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We examine the equation given by

— Au+a) -Vu=u" inRV, (1)

where p > 1 and a(x) is a smooth vector field satisfying some decay conditions. We show

Keywords: that for p < p,, the Joseph-Lundgren exponent, there is no positive stable solution of (1)
E,nme, 1?011111t10ns provided one imposes a smallness condition on a along with a divergence free condition. In
Sltglti‘i/llite theorems the other direction we show that for N > 4andp > % there exists a positive solution of
Advecti%n (1) provided a satisfies a smallness condition. Forp > p. we show the existence of a positive

stable solution of (1) provided a is divergence free and satisfies a smallness condition.
Published by Elsevier Ltd.

1. Introduction and results

In this article we are interested in the existence versus nonexistence of positive stable solutions of
—Au+a) -Vu=u" inR", (2)

where p > 1 and a(x) is a smooth vector field satisfying some decay conditions. We now define the notion of stability and
for this we prefer to work on a general domain.

Definition 1. Let u denote a nonnegative smooth solution of (2) in an open set 2 C R". We say u is a stable solution of (2)
in £2 provided there is some smooth positive function E such that

— AE +a(x) - VE > pu" 'E in Q2. (3)

We begin by recalling some facts in the case where a(x) = 0. There has been much work done on the existence and
nonexistence of positive classical solutions of

— Au=uf, inRV. (4)

For N > 3 there exists a critical value of p, given by ps = % such thatfor 1 < p < ps there is no positive classical solution
of (4) and for p > ps there exist positive classical solutions, see [ 1-4]. By definition we call a nonnegative solution u of (4)
stable if

/pup_]dﬁz < f Vo> V¢ e CORY), (3)
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which is nothing more than the stability of u using (3), after using a variational principle. The additional requirement that
the solution be stable drastically alters the existence versus nonexistence results. It is known that there is a new critical
exponent, the so called Joseph-Lundgren exponent p, such that forall 1 < p < p. there is no positive stable solution of (4)
and for p > p. there exist positive stable solutions of (4). The value of the p. is given by

N—2)2—4N +8/N -1
B ( ) + N> 11
pc = (N —2)(N — 10)
00 3 <N <10.

The first implicit appearance of p. was in the work [5] where they examined —Au = A(u + 1) on the unit ball in RN with
zero Dirichlet boundary conditions. The exponent p, first explicitly appeared in the works [6,7] where they examined the
stability of radial solutions to a parabolic version of (4). Their results easily imply the existence of a positive radial stable
solution of (4) when p > p. and the nonexistence of positive radial stable solutions in the case of p < p.. More recently
there has been interest in finite Morse index solutions of either (4) and the generalized version given by

— Au = [uP"'u, inRV. (6)

In [8] they completely classified the finite Morse index solutions of (6) and again the critical exponent p. was involved. For
results regarding singular nonlinearities, general nonlinearities, or quasilinear equation see [9-14].
In the work [15] the nonexistence of nontrivial solutions of

—div(w;Vu) = wpu?  inRN,
was examined where w; are some nonnegative functions. In the special case where w; = w, this equation reduces to
—Au+Vyx) -Vu=u’ inR", (7)

where y is a scalar function. Even though (7) and (2) are similar a major difference is that (7) is variational in nature; critical
points of

1 1
E(u) = —/e—V|Vu|2 - —/e_ylulp“,
2 p+1

are solutions of (7). This variational structure of (7) allows one to prove various nonexistence results for (7) by slightly
modifying the nonexistence proofs used in proving similar results for —Au = u? in RN, This approach will generally not
work for (2) since in general there will not be a variational structure.

In [16] the regularity of the extremal solution, u*, associated with problems of the form

—Au+ax)-Vu=Af(u) in$
u=20 onads2,

was examined for various nonlinearities f. Here a(x) was an arbitrary smooth advection and the main difficulty was to
utilize the stability of u* in a meaningful way. As mentioned earlier, this is not a problem when a(x) is the gradient of a
scalar function. The main tool used was the generalized Hardy inequality from [17]. This same approach was extended to
more general nonlinearities in [18].

We now list our results.

Theorem 1. Suppose 3 < N < 10or N > 11and 1 < p < p.. Suppose a(x) is a smooth divergence free vector field satisfying

la(x)| < IX\% with 0 < C sufficiently small. Then there is no positive stable solution of (2).

