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a b s t r a c t

We examine the equation given by

−∆u + a(x) · ∇u = up in RN , (1)

where p > 1 and a(x) is a smooth vector field satisfying some decay conditions. We show
that for p < pc , the Joseph–Lundgren exponent, there is no positive stable solution of (1)
provided one imposes a smallness condition on a alongwith a divergence free condition. In
the other direction we show that for N ≥ 4 and p > N−1

N−3 there exists a positive solution of
(1) provided a satisfies a smallness condition. For p > pc weshow the existence of a positive
stable solution of (1) provided a is divergence free and satisfies a smallness condition.

Published by Elsevier Ltd.

1. Introduction and results

In this article we are interested in the existence versus nonexistence of positive stable solutions of

−∆u + a(x) · ∇u = up in RN , (2)
where p > 1 and a(x) is a smooth vector field satisfying some decay conditions. We now define the notion of stability and
for this we prefer to work on a general domain.

Definition 1. Let u denote a nonnegative smooth solution of (2) in an open setΩ ⊂ RN . We say u is a stable solution of (2)
inΩ provided there is some smooth positive function E such that

−∆E + a(x) · ∇E ≥ pup−1E inΩ. (3)

We begin by recalling some facts in the case where a(x) = 0. There has been much work done on the existence and
nonexistence of positive classical solutions of

−∆u = up, in RN . (4)
For N ≥ 3 there exists a critical value of p, given by pS =

N+2
N−2 , such that for 1 < p < pS there is no positive classical solution

of (4) and for p > pS there exist positive classical solutions, see [1–4]. By definition we call a nonnegative solution u of (4)
stable if

pup−1φ2
≤


|∇φ|

2
∀φ ∈ C∞

c (R
N), (5)
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which is nothing more than the stability of u using (3), after using a variational principle. The additional requirement that
the solution be stable drastically alters the existence versus nonexistence results. It is known that there is a new critical
exponent, the so called Joseph–Lundgren exponent pc , such that for all 1 < p < pc there is no positive stable solution of (4)
and for p > pc there exist positive stable solutions of (4). The value of the pc is given by

pc =

 (N − 2)2 − 4N + 8
√
N − 1

(N − 2)(N − 10)
N ≥ 11

∞ 3 ≤ N ≤ 10.

The first implicit appearance of pc was in the work [5] where they examined −∆u = λ(u + 1)p on the unit ball in RN with
zero Dirichlet boundary conditions. The exponent pc first explicitly appeared in the works [6,7] where they examined the
stability of radial solutions to a parabolic version of (4). Their results easily imply the existence of a positive radial stable
solution of (4) when p > pc and the nonexistence of positive radial stable solutions in the case of p < pc . More recently
there has been interest in finite Morse index solutions of either (4) and the generalized version given by

−∆u = |u|p−1u, in RN . (6)

In [8] they completely classified the finite Morse index solutions of (6) and again the critical exponent pc was involved. For
results regarding singular nonlinearities, general nonlinearities, or quasilinear equation see [9–14].

In the work [15] the nonexistence of nontrivial solutions of

−div(ω1∇u) = ω2up in RN ,

was examined where ωi are some nonnegative functions. In the special case where ω1 = ω2 this equation reduces to

−∆u + ∇γ (x) · ∇u = up in RN , (7)

where γ is a scalar function. Even though (7) and (2) are similar a major difference is that (7) is variational in nature; critical
points of

E(u) =
1
2


e−γ

|∇u|2 −
1

p + 1


e−γ

|u|p+1,

are solutions of (7). This variational structure of (7) allows one to prove various nonexistence results for (7) by slightly
modifying the nonexistence proofs used in proving similar results for −∆u = up in RN . This approach will generally not
work for (2) since in general there will not be a variational structure.

In [16] the regularity of the extremal solution, u∗, associated with problems of the form
−∆u + a(x) · ∇u = λf (u) inΩ
u = 0 on ∂Ω,

was examined for various nonlinearities f . Here a(x) was an arbitrary smooth advection and the main difficulty was to
utilize the stability of u∗ in a meaningful way. As mentioned earlier, this is not a problem when a(x) is the gradient of a
scalar function. The main tool used was the generalized Hardy inequality from [17]. This same approach was extended to
more general nonlinearities in [18].

We now list our results.

