1/y) dy = ln(b/a) .
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Discussion problem 7: Let f : R → R be a continuous nonzero function satisfying the
equation

f(x + y) = f(x)f(y) , for all x, y ∈ R .

Prove that there exists c > 0 such that f(x) = cx for all x ∈ R.

Solution: Because f(x) = f2(x/2) > 0, the function g(x) = ln f(x) is well defined. It satisfies
Cauchy’s equation and is continuous. Hence, g(x) = αx for some α ∈ R. We obtain f(x) = cx

with c = eα.
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