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Abstract
We establish Hardy inequalities of the form

VE
/ |Vuladz > — i /Q | E2|A u’de,  u€ Hy(Q) (1)
where E is a positive function defined in Q, —div(AVE) is a nonnegative nonzero finite measure in Q
which we denote by p and where A(z) is a n X n symmetric, uniformly positive definite matrix defined
in Q with [£]4 := A(x)¢ - € for € € R™. We show that (@) is optimal if £ = 0 on dQ or E = oo on the
support of 1 and is not attained in either case. When E = 0 on 02 we show

2
/|Vu|Ad > = /'VE|A u’dr 4 = /Q%dp, u € Hy(Q) (2)

is optimal and not attained. Optimal weighted versions of these inequalities are also established. Optimal
analogous versions of () and (2]) are established for p # 2 which, in the case that u is a Dirac mass,
answers a best constant question posed by Adimurthi and Sekar (see [AS]).

Since the above inequalities do not attain a standard question to ask is for what functions 0 < V' (z)

do we have
/|Vu| dx > = /WE'A u’dx +/V ywide,  ue Hy(Q). (3)

Necessary and sufficient conditions on V' are obtained (in terms of the solvability of a linear pde) for (3]
to hold. Analogous results involving improvements are obtained for the weighted versions.

We establish optimal inequalities which are similar to (1)) and are valid for v € H'(Q). We obtain
results on improvements of this inequality which are similar to the above results on improvements. In
addition weighted versions of this inequality are also obtained.

We remark that most of the known Hardy inequalities (in the case where p = 2) can be obtained, via
the above approach, by making suitable choices for F and A(z).

1 Introduction

We begin by recalling the various Hardy inequalities. Let 2 be a bounded domain in R™ containing the
origin and where n > 3. Then Hardy’s inequality (see [OK]) asserts that

-2 2 u?
Vul2dz > ("—) 2 da, 4
/Q| | 2 q lz]? )

for all uw € HE (). Moreover the constant (" 2) is optimal and not attained. An analogous result asserts
that for any bounded convex domain Q@ C R™ with smooth boundary and d(x) := dist(x, 9Q) (the euclidean
distance from z to ), there holds (see [BM])

/|Vu| x>+ /524 (5)
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for all u € H}(2). Moreover the constant i is optimal and not attained. We will refer to this inequality as
Hardy’s boundary inequality.

Recently Hardy inequalities involving more general distance functions than the distance to the origin or
distance to the boundary have been studied (see [BFT]). Suppose € is a domain in R™ and M a piecewise
smooth surface of co-dimension k, £ = 1,...,n. In case k = n we adopt the convention that M is a point,
say, the origin. Set d(z) := dist(z, M). Suppose k # 2 and —Ad?*~* > 0 in Q\M then

[ ivuran > B2 [ L ()

for all u € Hi(Q\M). We comment that the above inequalities all have LP analogs.

In the last few years improved versions of the above inequalities have been obtained, in the sense
that non-negative terms are added to the right hand sides of the inequalities; see [BV], [BM], [BFT],
[BMS],[FT],[FHT],[VS]. One common type of improvement for the above Hardy inequalities are the so called
potentials; we call 0 < V(z), defined in 2, a potential for ) provided

2 u2
|Vu|*dz — (n_—2> —=dx > / V(z)u’de, u € HH ).
Q 2 Q |~”U|2 Q

Most of the results in this direction are explicit examples of potentials V' where, in the best results, V is an
infinite series involving complicated inductively defined functions. Very recently Ghoussoub and Moradifam
[GM] gave the following necessary and sufficient conditions for a radial function V(z) = v(|z]) to be a
potential in the case of Hardy’s inequality () on a radial domain 2:
V is a potential if and only if there exists a positive function y(r) which solves y” + yT, 4+ vy = 0 in
(0,5up, 0 |a]).