Theorem 1. Suppose 3 ≤ N ≤ 10 or N ≥ 11 and 1 < p < pc . Suppose a(x) is a smooth divergence free vector field satisfying
|a(x)| ≤

C
|x|+1 with 0 < C sufficiently small. Then there is no positive stable solution of (2).

The next result gives a decay estimate in the case of p < pc . We are including this result since it may allow one to use a
Lane–Emden type of change of variables to obtain a nonexistence result without a smallness condition on the advection.

Theorem 2. Suppose N+2
N−2 < p < pc, a(x) is a smooth divergence free vector field with |a(x)| ≤

C
|x|+1 and |a| ∈ LN(RN). Then

any positive stable solution u of (2) satisfies

lim
|x|→∞

|x|
2

p−1 u(x) = 0. (8)

The approach to solve Theorem 1 will be to combine the methods used in [8] with the techniques from [16] which relied
on generalizedHardy inequalities from [17]. The same approachwill be used in the proof of Theorem2with an added scaling
argument.

Our final result gives an existence result.

Theorem 3. 1. Suppose N ≥ 4, p > N+1
N−3 and a(x) is some smooth vector field with |a(x)| ≤

C
|x|+1 . If 0 < C is sufficiently small

there exists a positive solution of (2).
2. Suppose N ≥ 11, p > pc and let a(x) denote some smooth divergence free vector field with |a(x)| ≤

C
|x|+1 . For 0 < C

sufficiently small (2) has a positive stable solution.
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The idea of the proof will be to look for a solution u as a perturbation of the positive radial solution w of −∆w = wp

in RN with w(0) = 1. See the beginning of Section 3 for details on w. The framework we will use to prove the existence
of a positive solution will be the approach developed in [19]. Their interest was in the existence of positive solutions of
−∆u = up inΩ ⊂ RN an exterior domain with zero Dirichlet boundary conditions.

Open problem. It would be interesting to see if these smallness conditions on a(x) can be removed, possibly at the expense
of adding some additional decay requirements.

2. Nonexistence proofs

Remark 1. A computation shows that p < pc is equivalent to the condition

N
2
< 1 +

2p
p − 1

+
2

p − 1


p2 − p. (9)

For our nonexistence results it will be easier to deal with (9).

Theorems 1 and 2 will depend on the following energy estimate, which we state for a general domain.

Proposition 1. Suppose u is a smooth positive stable solution of (2) and a(x) is a smooth divergence free vector field. Then for all
1 ≤ T , 0 < β < 1, 0 < ε, 0 < δ, 1

2 < t and 0 ≤ ψ ∈ C∞
c (Ω) we have

βp −
Tt2

2t − 1

 
u2t+p−1ψ2

+ β(1 − β − ε)


|∇E|

2

E2
u2tψ2

+ (T − 1)


|∇(utψ)|2

≤


β

4ε
+

Ttδ
2t − 1

 
|a|2u2tψ2

+


T +

Tt
4δ(2t − 1)

 
u2t

|∇ψ |
2
+

T |t − 1|
2(2t − 1)


u2t

|∆ψ2
|. (10)

Define the following parameters

t−(p) = p −


p2 − p and t+(p) = p +


p2 − p.

A computation shows that for t−(p) < t < t+(p)wehave p−
t2

2t−1 > 0. This restriction on t will be related to the restrictions
on t we must impose if one wants to obtain an estimate from Proposition 1.

Proof of Proposition 1. Suppose u is a smooth positive stable solution of (2) in Ω and let E > 0 satisfy (3). From [17] we
have the following generalized Hardy inequality

β


−∆E
E

φ2
+ (β − β2)


|∇E|

2

E2
φ2

≤


|∇φ|

2, ∀φ ∈ C∞

c (Ω), (11)

for all β ∈ R. Adding T


|∇φ|
2 to both sides of the inequality, using the fact that E satisfies (3), and taking φ = utψ , where

ψ ∈ C∞
c (Ω), gives

βp


up−1u2t+p−1ψ2
− β


a · ∇E

E
u2tψ2

+ (β − β2)


|∇E|

2

E2
u2tψ2

+ (T − 1)


|∇(utψ)|2 ≤ T


|∇(utψ)|2.

Note that the right side expands as

Tt2


u2t−2
|∇u|2ψ2

+ 2tT


u2t−1ψ∇u · ∇ψ + T


u2t
|∇ψ |

2.