The next result gives a decay estimate in the case of p < p.. We are including this result since it may allow one to use a
Lane-Emden type of change of variables to obtain a nonexistence result without a smallness condition on the advection.

Theorem 2. Suppose % < p < pe, a(x) is a smooth divergence free vector field with |a(x)| < ‘X‘CH and |a| € LN(RN). Then
any positive stable solution u of (2) satisfies
2
lim |x|7Tu(x) = 0. (8)

|x|—o00

The approach to solve Theorem 1 will be to combine the methods used in [8] with the techniques from [16] which relied
on generalized Hardy inequalities from [ 17]. The same approach will be used in the proof of Theorem 2 with an added scaling
argument.

Our final result gives an existence result.

C

Theorem 3. 1. Suppose N > 4,p > x—ﬂ and a(x) is some smooth vector field with |a(x)| < TSk

there exists a positive solution of (2).
2. Suppose N > 11,p > p. and let a(x) denote some smooth divergence free vector field with |a(x)| < —*=.For 0 < C

[X|4+1°
sufficiently small (2) has a positive stable solution.

If 0 < C is sufficiently small
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The idea of the proof will be to look for a solution u as a perturbation of the positive radial solution w of —Aw = w”
in RN with w(0) = 1. See the beginning of Section 3 for details on w. The framework we will use to prove the existence
of a positive solution will be the approach developed in [19]. Their interest was in the existence of positive solutions of
—Au =P in 2 C R" an exterior domain with zero Dirichlet boundary conditions.

Open problem. It would be interesting to see if these smallness conditions on a(x) can be removed, possibly at the expense
of adding some additional decay requirements.

2. Nonexistence proofs

Remark 1. A computation shows that p < p. is equivalent to the condition
N 2p

2
S <It =t p* —p. 9)
2 p— p—

For our nonexistence results it will be easier to deal with (9).

Theorems 1 and 2 will depend on the following energy estimate, which we state for a general domain.

Proposition 1. Suppose u is a smooth positive stable solution of (2) and a(x) is a smooth divergence free vector field. Then for all
1<T,0<B<1,0<¢0<6, 5 <tand0 <y € C>(52) we have

2 v 2
(ﬂp— ZtTt_1)/u2f+p‘lw2+ﬂ(1—ﬂ—8)/|E—§|u2t1/f2+(T—1)/|V(ut1/f)|2

P Tts 22ty Tt /2r 2, Tlt— /2r
f( )/I alu ( 45(2t_1)> u”|Vy| +2(2t i |Ay?. (10)

Define the following parameters

t_(p)=p—+p>*—p and t.(p)=p++p*—p.

A computation shows that fort_(p) < t < t, (p) we havep— 2;—_1 > 0.This restriction on t will be related to the restrictions
on t we must impose if one wants to obtain an estimate from Proposition 1.

Proof of Proposition 1. Suppose u is a smooth positive stable solution of (2) in §2 and let E > 0 satisfy (3). From [17] we
have the following generalized Hardy inequality

—AE , 2 [ IVEP , 2 o
,B/T¢ +(,3—,3)/E—2¢ §/|V¢|, Vo € C7(£2), (11)

forall 8 € R.Adding T f |V¢|? to both sides of the inequality, using the fact that E satisfies (3), and taking ¢ = u‘yr, where
Y oe C2°(£2), gives

,Bp/ p—1,2t+p—1 z_ﬂ/a'E 2y 4 (B — BY) |VE|2

Note that the right side expands as

u*y? +(T—1)f|V(u V)2 <T/|V<u v

Tt2/u2f—2|w|2w2+2tT/u2f—Hqu-vw+r/u2f|vw|2.

We now wish to eliminate the term [ u?~2|Vu|?y? from the inequality. To do this we multiply (2) by u*~'v? and integrate
over 2 to arrive at

@t - Dfuz”IVuIZl//2 = fup”“]wz —/a-Vuu2t—11ﬁ2 —2fVu-v1/fu2f—1¢.