In another direction people have considered Hardy inequalities for operators more general than the
Laplacian. One case of this is the results obtained by Adimurthi and A. Sekar [AS]:
Suppose 2 is a smooth domain in R™ which contains the origin, A(z) = ((a*?(x))) denotes a symmetric,
uniformly positive definite matrix with suitably smooth coefficients and for £ € R™ we define |¢[% := |¢ |?4(z)

m@ggNmmwm%Emawmmnﬁgwwy:—m(wm§Mv@:JmnammEZOmaQ
where dy is the Dirac mass at 0. Then for all u € Wy (Q)

- VE]
Vu2dac—<p >/| AlylPdx > 0.
/Q| 2 —) [ S5

Improvements of this inequality were also obtained and they posed the following question: Is (p o 1) optimal?

We show this is the case, even for a more general inequality.
After completion of this work we noticed that various people had taken a similar approach to generalized
Hardy inequalities, see [DL], [KMO],[LW].

1.1 Outline and approach

Our approach will be similar to the one taken by Adimurthi and A. Sekar but we mostly concentrate on the
quadratic case (p = 2) and for this we define L4(F) := —div(AVE).

We now motivate our main inequality. Suppose E is a smooth positive function defined in 2. Let
u e C>(Q) and set v := E2 u. Then a calculation shows that

VER AVE - V(v?)
iE? 2 :

and after integrating this over 2 we obtain

E
‘/|Vuud __]A|V VEG 24, L/lﬂVvudx+ ‘/-—cA . (M)

in Q

Vulh — = E|Vul} +



If we further assume that £4(F) > 0 in 2 then

/|Vu|Ad > = /'VE|A wide,  u€ HY Q). (8)

From this we see that the optimal constant C'(F)

. Jo IVl 1
C(E) := inf {ﬂ?ﬂd r: ue HY(Q)\{0} p > T
Jo =2
It is possible to show that for all non-zero u € H¢(Q2) we have
/ E|Vol4dz > 0,
Q
where v is defined as above. Using this and (7)) one sees that if C(E) = ; then C(E) is not attained and
hence if C(E) is attained then C(E) > 1. This shows that v l“ needs to be singular if we want C'(E) = 1.

In fact one can show that H{ () is compactly embedded in L2(Q, IVELJALZ:Z:) if IVELJA € L?(Q) for some p > %
and so one could then apply standard compactness arguments to show that C(E) is attained. We are only

. . VE% .. . .
interested in the case where C(E) = % and hence we need to ensure . Ezl“ is singular and this can be done

in two obvious ways. This naturally leads one to consider the following two classes of functions E (weights).

Definition 1.1. Suppose 0 < E in Q and L4(E) is a nonnegative nonzero finite measure in Q0 denoted by

L

1) If in addition E € H}(Q) then we call E a boundary weight on €.

2)  If in addition E € C™(Q\K) where K C Q denotes the support of u, E = oo on K and dimpe:(K) <
n—2 (see below) then we call E an interior weight on .

Given a compact subset K of R™ we define the box-counting dimension (entropy dimension) of K by

dimipoz (K) :=n — lim M
™0  log(r)

provided this limit exists and where K, := {x € Q : dist(z, K) < r} and H* is the - dimensional Hausdorff
measure.

Remark 1.1. It is possible to show that CO'(Q\K) is dense in WyP(Q) provided K is compact and
dimpor (K) < n —p (use appropriate Lipschitz cut off functions).

From here on p will denote the measure £4(F) and in the case where F is an interior weight on Q, K
will denote the support of u.

We now list the main results.
We show that if F is either an interior or a boundary weight in €2 then we have the following inequality:

VE
|Vu|Ad _Z/Q| E2|A uldr >0, u€ H}(Q) (9)

with optimal constant which is not attained.
In the case that E is a boundary weight on €2 we obtain

/|v | dx ——/QWE'A u?dx /—du, u € Hy(Q). (10)
1

Moreover 5 is optimal (once one fixes %) and is not attained.