Wenowwish to eliminate the term

u2t−2

|∇u|2ψ2 from the inequality. To do this wemultiply (2) by u2t−1ψ2 and integrate
overΩ to arrive at

(2t − 1)


u2t−2
|∇u|2ψ2

=


up+2t−1ψ2

−


a · ∇uu2t−1ψ2

− 2


∇u · ∇ψu2t−1ψ.

Using this equality we replace the desired term in the inequality to arrive at an inequality of the form
βp −

Tt2

2t − 1

 
u2t+p−1ψ2

+ β(1 − β)


|∇E|

2

E2
u2tψ2

+ (T − 1)


|∇(utψ)|2 ≤ T


u2t
|∇ψ |

2
+

3
k=1

Ik (12)
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where

I1 =


2Tt −

2Tt2

2t − 1

 
u2t−1ψ∇u · ∇ψ,

I2 = −
Tt2

2t − 1


a(x) · ∇uu2t−1ψ2,

I3 = β


a(x) · ∇E

E
u2tψ2.

An integration by parts shows that

I1 =
T (1 − t)
2(2t − 1)


u2t∆(ψ2).

An integration by parts also shows

|I2| ≤
Tt

2t − 1


|a|ψ |∇ψ |u2t ,

and an application of Young’s inequality shows this is less than or equal to

Ttδ
2t − 1


|a|2ψ2u2t

+
Tt

(2t − 1)4δ
|∇ψ |

2u2t ,

for any δ > 0. An application of Young’s inequality shows that

|I3| ≤ βε


|∇E|

2

E2
u2tψ2

+
β

4ε


|a|2u2tψ2,

for any ε > 0. Using these upper bounds in (12) and re-grouping gives the desired result. �

Proof of Theorem 1. We assume that u is a positive stable solution of (2). Firstly note that
|a|2u2tψ2

≤ C2


u2tψ2

|x|2
,

after considering the conditions on a. Also note by Hardy’s inequality we have
|∇(utψ)|2 ≥ CN


u2tψ2

|x|2
,

where CN =
(N−2)2

4 . Putting these into (10) gives
βp −

Tt2

2t − 1

 
u2t+p−1ψ2

+ β(1 − β − ε)


|∇E|

2

E2
u2tψ2

+ C1


u2tψ2

|x|2
≤ C2


u2t 

|∇ψ |
2
+ |∆(ψ2)|


(13)

where

C1 = (T − 1)CN − C2

β

4ε
+

Ttδ
2t − 1


,

and C2 = C2(T , t, δ). Note that for each t−(p) < t < t+(p) we have βp −
Tt2
2t−1 > 0 provided β < 1 and T > 1 are chosen

sufficiently close to 1. We now pick ε > 0 small enough such that 1 − β − ε > 0. We now assume C > 0 is sufficiently
small such that C1 ≥ 0. We then arrive at an estimate of the form

βp −
Tt2

2t − 1

 
u2t+p−1ψ2

≤ C2


u2t 

|∇ψ |
2
+ |∆(ψ2)|


, (14)

for all ψ ∈ C∞
c (R

N). We now assume that φ is a smooth cut-off function with, 0 ≤ φ ≤ 1, φ = 1 in BR (the open ball of
radius R centered at the origin) and compactly supported in B2R such that |∇φ| ≤

C
R and |∆φ| ≤

C
R2

where C is independent
of R. Putting ψ = φm where m is a large integer into (14) gives

βp −
Tt2

2t − 1

 
u2t+p−1φ2m

≤ C2Cm


u2tφ2m−2 

|∇φ|
2
+ |∆φ|


,
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where Cm depends only on m. We now apply Hölder’s inequality to see the right hand side of this inequality is bounded
above by

C2Cm


u2t+p−1φ

(m−1)(2t+p−1)
t dx

 2t
2t+p−1


(|∇φ|

2
+ |∆φ|)

2t+p−1
p−1 dx

 p−1
2t+p−1

.

Now note that for sufficiently largemwe have that (m−1)(2t+p−1)
t > 2m and hence we can replace the first term on the right

hand side of the inequality with
u2t+p−1φ2mdx

 2t
2t+p−1

,

which allows one to cancel terms to arrive at
βp −

Tt2

2t − 1

 2t+p−1
p−1


u2t+p−1φ2m

≤ C̃m

 
|∇φ|

2
+ |∆φ|

 2t+p−1
p−1 .