Using this equality we replace the desired term in the inequality to arrive at an inequality of the form

T2 VE 2 3
(ﬂp—Ztt_ )/ woyt g pa-p) [ T8 2%//2+(T—1>/|V<u%/f)|2sT/u”WWH;Ik (12)

1
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where

I = (2Tt 21e? l/uHIWVu Vi
' 2t — 1 ’

Tt?
ax) - Vuu? 12,
—— f ) "

b:ﬂ/ﬂggﬁﬁw;

An integration by parts shows that

L =—

TA-=6 [ o, 2
u“ A .
Yo e ()
An integration by parts also shows
L| < aly|Vyr|u®,
ol < 5 [ w1y
and an application of Young’s inequality shows this is less than or equal to
Tts 22t 4 2,2t
u 9
t_1/||x/f 1)45| ¥l

forany § > 0. An application of Young’s inequality shows that

|13I</38/ AL EE ey 1 £ /|a|2 8

for any ¢ > 0. Using these upper bounds in (12) and re-grouping gives the desired result. O

Proof of Theorem 1. We assume that u is a positive stable solution of (2). Firstly note that

2t,1.2
/|a|2 Zt_‘//_z <C2/u w ,
B |x|?

after considering the conditions on a. Also note by Hardy’s inequality we have

Zt 2
f|V(uw)|2>cN/ l;f ,

— (N= 2)

where Cy =

2 2 2t.1.2
(ﬂp_ ZtTt_l)/uz”P]1//2+,3(1—/8—8)/|VE—§|u2t 2+c1/ ”pﬁ SQ/UZt (VY2 + a2 (13)

where

. Putting these into (10) gives

~ (B Tts
=T =D C(4+2u4)

and G, = G,(T, t, §). Note that for each t_(p) < t < t, (p) we have Bp — % > 0 provided 8 < 1and T > 1 are chosen

sufficiently close to 1. We now pick ¢ > 0 small enough such that 1 — 8 — ¢ > 0. We now assume C > 0 is sufficiently
small such that C; > 0. We then arrive at an estimate of the form

2
(ﬁp - 1) [t <a [ (vr +1awm). (14)

forall y € C°(RN). We now assume that ¢ is a smooth cut-off function with, 0 < ¢ < 1,¢ = 1in B (the open ball of
radius R centered at the origin) and compactly supported in By such that |V¢| < % and |A¢| < }% where C is independent
of R. Putting v = ¢™ where m is a large integer into (14) gives

2
(,Bp— 2tTt_ )/u2t+pl¢2m < Czcm/uztd)zmz (|V¢|2+ |A¢|),

1
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where C;,, depends only on m. We now apply Hélder’s inequality to see the right hand side of this inequality is bounded
above by

2t p—1
(m=1)2t+p—1) 2t+p-1 2t+p—1 2t+p—1
CoCm <[ T dx) ( (Vo1 +1ag)) 1 dx) .

Now note that for sufficiently large m we have that w

hand side of the inequality with

2t
26+p—1
(/ u2t+p1¢2mdx) 7

which allows one to cancel terms to arrive at

Tt? = 24p—1,2m _ F 2 2tpl
(ﬁp—Zt_l) /u e scmf(lwbl +lagl) T

> 2m and hence we can replace the first term on the right

We now take into account the support of ¢ and how ¢ scales to arrive at

2Q2t+p—1)
+p— N—2— &P D)
/ Y2t ]<C0R -1

Br

where Cy depends on the various parameters but is independent of R. Now provided N — 2 — % < 0 we can send

R — oo to arrive at a contradiction. Now note we can pickat € (t_(p), ty(p)) such that this exponent is negative provided

N(p-—-1
% <2(p+x/p2—p)+p—1,
which is precisely (9). O

Proof of Theorem 2. Suppose 0 < u is a smooth stable solution of (2) and E > 0 solves (3). Let |xx| — oo and set ry, := IkaI_
By passing to a subsequence we can assume that {B(x, i) : k > 1} is a disjoint family of balls. We now define the re-scaled
functions

2

ue(x) = 17 uxg + 1x), ag(x) = ra(xy + rx), Ex(x) = E(Xx + 1iex),

and we restrict x| < 2. Then Egs. (2) and (3) are satisfied on B, with uy, ay, Ej, replacing u, a, E. Note that a,(x) is a sequence
of smooth divergence free vector fields which satisfy the bound |a,(x)| < C for all |[x| < 2. From this we see the term
involving a; in (10) will be a lower order term as far as powers of u are concerned and hence will cause no issues. With the
conditions on N and p there issome t_(p) <t < t.(p) suchthat2t +p—1 > %(p — 1) > 0and by taking T = 1 (we can

take T = 1 since the advection term is lower order) and 8 < 1 sufficiently close to 1 we can assume Sp — % > 0. Let
0 < ¢ < 1 be compactly supported in B, with ¢ = 1 on B; and put v = ¢™, where m is a large integer, into (10) where
now u, a, E are given by uy, a, E. Arguing as in the proof of Theorem 1 one can obtain a bound of the form