Using the methods developed in [GM] we obtain necessary and sufficient conditions on 0 < V(z) to be a

potential for (@) in the case where E is an interior weight. We show that the following are equivalent:
1) Forallue H(Q)

IVE[% w2 2
|Vu| dr — —/ de > [ V(x)u“dx.
e B o
2)  There exists some 0 < § € CQ(Q\K) such that

—LA(0)  |VEJ
0 4E2

+V <0  inQ\K. (11)

If we further assume that £ = v > 0 (constant) on 992 and if we are only interested in potentials of the form
V(z) = f(E)|VE|} then we can replace 2) with
2’)  There exists some 0 < h € C?(y,00) such that

W0+ (504 )0 <0 in(r.00) (12)

In practice this ode classification is more useful because of the shear abundance of ode results in the literature.
We obtain weighted versions of (@) (respectively (I0)) in the case that E is an interior weight (respec-

tively boundary weight) on Q which can be viewed as generalized versions of the Cafferelli-Kohn-Nirenberg

inequality. To be more precise we obtain:

Suppose F is an interior weight on € and ¢ # % Then

1
/E2t|vu|?4d:cz (t— 5)2/ |VE[4 E**u?dx, (13)
Q Q

for all u € CY1(Q\K). Moreover the constant is optimal and not attained in the naturally induced function
space.

Suppose E is a boundary weight on © and 0 # ¢ < 4. Then (I3) holds for all u € C2°(£2) and is not attained
in the naturally induced function space. Similarly

1 1
/ E*|Vul|%dr — (t — —)2/ |VEAE* 2u?dr > (= — t)/ E*~1u2dy, (14)
Q 2" Ja 2 Q

for all u € C°(£2). Moreover the constant on the right is optimal and not attained in the natural function
space. In addition we show that the class of potentials for (I3)) is given by {E*V : V is a potential for (@)}.

We also examine generalized Hardy inequalities which are valid for functions u € H'(Q). Suppose E a
positive function with £4(F) + E a nonnegative nonzero finite measure denoted by u, E = 0o on the K (as
before K denotes the support of i) and where we assume that E satisfies a Neumann boundary condition.

Then
/|VU|AdI+;/ > 4/ |VE|A u?dz, u € H(Q). (15)

Moreover these constants are optimal (in the sense that if one is fixed then the other is optimal). Im-
provements of (IE) are also obtained. Assuming the same conditions on F we show that for 0 < V we

have 5
/ |Vul% + L / / v |A udr > / V (x)u?dz, u € H(Q)
Q 2 Ja Q Q

if and only if there exists some 0 < 6 € C*°(Q\K) such that

§ |VE
“Eal) =g | 4ELA

0+VO<0 inQ\K, (16)



with AVO - v =0 on 09Q.
Weighted version of ([H]) are established. Assuming the same conditions on E we show that for ¢ # % we
have

2
1 1
/E2t|Vu|f4d:c+§/ E*u?dr > (t— 5) E* 2|\ VE[4 v dz,
Q Q

for all u € C2°(Q\K). Moreover the constants are optimal and not obtained in the naturally induced function
space.

We establish optimal Hardy inequalities which are valid on exterior and annular domains. Suppose 2 is
a exterior domain in R", £ > 0 in R", lim|;| o £ = 0, —AE = p in R" where p is a nonzero nonnegative
finite measure with compact support K. In addition we assume that dist(K,Q) > 0 and 9, F > 0 on 99Q.
We define D'(Q2U 092) to be the completion of CZ° (2 U 9€) with respect to the norm ||Vl 12(q). Then
(i) For all w € DY(Q U OQ) we have

VE|?
|Vu|2d > 1/, | E2| u?dz. (17)
Moreover the constant is optimal and not attained.
(ii) For all u € DY(Q U ON) we have
IVE? , 1 / u?0,F
Vu|*dx > uidr + = —dS(z). 18
/ [Vl o B2 2Jo0 E (@) (18)

Now suppose ©Q = Q5\Q; where ; CC 5 are both connected and €2 is connected. Suppose 0 < E in
Q9 and —AFE = p in 2 where p is a nonnegative nonzero finite measure compactly supported in €;. In
addition we assume that £ = 0 on 0Q3 and 9, E < 0 on 09;. Then (1) is optimal and not attained over
H}(QUO) :={ue H(Q):u=0 on 9Qs}.

Optimal non-quadratic Hardy inequalities are also obtained in both the interior and boundary cases.