We now take into account the support of φ and how φ scales to arrive at
BR

u2t+p−1
≤ C0R

N−2− 2(2t+p−1)
p−1 ,

where C0 depends on the various parameters but is independent of R. Now provided N − 2 −
2(2t+p−1)

p−1 < 0 we can send
R → ∞ to arrive at a contradiction. Now note we can pick a t ∈ (t−(p), t+(p)) such that this exponent is negative provided

N(p − 1)
2

< 2

p +


p2 − p


+ p − 1,

which is precisely (9). �

Proof of Theorem 2. Suppose 0 < u is a smooth stable solution of (2) and E > 0 solves (3). Let |xk| → ∞ and set rk :=
|xk|
4 .

By passing to a subsequence we can assume that {B(xk, rk) : k ≥ 1} is a disjoint family of balls. We now define the re-scaled
functions

uk(x) = r
2

p−1
k u(xk + rkx), ak(x) = rka(xk + rkx), Ek(x) = E(xk + rkx),

and we restrict |x| < 2. Then Eqs. (2) and (3) are satisfied on B2 with uk, ak, Ek replacing u, a, E. Note that ak(x) is a sequence
of smooth divergence free vector fields which satisfy the bound |ak(x)| ≤ C for all |x| < 2. From this we see the term
involving ak in (10) will be a lower order term as far as powers of u are concerned and hence will cause no issues. With the
conditions on N and p there is some t−(p) < t < t+(p) such that 2t + p − 1 > N

2 (p − 1) > 0 and by taking T = 1 (we can

take T = 1 since the advection term is lower order) and β < 1 sufficiently close to 1 we can assume βp −
t2

2t−1 > 0. Let
0 ≤ φ ≤ 1 be compactly supported in B2 with φ = 1 on B1 and put ψ = φm, where m is a large integer, into (10) where
now u, a, E are given by uk, ak, Ek. Arguing as in the proof of Theorem 1 one can obtain a bound of the form

B1
u2t+p−1
k ≤ C0,

where C0 depends on the various parameters but is independent of k. Now note that uk > 0 is a sequence of smooth positive
solutions of

−∆uk + ak(x) · ∇uk = Ck(x)uk in B2,

where Ck(x) = up−1
k . The above integral estimate shows that Ck is bounded in Lq(B1) for some q > N

2 . We can now apply a
Harnack inequality from [20] to see that

sup
B 1
2

uk ≤ C inf
B 1
2

uk. (15)

If we can show that infB 1
2
uk → 0 then one has supB 1

2
→ 0 and in particular this gives

|xk|
2

p−1 u(xk) ≤ 4
2

p−1 sup
B 1
2

uk → 0
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which gives us the desired decay estimate. To show infB 1
2
uk → 0 we will show

B1
u
(p−1)N

2
k → 0.

Using a change of variables shows that
B1

u
(p−1)N

2
k =


B(xk,rk)

u
(p−1)N

2 ,

and if we show that u ∈ L
(p−1)N

2 (RN) then we had have the desired result since
RN

u
(p−1)N

2 ≥

∞
k=1


B(xk,rk)

u
(p−1)N

2 .

Towards this we now set t =
(p−1)(N−2)

4 and note that the condition on N and p implies that t−(p) < t < t+(p). We now

pick β < 1 but sufficiently close such that βp −
t2

2t−1 > 0 and pick ε > 0 sufficiently small such that 1 − β − ε > 0. Let φ
be the smooth cut-off function from the proof of Theorem 1, which is equal to 1 in BR and compactly supported in B2R. We
now put ψ = φm, where m is a large integer, into (10) taking T = 1, to arrive at inequality of the form

u2t+p−1φ2m
≤ C0


|a|2u2tφ2m

+ C0


u2tφ2m−2 

|∇φ|
2
+ |∆φ|


. (16)

We now let τ be such that 2tτ = 2t + p − 1 and let τ ′ denote the conjugate index of τ . Applying Hölder’s inequality to the
right hand side of (16) and arguing as in the proof of Theorem 1we arrive at an inequality, for sufficiently largem, of the form

u2t+p−1φ2m
≤ C0


B2R

|a|2τ
′

+ C0

 
|∇φ|

2
+ |∆φ|

τ ′

,

where C0 is a constant which depends on the various parameters but is independent of R. A computation shows that τ ′
=

N
2

and 2t + p − 1 =
N
2 (p − 1). Using these explicit values and the scaling of φ we arrive at

BR
u

N(p−1)
2 ≤ C0


B2R

|a|N + C0,

and from this we obtain the desired bound on u after recalling that |a| ∈ LN(RN). �

3. Existence proofs

The positive radial solution.
For p > N+2

N−2 let w = w(r) denote the positive radial decreasing solution of −∆w = wp in RN with w(0) = 1.
Asymptotics ofw as r → ∞ are given by

w(r) = β
1

p−1 r
−2
p−1 (1 + o(1)),

where

β = β(p,N) =
2

p − 1


N − 2 −

2
p − 1


.