2t+p—1
By

where Cy depends on the various parameters but is independent of k. Now note that u; > 0 is a sequence of smooth positive
solutions of

—Auy + ag(x) - Vu = Ge(X)ug  in By,

where Ci(x) = ui_l. The above integral estimate shows that C; is bounded in L(B;) for some q > % We can now apply a
Harnack inequality from [20] to see that

supuy < Cinfuy. (15)
By B%
2

If we can show that infg, u, — O then one has supg, — 0 and in particular this gives
2 2

2 _2
[Xe|P~Tu(xy) < 4P-Tsupu — 0
B1
2
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which gives us the desired decay estimate. To show infz, u; — 0 we will show
2

(P=DN
uy > —0.
By

Using a change of variables shows that

(p721>N (p—1N
uk = u 2 s
Bq B(xk,Tk)

. (@=DN . .
and if we show thatu e L2 (RM) then we had have the desired result since

G-DN 2 (p=DN
u oz > E u oz,
RN k=1 Y B(Xk.Tx)

P=DN=-2)
4

Towards this we now set t = and note that the condition on N and p implies that t_(p) < t < t,(p). We now

pick 8 < 1 but sufficiently close such that p — % > 0 and pick ¢ > 0 sufficiently small such that 1 — § — ¢ > 0. Let ¢

be the smooth cut-off function from the proof of Theorem 1, which is equal to 1 in Bz and compactly supported in Byg. We
now put ¢y = ¢™, where m is a large integer, into (10) taking T = 1, to arrive at inequality of the form

/u2t+p_1¢2m < Co/ |a|2u2t¢2m+C0/u2t 2m-2 (|yg|2 + 1A91) . (16)

We now let T be such that 2tt = 2t 4+ p — 1 and let 7’ denote the conjugate index of t. Applying Holder’s inequality to the
right hand side of (16) and arguing as in the proof of Theorem 1 we arrive at an inequality, for sufficiently large m, of the form

/u“"—ldﬂm < Co/ la)> +C0/ (VoI + [4a¢))" ,
Bog
N

where (; is a constant which depends on the various parameters but is independent of R. A computation shows that 7/ = 3
and2t+p—1= %(p — 1). Using these explicit values and the scaling of ¢ we arrive at

N(p-1
/ uz SCO/ la]" + Co,
Br Bar

and from this we obtain the desired bound on u after recalling that |a| € LN(RN). O
3. Existence proofs

The positive radial solution.

Forp > ?’%ﬁ let w = w(r) denote the positive radial decreasing solution of —Aw = w? in RN with w(0) = 1.

Asymptotics of w as r — oo are given by

w(r) = BF1reT (1+ o(1)),

where

2 2
B=Bp,N) = ——(N-2-——).
p—1 p—1
In the case where p > p. the refined asymptotics are given by
1 =2 aq 1
w(r) = riret + = 4o —),
rto rto

wherea; < Oand p, > p%l; see [7].

1 —2
We begin by analyzing the radial solution w as defined above. Let v(r) = gr-Tr?-T where f is defined as above.

1 —2
Lemma 1. Suppose p > p¢, v(r) = Br-1rr=1 and B is defined as in the definition of w.

1. Thenv > w in RN.
2. There is some ¢ > 0 such that

/<p+e>w'”¢2 < f VP Vo € CORY). (17)
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Proof. (1) Note that v(r) > w(r) for large r and small r. Towards a contradiction we assume that there is 0 < ry < rq such
that w(r) > v(r) forallry < r < r; withw = v atr = rg, r;. A computation shows that for p > p. there is some ¢ > 0

such that (p + ¢)B < % and then from Hardy’s inequality we obtain

/(p+8)v”1¢2 < / IVoI? Vé e CORY). (18)

From this we see that v is a stable singular solution of —Av = v” in R and in particular it is a stable solution of
—Av=1v" inrg<r<rwithv=wonr=rg,rn.