1.2 Examples

We now look at various examples of Hardy inequalities (and applications of) which can be obtained after
making suitable choices of weights F and matrices A. In most of the examples we will take A to be the
identity matrix.

1. Hardy’s inequality: Let  denote a domain in R™ (n > 3) which contains the origin and set
2
E(z) := |z|*> ™. Then —AE = ¢y where ¢ > 0 and dy is the Dirac mass at 0. Also Izgz‘ = (M)Q s

2 z|?

and so (@) gives the Hardy’s inequality.

2. Hardy’s inequality in dimension two: Now suppose € is a domain in R? which contains the
origin. Put E(z) := —log(R™!|z|) where R := supg, |z|. Then —AFE = ¢§y where ¢ > 0 and putting F

into (@) gives

u2

1
Vul|’de > = dz, u € C(Q).
| =g o |z2log*(R=1|x|) =@

3. Hardy’s boundary inequality: Let © denote a bounded convex set in R™ and set E(z) := d(x) :=
dist(x,08). Since 2 is convex one can show ¢ is concave and hence —AJ > 0 in Q. Putting E into
(IQ) gives an improved version of ().

4. Hardy’s boundary inequality in the unit ball: Let B denote the unit ball in R™ and set
E(z) :=1 — |z|. Putting F into ([I0) gives

1 u? n—l
Vu2dx2—/ / u € C*(B).
/B" 1)y T |x|1—|x| (B)




10.

Intermediate case: Set E(x) := d(z)?>~* where d and k are as in (@). Since —AFE > 0 we obtain
(@) after subbing E into (@).

Hardy’s boundary inequality in the half space: Let R’} denote the half space and set E(x) :=
dist(x,R"}) = x,. Then putting E into (@) gives

J

Maz’ja (see [M]) obtained the following improvement

2 1 u2 o'} n
|Vu|*dz > 1 x—zdx, u e C(RY).

n n
i ]R+n

1 2 1 2
Vul?de — - [ Ldz> % ds,  uweC®R).
R 4 n ¢

> L
2 - 2 2 1
n R T 16 Jrn (22 + 27 _1)2 20

One might ask whether we can take a more symmetrical potential in the improvement, say something
like V(z) = f(zy) where f is strictly positive. Using our ode classification of potentials we will see
that this is not possible.

Hardy’s inequality valid for u € H'(Q): Let B denote the unit ball in R and set E(z) :=
|z|~'el®l. Then a computation shows that

—AE + E = 47126 in B

and where 9, E = 0 on dB. Here ¢y is the Dirac mass at 0. Putting E into (I5]) we see that

1 1 1- 2
/ |Vul*dz + —/ u*dr > —/ wu%ﬂx, u € HY(B).
B 2B 4)p =l

Also the constants are optimal (in the sense mentioned in (IH)) and are not attained.

HY(Q) Hardy inequalities in exterior domains: Let {2 denote an exterior domain in R" with
n > 3,0 ¢ Q and such that v(x) -z <0 for all z € 9. Setting F := |z|>~" in (1) we obtain

—92\?2 2
/ |Vu|*dx > (n_) / u—2da:,
Q 2 a |zl

for all uw € C°(2U ON). Moreover the constant is optimal and not attained in the naturally induced
function space.

. Hardy’s inequality in a annular domain: Assume that 0 € Q; CC Bg C R? where € is

connected and B, is the open ball centered at 0 with radius R. In addition we assume that z-v(z) > 0
on 09y where v is the outward pointing normal. Define ) := Br\Q, which we assume is connected,
and set E(z) := —log(R™!|z|). Then by the above mentioned results on annular domains one has

1 2
/ |Vul*dz > —/ ;l dx,
Q 4 Jq |z|*log”(R~"|x|)

for all u € H3(Q U Q4). Moreover the constant is optimal and not attained.

Suppose E > 01in Q, let f : (0,00) — (0,00) and set E := f(FE). Putting F into (@) for E gives

2 o (F(E)?  fUE)N 1 [ [I(E)La(E) , o
/Q|Vu|Ad:EZ/Q|VE|A (4f(E)2 _2f(E)>u dw+§ Qif(E) u“dx, u € C(Q).