In the case where p > pc the refined asymptotics are given by

w(r) = β
1

p−1 r
−2
p−1 +

a1

rµ
−

0
+ o


1

rµ
−

0


,

where a1 < 0 and µ−

0 >
2

p−1 ; see [7].

We begin by analyzing the radial solutionw as defined above. Let v(r) = β
1

p−1 r
−2
p−1 where β is defined as above.

Lemma 1. Suppose p > pc, v(r) = β
1

p−1 r
−2
p−1 and β is defined as in the definition of w.

1. Then v ≥ w in RN .
2. There is some ε > 0 such that

(p + ε)wp−1φ2
≤


|∇φ|

2
∀φ ∈ C∞

c (R
N). (17)
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Proof. (1) Note that v(r) > w(r) for large r and small r . Towards a contradiction we assume that there is 0 < r0 < r1 such
thatw(r) > v(r) for all r0 < r < r1 withw = v at r = r0, r1. A computation shows that for p > pc there is some ε > 0
such that (p + ε)β ≤

(N−2)2

4 and then from Hardy’s inequality we obtain
(p + ε)vp−1φ2

≤


|∇φ|

2
∀φ ∈ C∞

c (R
N). (18)

From this we see that v is a stable singular solution of −∆v = vp in RN and in particular it is a stable solution of

−∆v = vp in r0 < r < r1 with v = w on r = r0, r1.

It is possible to use the stability of v to show that v is the minimal solution of this equation with the given prescribed
boundary conditions; minimal solution means smallest in the pointwise sense. This fact relies on the strict convexity of
the nonlinearity, see Lemma 2.4 [21] for details. Noting thatw satisfies the same equation with the prescribed boundary
conditions one must have v ≤ w on r0 < r < r1 since v is a minimal solution. This gives us the desired contradiction.

(2) The result is immediate after combining the pointwise comparison betweenw and v and using (18). �

For the remainderw always refers to the above radial solution and L to the linear operator L(φ) = −∆φ − pwp−1φ.
We now define the various function spaces. For σ > 0 but small, define

∥φ∥X̃σ := sup
|x|≤1

|x|σ |φ(x)| + sup
|x|≥1

|x|
2

p−1 |φ(x)|,

and

∥f ∥Yσ := sup
|x|≤1

|x|σ+2
|f (x)| + sup

|x|≥1
|x|

2
p−1 +2

|f (x)|.

Let X̃σ and Yσ denote the completions of C∞
c (R

N
\{0}) under the appropriate norms.

The following linear estimate is from [19] and is a key starting point for their work. They also obtain results in the case of
N+2
N−2 < p < N+1

N−3 in [19] and also in another of their works [22]. This case is harder to deal with but luckily our main interest
is in the case of p > pc which allows us to avoid the harder case.

Theorem A ([19]). Suppose N ≥ 4 and p > N+1
N−3 . There exists some small σ > 0 such that for any f ∈ Yσ there exists some

φ ∈ X̃σ such that L(φ) = f in RN . Moreover the linear map T : Yσ → X̃σ , given by T (f ) = φ, is continuous.

For our approach we will not work directly with X̃σ but instead work with a slight variant that allows us to handle the
advection term. So towards this define the norm

∥φ∥Xσ := sup
|x|≤1


|x|σ |φ(x)| + |x|σ+1

|∇φ(x)|

+ sup

|x|≥1


|x|

2
p−1 |φ(x)| + |x|

2
p−1 +1

|∇φ(x)|


and let Xσ denote the completion of C∞
c (R

N
\{0})with respect to this norm.

Lemma 2. Suppose N ≥ 4 and p > N+1
N−3 . For sufficiently small σ > 0 and for all f ∈ Yσ there exists some φ ∈ Xσ such that

L(φ) = f in RN . Moreover the linear map T : Yσ → Xσ defined by T (f ) = φ is continuous.