It is possible to use the stability of v to show that v is the minimal solution of this equation with the given prescribed

boundary conditions; minimal solution means smallest in the pointwise sense. This fact relies on the strict convexity of

the nonlinearity, see Lemma 2.4 [21] for details. Noting that w satisfies the same equation with the prescribed boundary

conditions one must have v < w onry < r < ry since v is a minimal solution. This gives us the desired contradiction.
(2) The result is immediate after combining the pointwise comparison between w and v and using (18). O

For the remainder w always refers to the above radial solution and L to the linear operator L(¢) = —A¢ — pwP~1¢.
We now define the various function spaces For o > 0 but small, define

Iolx, = SUP IXI I$G)| + sup [x|7T [p ()],

[x|=1

and

2
Iflly, = |st1 x|7F21f ()| + ﬂlp1 X7 T H1f ().
x| < X|>

Let X, and Y,, denote the completions of C2° (RN\{0}) under the appropriate norms.
The following linear estimate is from [19] and is a key starting point for their work. They also obtain results in the case of
Ni2 N1 in[19] and also in another of their works [22]. This case is harder to deal with but luckily our main interest

—_<p<
N—2
is in the case of p > p. which allows us to avoid the harder case.

Theorem A ([19]). Suppose N > 4andp > M There exists some small o > 0 such that for any f € Y, there exists some
¢ € X, such that L(¢p) = f in RN. Moreover the lmear mapT :Y, — X, given by T(f) = ¢, is continuous.

For our approach we will not work directly with X, but instead work with a slight variant that allows us to handle the
advection term. So towards this define the norm

81, = sup (716001 + 147" 19901) + sup (1XI7T I + 177199001 )

[x|=<1
and let X, denote the completion of C° (RN\{0}) with respect to this norm.

Lemma 2. Suppose N > 4andp > % For sufficiently small o > 0 and for all f € Y, there exists some ¢ € X, such that

L(¢p) = f in RN. Moreover the linearmap T : Y, — X, defined by T(f) = ¢ is continuous.

Proof of Lemma 2. Suppose f € Y, and let ¢ € X, be such that L(¢) = f in RN. Then there exists some C > 0, independent
of f and ¢, such that [|¢]lz < C[f|ly,. Our goal is to now show there is some C; > 0, independent of f and ¢, such
that ||¢|lx, < Cillflly, and this will complete the proof. Define the re-scaled functions ¢y (x) = ¢(xm + rmX) where
|Xm| > 0,1 = @ for |x| < 1. Note that

—A¢n(x) = Pf%w(xm + me)p_1¢(xm + mX) + rr?«f(m + X)) = gn(X),

for all x € B;. We now obtain some estimates on ¢,, using the following result, which is just an elliptic regularity result
coupled with the Sobolev embedding theorem: for t > N there is some C; such that

SBUPIVd)m(X)ISCt (/ IAd)m(X)Ith) +Ct/ |m (x)]dx. (19)
1 |x]<1 [x|<1

We now assume we are in the case of |x,;| > 1. Using the fact thatf € Y, and ¢ € X one sees that |xm|P T|gn(x)| < C for

all |x| < 1 and m. Putting these estimates into (19) gives supg, |V (x)| < C|xm|P 5 and from this we see that
2

2
X | 7TV ()| < Ci.

The case of |x,| < 1is handled as above. Combining these results gives us the desired bound. O
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Proof of Theorem 3. (1) To solve (2) we first consider solving the related problem given by
— Au+a(x)-Vu=[uf’ inRY. (20)

To do this we perturb off the radial solution w of the advection free problem. So we look for a solution of the formu = ¢+ w.
So we need to find a solution ¢ of

L¢)=—a-Vw—a-Vé+|w+¢P —pw’ ¢ —wP inRY, (21)
where L(¢p) = —A¢ — pwP~1¢. Letting T be defined as in Lemma 2 we are looking for a ¢ € X, such that
¢ =—T(@-Vw) —T(@a- V) +T(|w + ¢ —pw"'¢ — wP). (22)

To find such a ¢ we define J(¢) to be the mapping on the right hand side of (22) and we will now show that for a suitable
R that J is a contraction mapping on the closed ball B, centered at the origin, in X,. We will then argue thatu = w + ¢ is
positive. We begin by showing J is into Bg. In what follows C can depend on p, a, w but not on x, R, ¢ and ¢ provided o is
small. Let R > 0 and let ¢ € Bg. Then note that there is some C > 0 such that

W@lx, < Clla-Vwlly, +Clla- Volly, + Clllw + ¢IP —pw’~'¢p — w’|ly,. (23)

We now estimate the terms on the right hand side.