An important example will be when f(FE) := E* where 0 < ¢t < 1; in fact we will use E(z) := 6(z)*
(6(z) = dist(x,00Q)) to show that if one drops the requirement that p is a finite measure (and just
assumes 4 a locally finite measure) (@) need not be optimal.




11.

12.

13.

14.

15.

16.

Eigenvalue bound: Let 2 be a bounded subset of R and E > 0, L4(E) > 0 in  with |VE|A =1
a.e. in Q. Let A4(Q) denote the first eigenvalue of £4 in Hg (). Then A a(Q)||E||2 > ” . To show
this one puts f(z) := sin%%) into the above result and drops the term involving the measure.

Suppose E is an interior weight on € with £ = 1 on 09Q2. Then by using the above result with
f(E) := (log(E))z one obtains the inequality

3+ 4log(E)

Taking instead f(F) := Elog(F) gives

log? 1
[ (Vulde > Z/ % Wiz, ue HA Q).
Q og

Poincare’s inequality in an unbounded slab: In general

/ |Vu|*dx > C/ u?dz, u e CX(Q)
Q Q

does not hold for unbounded domains. It is known that for certain unbounded domains the inequality
does in fact hold. One example would be Q := {z € R" : 0 < x,, < 7}. We now use () to show a
slightly stronger result. Put E(z) := sin(z,,) into (@) and drop a term to arrive at

2
|Vu(z)|?de > 1/ Md:zc—i—l/ u(z)?dz, u e C(Q).
Q ¢ 2 Ja

4 Jo tan?(z,,)

Hardy’s boundary inequality in a cone: Put Q := (0,00) x (0,00) and FE(x) := dist(x,00Q) =
min{z,z2}. Then —AE = /20 where o is the measure associated with the line T' := {x : 2o = 21 }.
Putting F into (1) gives

u2

1
Vuzda:Z—/— / uwe ().
Q| | 4 Jo (min{xy, z2})? V2 mln{xl,xg} (@)
Suppose —A¢ = 1 in Q with ¢ = 0 on 9. Define E := ! — 1. Then —AE = te!®(1 — t|V$|?) which
is non-negative for sufficiently small ¢ > 0. Then E is a boundary weight and hence putting E into

(@) gives

2t¢v¢2 e9(1 — t|Vo|?

which is optimal. Sending ¢\, 0 recovers (I0) with F = ¢.

Trace theorem: Let Q denote a domain in R™ where n > 3 and such that B CC Q (here B is the
unit ball). Define
1 lz] <1

E(z) == { b lz| > 1.

A computation shows that —AFE = co where ¢ > 0 and where o is the surface measure associated with
OB. Putting this E into (I0) and dropping a couple of terms gives

\Vu|2dz > f/ wdo,  ueCP(Q).
Q 2 OB



17. Regularity: Suppose E € LS () is a positive solution to L4(E) = p in  where p is locally finite
measure. Then using (@) we see that £ € H} ().

18. Baouendi-Grushin operator: Here we mention that various operators can be put into the form we
are interested in. Suppose 2 is an open subset of RN = R" x R¥ and & € Q is written & = (x, %) using
the above decomposition of RY. For v > 0 one defines the vector field V., := (V,, |z[7V,) and the
Baouendi-Grushin operator £4 := —A, — |[z[*YA,. Take

A= ( T e )

where I,,, I, are the identity matrices of size n and k. Then |V, E|* = [VE|% and —div(AVE) = L4(FE).

2 Main Results

Throughout this article we shall assume that € is a bounded connected domain in R" (unless otherwise
mentioned) with smooth boundary and A(z) = ((a*’(x))) is a n X n symmetric, uniformly positive definite
matrix with a®/ € C°°(Q) and for £ € R" we define |¢| = |§|?4(x) = A(z)€ - €.

If F is an interior weight or a boundary weight on € we have, by the strong maximum principle (see [V]),
E bounded away from zero on compact subsets of Q.

The following theorem gives the main inequalities. In addition we consider a slight generalization of the
case where F is a boundary weight on 2.