Proof of Lemma 2. Suppose f ∈ Yσ and let φ ∈ X̃σ be such that L(φ) = f in RN . Then there exists some C > 0, independent
of f and φ, such that ∥φ∥X̃σ ≤ C∥f ∥Yσ . Our goal is to now show there is some C1 > 0, independent of f and φ, such
that ∥φ∥Xσ ≤ C1∥f ∥Yσ and this will complete the proof. Define the re-scaled functions φm(x) = φ(xm + rmx) where
|xm| > 0, rm =

|xm|

4 for |x| < 1. Note that

−∆φm(x) = pr2mw(xm + rmx)p−1φ(xm + rmx)+ r2mf (m + rmx) =: gm(x),

for all x ∈ B1. We now obtain some estimates on φm using the following result, which is just an elliptic regularity result
coupled with the Sobolev embedding theorem: for t > N there is some Ct such that

sup
B 1
2

|∇φm(x)| ≤ Ct


|x|<1

|∆φm(x)|tdx
 1

t

+ Ct


|x|<1

|φm(x)|dx. (19)

We now assume we are in the case of |xm| ≥ 1. Using the fact that f ∈ Yσ and φ ∈ X̃σ one sees that |xm|
2

p−1 |gm(x)| ≤ C for
all |x| < 1 andm. Putting these estimates into (19) gives supB 1

2
|∇φm(x)| ≤ C |xm|

−2
p−1 and from this we see that

|xm|
2

p−1 +1
|∇φ(xm)| ≤ C1.

The case of |xm| ≤ 1 is handled as above. Combining these results gives us the desired bound. �
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Proof of Theorem 3. (1) To solve (2) we first consider solving the related problem given by

−∆u + a(x) · ∇u = |u|p in RN . (20)

To do this we perturb off the radial solutionw of the advection free problem. Sowe look for a solution of the form u = φ+w.
So we need to find a solution φ of

L(φ) = −a · ∇w − a · ∇φ + |w + φ|
p
− pwp−1φ − wp in RN , (21)

where L(φ) = −∆φ − pwp−1φ. Letting T be defined as in Lemma 2 we are looking for a φ ∈ Xσ such that

φ = −T (a · ∇w)− T (a · ∇φ)+ T (|w + φ|
p
− pwp−1φ − wp). (22)

To find such a φ we define J(φ) to be the mapping on the right hand side of (22) and we will now show that for a suitable
R that J is a contraction mapping on the closed ball BR, centered at the origin, in Xσ . We will then argue that u = w + φ is
positive. We begin by showing J is into BR. In what follows C can depend on p, a, w but not on x, R, φ and σ provided σ is
small. Let R > 0 and let φ ∈ BR. Then note that there is some C > 0 such that

∥J(φ)∥Xσ ≤ C∥a · ∇w∥Yσ + C∥a · ∇φ∥Yσ + C∥|w + φ|
p
− pwp−1φ − wp

∥Yσ . (23)

We now estimate the terms on the right hand side.

∥a · ∇w∥Yσ ≤ sup
|x|≤1

|a(x)||x| sup
|x|≤1

|x|1+σ |∇w(x)| + sup
|x|≥1

|x||a(x)| sup
|x|≥1

|x|
2

p−1 +1
|∇w(x)|

≤


sup
x

|a(x)||x|


∥w∥Xσ .

The same argument shows that

∥a · ∇φ∥Yσ ≤


sup
x

|x||a(x)|


∥φ∥Xσ .

We now approximate the last term in (23). For this we need the following real analysis result. There exists some C = Cp
such that for all numbersw > 0 and φ ∈ R we have|w + φ|

p
− pwp−1φ − wp

 ≤ C

wp−2φ2

+ |φ|
p .

Set Γ = |w + φ|
p
− pwp−1φ − wp. Then one sees

∥Γ ∥Yσ ≤ C sup
|x|≤1

|x|σ+2 
wp−2φ2

+ |φ|
p

+ C sup
|x|≥1

|x|
2

p−1 +2 
wp−2φ2

+ |φ|
p

:= CI1 + CI2.