2
sup |a(x)||x| sup |x|"t7 |Vw(x)| + sup |x|Ja®)| sup [x|7- 1T Vw(x)|

[x[<1 [x[<1 [X|>1 [x]>1

(SUD Ia(X)IIXI) llwllx, -

A

lla- Vwlly,

IA

The same argument shows that

la-Vélly, < (SUP IXIIa(X)|> llx, -

We now approximate the last term in (23). For this we need the following real analysis result. There exists some C = G,
such that for all numbers w > 0 and ¢ € R we have

[lw + ¢P — pwP~'¢ — w”| < C(w?¢* + [9]").
Set I' = |w + ¢|P — pwP~'¢p — wP. Then one sees

2
Iy, < Csup |x|°™ (wP™2¢% + |$IP) + C sup [x| 7T (wP—2¢? + |$I?)

[x|=<1 Ix|>1

= CI] + CIZ
Then note that
I = sup (|x*7wP™? (%I (x))* + |x| TP (1¢)11x17)P)

[x|<1

2— -2 2 2— p
sup (x>~ 7w’ 2@z, + I PSR, )
[x|<1

Cligliz, + Cligllk,

for sufficiently small ¢ > 0. One can similarly show that

IA

IA

2 P2 2 p
bfmm®mw)|wm+wm

[X|>1

IA

Clglz, + Ik, -

So combining these results we arrive at
(@)llx, < Csuplx|la@)|+ Csup [x|la@)|l¢llx, + Cliglx, + Clipl, - (24)
X X

Before choosing R we examine the condition on J to be a contraction on B. First note there is some C = C, such that for
all numbers w > 0 and (2) ¢ € R one has

|6+ wlP — ¢ + wlP —pwP~(dp — ¢)| < M| — | (25)
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where
M= w2 (1§]+ [8]) + 1B + 9"
Let ¢, ¢ € Bg. Then
J@) —](@) = —T@ V(@ — ) +T(|w+ ¢’ — [w+ ¢’ — pw’>($ — ),

and so
U@ —J@Dllx, < Clla-V@—P)lly, + Clllw + PP — [w + ¢l — pw’~' @ — P)lly,
= le + C,]Z
Arguing as above one easily sees that J; < sup,(|x| |a(x)|)||<2> — ¢llx, - Using (25) we see that
2+0 o %—FZ ~ .
b =< Cﬂlp IX|"""M|¢p — ¢ +C|S|UP [X[P=T"M|¢p — ¢| =: (J3 + (4.
x|<1 X|>1

We now compute the various terms in J3 and J4.

sup (x> w1l — ¢l < sup(IXI* " wP2)(|pllx, I — @llx, -

[x|<1 [x|<1

Also we have

2 =114 2—o—o (=1 4 11P— 1 4
sup [xI**71P " p — ¢ < sup [x* 7PV )p]5 I — llx, .

[x|<1 [x|<1

x o1y
=< lI®llx, ll¢ = &llx,

for small enough o > 0. Combining these results we obtain

A

5= (sup x|~ wP™22R + 2R’”) ¢ — ¢llx,

|x]<1
< (CR+2R7") ¢ — @llx, -

One can argue in a similar fashion to show

Ja

IA

2 -2 A A A
sup (117Tw)" (191, + 181216 — S, + (1315 + 1915 ") 16 — o1,

[x|>1
(CR+2R") 1§ — llx, -

Combining the results we obtain an inequality of the form

IA

(@) —J(@)lx, <C (SUP xlla(x)]| +R+R"1> ¢ — ¢llx, - (26)

We now pick R and put conditions on a. Fix R sufficiently small such that CR* 4+ CRP < % and such that CR + CRP~! < %
Now impose a smallness condition on a such that C sup, |x||a(x)| 4+ C sup, |x||a(X)|R < 1% and C sup, |x|la(x)| < }1. These
conditions are sufficient to show that J is a contraction mapping on By in X, and hence by the Contraction Mapping Principle

there is some ¢ € Bg such that J(¢) = ¢, which was the desired result. So we have ¢ € Bg such that