Theorem 2.1. (i) Suppose E is either an interior or a boundary weight on Q. Then

1 E|
/ |Vu|% dr — Z/ |VE—2|Au2d:U >0, (19)
Q Q
1

for all uw € H§(Q). Moreover ; is optimal and not attained.

(i)  Suppose E is a boundary weight on Q. Then

VE 1 u?
[ wuas-5 [ 52 Lrar > L [, (20)
for all w € H(Q). Moreover %

1 is optimal (once one fizes 1) and is not attained.
(iii)  Suppose E € C®(Q) with E >0, LA(E) >0 in Q and T := {z € 0Q : E(z) =0} contains
B(zg,r) N 0N for some xg € O and r > 0. Then (I9) is optimal.

Remark 2.1. One can consider more general functions E. Most of the results (including the above one)
concerning interior weights on ) can be generalized to the case where LAo(FE) = u+ h, here p is again a
nonnegative nonzero finite measure and h is a suitably smooth non-negative function.

We begin by justifying ().
Lemma 2.1. (i) Suppose E is an interior weight on Q2. Then

E
/|Vu|Ad ——/Q v |A u?da >/QE|VU|2Ad:v, (21)

for all u € C2Y(Q\K) and where v := ETu.
(i)  Suppose E is a boundary weight on Q. Then

1 VE|3 1 2
/Q|VU|‘24dI_Z/Q|E—2|AU2d:C2/QE|VU|‘24dI+§/Q%du’ (22)

for all u € H} () and v = E= u.




Proof. (i) Since E is smooth away from K and noting the supports of both u and v the integration by
parts used in obtaining () is valid. _
(il) Now suppose E in a boundary weight. Extend E to all of R™ by setting E = 0 outside of 2 and let

E. denote the € mollification of E. Let u € C* (1), ve := Eju and define F; := L4(E.). Now one easily
obtains (7)) but with E and v replaced with E.,v.. Standard arguments show that uE-! — uE~1 in H}(Q),
|\VE.|3E-% — |VEAE™ 2, E-|Vv:|4 — E|Vv|% ae. in Q and uF. — up in H'(Q2). Using these results
along with Fatou’s lemma allows us to pass to the limit.

O

Remark 2.2. When we prove our various Hardy inequalities, which all stem from (7)) we will generally drop

the term
u 2
E\V|—= dx.
/Q | (@)’”

To show the given inequality does not attain we will generally just not drop this term. This term is positive
for non-zero u provided u is not a multiple of \E. Since VE ¢ HY () this will not be an issue. In theorem
this will be a concern.

As usual we will need an ample supply of test functions for best constant calculations. The next lemma
provides this. When E is an interior weight we let g denote a solution to £4(g) = 0 in  with g = F on 99Q.

Lemma 2.2. Suppose E is an interior weight on  and 0 < v := minga F. Then

(i) wu=E'—g'e€ H}(Q) for0 <t <1

(i) Define I(t) := [, [VE[AE*~2dx. Then I(t) is finite for t < & and I(t) — 00 ast /' 5.
(ii)  Suppose E =~ >0 on 0. Define vi, :== Etlog” (y"'E) and

Ji (1) ::/QE2t72|VE|124log27_2(~y*1E)d:c.

Then vy, € HY(Q) for 0 <t < i and 7 > 1. Moreover for each 0 <t < % we have Ji(T) — 00 as 7\, 3.

Proof. We prove the results up to some unjustified integration by parts; which can be justified by regularizing
the measure, integrating by parts and passing to limits.

(i), (i) Fix 0 <t < 3 and then note that |Vu|* < CE*72|VE|% + Cg?*~2|Vg|} where C is some uniform
constant. The term involving g is harmless. Now multiply £4(E) = p by E*~! and integrate over € to
obtain

1—2t) [ E*2|VE|%dx — | ¢ YAVE).-v
A
Q o0

- /aQ(AVE) »

(t) — / div(AVE)dx

Q

(t) + (),

where e(t) — 0 as t / 3. Note [, E* *du = 0 since t < § and E = oo on K. From this we see that
I(t) = [ |[VE|3E?2dx < co and so uy € Hj (). We also see that lim, -1 I(t) = oo.