Then note that

I1 = sup
|x|≤1


|x|2−σwp−2 (|x|σφ(x))2 + |x|σ+2−σp (|φ(x)||x|σ )p


≤ sup

|x|≤1


|x|2−σwp−2

∥φ∥
2
Xσ + |x|σ+2−σp

∥φ∥
p
Xσ


≤ C∥φ∥

2
Xσ + C∥φ∥

p
Xσ

for sufficiently small σ > 0. One can similarly show that

I2 ≤ sup
|x|≥1


|x|

2
p−1w

p−2
∥φ∥

2
Xσ + ∥φ∥

p
Xσ

≤ C∥φ∥
2
Xσ + ∥φ∥

p
Xσ .

So combining these results we arrive at

∥J(φ)∥Xσ ≤ C sup
x

|x||a(x)| + C sup
x

|x||a(x)|∥φ∥Xσ + C∥φ∥
2
Xσ + C∥φ∥

p
Xσ . (24)

Before choosing Rwe examine the condition on J to be a contraction on BR. First note there is some C = Cp such that for
all numbersw > 0 and φ̂, φ ∈ R one has|φ̂ + w|

p
− |φ + w|

p
− pwp−1(φ̂ − φ)

 ≤ CM|φ̂ − φ| (25)



Author's personal copy

C. Cowan / Nonlinear Analysis 104 (2014) 1–11 9

where

M = wp−2

|φ̂| + |φ|


+ |φ̂|

p−1
| + |φ|

p−1.

Let φ̂, φ ∈ BR. Then

J(φ̂)− J(φ) = −T (a · ∇(φ̂ − φ))+ T (|w + φ̂|
p
− |w + φ|

p
− pwp−2(φ̂ − φ)),

and so

∥J(φ̂)− J(φ)∥Xσ ≤ C∥a · ∇(φ̂ − φ)∥Yσ + C∥|w + φ̂|
p
− |w + φ|

p
− pwp−1(φ̂ − φ)∥Yσ

=: CJ1 + CJ2.

Arguing as above one easily sees that J1 ≤ supx(|x||a(x)|)∥φ̂ − φ∥Xσ . Using (25) we see that

J2 ≤ C sup
|x|≤1

|x|2+σM|φ̂ − φ| + C sup
|x|≥1

|x|
2

p−1 +2M|φ̂ − φ| =: CJ3 + CJ4.

We now compute the various terms in J3 and J4.

sup
|x|≤1

|x|2+σwp−1
|φ̂||φ̂ − φ| ≤ sup

|x|≤1
(|x|2−σwp−2)∥φ̂∥Xσ ∥φ̂ − φ∥Xσ .

Also we have

sup
|x|≤1

|x|2+σ |φ̂|
p−1

|φ̂ − φ| ≤ sup
|x|≤1

|x|2−σ−σ(p−1)
∥φ̂∥

p−1
Xσ ∥φ̂ − φ∥Xσ ,

≤ ∥φ̂∥
p−1
Xσ ∥φ̂ − φ∥Xσ ,

for small enough σ > 0. Combining these results we obtain

J3 ≤


sup
|x|≤1

|x|2−σwp−22R + 2Rp−1


∥φ̂ − φ∥Xσ

≤

CR + 2Rp−1

∥φ̂ − φ∥Xσ .

One can argue in a similar fashion to show

J4 ≤ sup
|x|≥1


|x|

2
p−1w

p−2
(∥φ̂∥Xσ + ∥φ∥Xσ )∥φ̂ − φ∥Xσ +


∥φ̂∥

p−1
Xσ + ∥φ∥

p−1
Xσ


∥φ̂ − φ∥Xσ

≤

CR + 2Rp−1

∥φ̂ − φ∥Xσ .

Combining the results we obtain an inequality of the form

∥J(φ̂)− J(φ)∥Xσ ≤ C

sup
x

|x||a(x)| + R + Rp−1


∥φ̂ − φ∥Xσ . (26)

We now pick R and put conditions on a. Fix R sufficiently small such that CR2
+ CRp

≤
R
10 and such that CR + CRp−1 < 1

2 .
Now impose a smallness condition on a such that C supx |x||a(x)| + C supx |x||a(x)|R ≤

R
10 and C supx |x||a(x)| < 1

4 . These
conditions are sufficient to show that J is a contractionmapping on BR in Xσ and hence by the ContractionMapping Principle
there is some φ ∈ BR such that J(φ) = φ, which was the desired result. So we have φ ∈ BR such that

−∆(w + φ)+ a · ∇(w + φ) = |w + φ|
p in RN . (27)