—Aw+¢)+a-Vw+¢) =|w+¢P inRY. (27)

By taking R > 0 smaller, which imposes a further smallness condition on a, we can assume that

2 1 . 2
sup [x|P~T|p(x)| = — inf |y|>~Tw(y). (28)
Ix|>1 10 lyl=1
Using this one sees that ¢ + w > 0 on |x| > 1. Note there are some possible regularity issues for ¢ near the origin. But
taking o > 0 small enough and applying elliptic regularity theory, along with a bootstrap, one sees that ¢ is at least C>¢
in a ball around the origin for some o > 0. One can now apply the maximum principle to see that u = w + ¢ is a positive

solution of (2). O
Proof of Theorem 3. (2) First note that a computation shows that p. > %—f; For R > O sufficiently small there is some
ug > 0 which satisfies (2) and as R gets small one imposes smallness conditions on a. For m > 2 aninteger letE = Ep g > 0

denote the first eigenfunction of L(E) := —AE + a - VE — pu‘;_lE on the ball By, with E = 0 on 9By, and let u;, g denote



10 C. Cowan / Nonlinear Analysis 104 (2014) 1-11

the first eigenvalue. We now multiply the equation for E by E and integrate over By,. Using the fact that a is divergence free
(this is only spot we utilize this fact) one sees, after a suitable L2 normalization of E, that

/|VE|2 = /puﬁlEz—i—,umyR.

We now extend E outside B, by setting it to be zero and we use the fact that w satisfies (17) to arrive at
(P +e) / wP™'E? < fptilEz + tm.gs

for some fixed ¢ > 0. Note that up, — w in X, as R — 0 and so we can argue as in (28), that for any § > 0 we can pick R
small enough such that ug(x) < (8§ + 1)w(x) for all |x| > 1. Using elliptic regularity and Sobolev embedding one sees that
the restriction of uy to the unit ball converges to the restriction of w uniformly. And so we can assume that uﬂ'f1 <wP 1438
for |x| < 1 for small enough R. Using these estimates and breaking the integrals into the regions |x| > 1 and |x| < 1 one
arrives at

(@48 —pa+8PT") / w”'E* + (¢ — pd) wPTE? < g,
[x|>1 [x[<1
for sufficiently small R. Now by taking § > 0 small enough one sees that for fixed R small enough we have g > 0 for all
m > 2. We now fix this R and let u = ug, E;; = Ep g and iy = pm g. So we have that E;;, > 0 satisfies

—AEp + a(x) - VEqm = puP 'Epy + pmEm  in B
En=0 on 0By,.

Let us assume that u,, — 0. By suitably scaling E,;, we can assume that E;;(0) = 1. Now fix k > 1 an integer and let
m > k + 2. Now note that E,; satisfies the same equation on By ; and hence by the Harnack inequality there is some C;, > 0
such that

supE, < G lI]fE < Cy,
By

for all m > k + 2. Using elliptic regularity one can show that E,, is bounded in C"*(By) and by a diagonal argument there is
some subsequence of E,,, which we still denote by E,,, which converges to some E > 0 locally in C'# for some 8 > 0 and
E(0) = 1. One can then argue that E satisfies

—AE +a(x) - VE =puP 'E inRN,

and then we can apply the strong maximum principle to see that E > 0. This shows that u is a stable solution of (2) which
was the desired result. We now show p,, — 0. We begin by putting E,,, which we L? normalize, into (11) with 8 = % to
arrive at

|VE |2 2 VE, )
um/¢ ¢<2/|V¢| /E—qb,

forall ¢ € C°(Bn). We now use Young's inequality to arrive at

2 2
Mm/¢ /'VE'¢> <2/|V¢2|+e/@¢2+i/|aﬁ¢z.
E; 4¢

By taking ¢ > 0 small enough and re-grouping terms and by using the fact that |a(x)| < % along with Hardy’s inequality,
one can obtain

Mm/¢2 < cf Vo> V¢ € C°(Bm),

where C is independent of m. From this we can conclude that lim sup,, it;; < 0 but we already have p,, > 0 and hence we
have the desired result. O
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