(iii) TakeO0<t< %, T > % and v; » defined as above. One easily sees that v; , is continuous near 02 and
vanishes on 9. So to show vy, € H} () it is sufficient to show

= £
9

wy = E*?|VE? log? (y7'E), wy := E*?|VE log” "*(y'E) € L'(Q).

These functions are only singular near K and 9Q. Now set W, := E*2|VE|?log” ?(y 'E) and so
wy = W, and w; = W, 41. Now suppose ¢’ € (t,3) and so

2 10g27- (V_IE)

v < CE* 2|VE|? near K ,

W,y = E* “2|VE|



and so w; =W,y € Ll(KE) where K. is a small neighborhood of K. Now note that ws is better behaved
than wy near K and so we also have wq € Ll(Ka).

Define €. := {z € Q: E(z) < v+ ¢} and take € > 0 sufficiently small such that K C 2\Qs.. Now using the
co-area formula we have

IN

/ E? Y VE|?log” *(y ' E)dx sup|VE|/ E*"210g® (v 'E)|VE|dx
Q

S C/ 2t 210g27' Q(S)dS,

which is finite for 7 > £. So we see that wy € L*(.) for sufficiently small & > 0 and noting that wy is better
behaved near 02 than wy we have the same for w;. Combining these results we see that v, » € H& (Q).

Fix 0 <t < % and 7 > 3. By Hopf’s lemma we have |[VE(z)| bounded away from zero on Q. for & > 0
sufficiently small; fix € > 0 sufficiently small. Then

Ji(r) > C / E*210g”%(y L E)|VE|dx
Qe

~ +5
> C/ 2t 210g2‘r 2( )dS,
1

and a computation shows the last integral becomes unbounded as 7 X\ %
O

Proof of theorem 2.1} (i) Using lemma 2] and, in the case where F is a interior weight on €, the fact
that CO1(Q\K) is dense in H(Q) we obtain (I9). We now show the constant is optimal Suppose F is an
interior weight on Q and define E. := ¢ + E, g. := £ + g where € > 0. Define I.( fQ |VE. |4 E*2dx.
As in the proof of lemma 2.2 one can show that for each ¢ > 0 lim; -1 I (t) = 0. We use ug e := EL — gt as

test functions. Let 0 < t < % and € > 0. Then

fQ |Vut,€|?4d$ < t2Ia (t) + OO + Ol AV Ia (t)

fQ Wg—;‘i‘uf’gdx L) - 0218(%) - 0315(0)7

Qt,s =

where the constants C possibly depend on e. From this we see that lim, 1 Qte = % after recalling Q) . > i.
Now fix € > 0 and let u € C2°(€) be non-zero. Then a simple computation shows

fQ [Vul%da < fQ |Vul%dz
—_ b
Ja WEb;IiuzdI Ja Ivgglilﬂdx

which, when combined with the above facts, gives the desired best constant result. To see % is not attained
use (2I)).

Now suppose E is a boundary weight on ©, € > 0 and ¢ > 3. Define f.(z) := z — %l for z > e and 0
otherwise. Using f.(E) € H}(Q2) as a test function in the pde associated with E one obtains, after sending

e\, 0,

2t—1

(2t—1)/QE2f—2|VE|§1dx=/QE%—ldu, (23)

which shows that E* € Hg () for 3 < ¢ < 1. To see 1 is optimal in ([J) use E (as ¢ \, 1) as a minimizing
sequence.
(i) Suppose E is a boundary weight on €. Let + < ¢ < 1 and so E* € H((2). Using (23) we have

[ IVE2de — 1 [ V] IVEL (gt
t)2
fsz (EE) dp

Ll
4’

DO =+

10



which shows that % is optimal.
(iii) Suppose F is as in the hypothesis. The only issue is whether % is optimal. Without loss of generality
assume that 0 € 9Q and B(0,2R) N 9N C T'. Suppose 0 < r < R and define

1 x € Q(r)
p(x) = ¢ B r € QR)\QA(r)
0 z € N\QR),

where Q(r) := B(0,7) N 2. Define u; := E'¢ which can be shown to be an element of H}(Q2) for ¢ > 1. One
uses us as t "\, % as a minimizing sequence along with arguments similar to the above to show % is optimal.
O

The following example shows that if we just assume that 0 < E € H}(Q) with L4(E) a locally finite
measure then (I9) need not be optimal.