By taking R > 0 smaller, which imposes a further smallness condition on a, we can assume that

sup
|x|≥1

|x|
2

p−1 |φ(x)| ≤
1
10

inf
|y|≥1

|y|
2

p−1w(y). (28)

Using this one sees that φ + w > 0 on |x| ≥ 1. Note there are some possible regularity issues for φ near the origin. But
taking σ > 0 small enough and applying elliptic regularity theory, along with a bootstrap, one sees that φ is at least C2,α

in a ball around the origin for some α > 0. One can now apply the maximum principle to see that u = w + φ is a positive
solution of (2). �

Proof of Theorem 3. (2) First note that a computation shows that pc > N+1
N−3 . For R > 0 sufficiently small there is some

uR > 0 which satisfies (2) and as R gets small one imposes smallness conditions on a. Form ≥ 2 an integer let E = Em,R > 0
denote the first eigenfunction of L(E) := −∆E + a · ∇E − pup−1

R E on the ball Bm with E = 0 on ∂Bm and let µm,R denote
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the first eigenvalue. We nowmultiply the equation for E by E and integrate over Bm. Using the fact that a is divergence free
(this is only spot we utilize this fact) one sees, after a suitable L2 normalization of E, that

|∇E|
2

=


pup−1

R E2
+ µm,R.

We now extend E outside Bm by setting it to be zero and we use the fact thatw satisfies (17) to arrive at

(p + ε)


wp−1E2

≤


pup−1

R E2
+ µm,R,

for some fixed ε > 0. Note that uR → w in Xσ as R → 0 and so we can argue as in (28), that for any δ > 0 we can pick R
small enough such that uR(x) ≤ (δ + 1)w(x) for all |x| ≥ 1. Using elliptic regularity and Sobolev embedding one sees that
the restriction of uR to the unit ball converges to the restriction ofw uniformly. And so we can assume that up−1

R ≤ wp−1
+ δ

for |x| ≤ 1 for small enough R. Using these estimates and breaking the integrals into the regions |x| ≥ 1 and |x| ≤ 1 one
arrives at

(p + ε)− p(1 + δ)p−1 
|x|≥1

wp−1E2
+ (ε − pδ)


|x|≤1

wp−1E2
≤ µm,R,

for sufficiently small R. Now by taking δ > 0 small enough one sees that for fixed R small enough we have µm,R ≥ 0 for all
m ≥ 2. We now fix this R and let u = uR, Em = Em,R and µm = µm,R. So we have that Em > 0 satisfies

−∆Em + a(x) · ∇Em = pup−1Em + µmEm in Bm
Em = 0 on ∂Bm.

Let us assume that µm → 0. By suitably scaling Em we can assume that Em(0) = 1. Now fix k ≥ 1 an integer and let
m ≥ k+ 2. Now note that Em satisfies the same equation on Bk+1 and hence by the Harnack inequality there is some Ck > 0
such that

sup
Bk

Em ≤ Ck inf
Bk

Em ≤ Ck,

for allm ≥ k + 2. Using elliptic regularity one can show that Em is bounded in C1,α(Bk) and by a diagonal argument there is
some subsequence of Em, which we still denote by Em, which converges to some E ≥ 0 locally in C1,β for some β > 0 and
E(0) = 1. One can then argue that E satisfies

−∆E + a(x) · ∇E = pup−1E in RN ,

and then we can apply the strong maximum principle to see that E > 0. This shows that u is a stable solution of (2) which
was the desired result. We now show µm → 0. We begin by putting Em, which we L2 normalize, into (11) with β =

1
2 to

arrive at

µm


φ2

+
1
2


|∇Em|

2

E2
m

φ2
≤ 2


|∇φ|

2
+


a · ∇Em

Em
φ2,

for all φ ∈ C∞
c (Bm). We now use Young’s inequality to arrive at

µm


φ2

+
1
2


|∇Em|

2

E2
m

φ2
≤ 2


|∇φ2

| + ε


|∇Em|

2

E2
m

φ2
+

1
4ε


|a|2φ2.

By taking ε > 0 small enough and re-grouping terms and by using the fact that |a(x)| ≤
C2

|x|2
along with Hardy’s inequality,

one can obtain

µm


φ2

≤ C


|∇φ|
2

∀φ ∈ C∞

c (Bm),

where C is independent of m. From this we can conclude that lim supm µm ≤ 0 but we already have µm ≥ 0 and hence we
have the desired result. �
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