Example 2.1. Take @ a bounded convex domain in R" and set §(z) := dist(z,0). Fiz 3 <t <1 and set
E:= 4" € HY(Q). Then
IVE]? 2
EZ 8%
and so putting E into (I9) gives

pi=—AE =t(1—-1)0""2 + 16" (-As) >0 in Q,

t2 u?
2
dex > — —d
/Q|Vu| = /gz 52

for u € HY (). This shows that ([I9) was not optimal. This apparent failure of theorem [21] is due to the
fact p not a finite measure; use the co-area formula to show 6*=2 ¢ L(Q).

We now give an alternate way to view best constants in (20). Define C to be the set of (3,a) € R? such
that

VE 2 2
|Vul4dx > a/ |E—2|Au2dar + 0 %d,u, u € HY (). (24)
Q Q

Q
Theorem 2.2. Suppose E € L*>®(Q) is a boundary weight on Q. Then

R Y e

Moreover (24) does attain on T := {(7,7 — 72) : 7 > 1} C OC and does not attain on OC\T.

Proof. Using similar arguments to the above one can show that E* € Hi(Q) for all ¢ > % Suppose (3, a) € C.
If 3 > 1 then testing 24) on u := EP shows that a < 8 — 3% If 3 < § then testing 24) on u := E' and
sending t \, % shows that o < i. Now for the other inclusion.

Fix t > 1 and put E := E*. Then we have

VEL _olVER  £alF) ., IVER | £a(E)
E2 o s E? E
Putting F = Fs into (1) we obtain
t 2 IVEP , t [ u?
|Vu|de > (= — —)/ u“dx + —/ —dpu, (25)
/Q 4 2 4’ ), E? 2 Jq E
and so we see that (&, % — %) € C for all ¢ > 1. From this we see that the curve a = 8 — 3% for 8 > 3 is

contained in C. It is straightforward to see the remaining portion of 9C’ is contained in C.

To see the inequality does not attain when (3,«) € OC\I" use the fact that (@) does not attain in Hi and
the fact that p > 0. To see the inequality does attain on the remaining portion of JC note that (28) attains
at u:= E% € H)(Q) for t > 1. O

11



We now give a result relating to the first eigenvalue of £4 on subdomains of Q. Suppose (E, A4(Q2)) is
the first eigenpair (with E > 0) of L4 on H}(Q) and for B C Q we let A4(B) denote the first eigenvalue of
EA on H& (B)

Corollary 2.1. Let E be as above. For B C § we set

2 2
a(B) := iIéf |VEE2|A, (B) := Slép |V£|A
(i)  If a(B) > Aa(Q) then () @)
a(B) 4+ 24(02))?
4Xa(B) =2 a(B)
(i)  If Aa(Q2) > @(B) then
IAa(B) > (@(B) + 2a(Q))?

a(B)
Proof. Let B C Q and let v € C°(B) with [ u? = 1. Using (25) gives

IVEI%
B2

t2
2/ |Vulidz > (t — —)inf + Aa(Q)t,
B 2" B

for 0 <t < 2. If £ > 2 then we get the same expression but with the infimum replaced with supremum. Now

24 9 and in case (ii) set t :== 1+ 240 5 9 16 see

take the infimum over u and in case (i) set ¢t := 1+ e =(5)

the result.

O

2.1 Weighted versions

We now examine weighted versions of the above inequalities which, as mentioned earlier, can be seen as
analogs of Cafferelli-Kohn-Nirenberg inequalities. We now introduce the spaces we work in.

Definition 2.1. For t € R we define |[u|} := [, E*'|Vul}dx.

Suppose E is an interior weight on Q. We define X; to be the completion of CO(Q\K) with respect to || - ||;-
In the case that E is a boundary weight on Q we define X; to be the completion of C%*(2) with respect to
the same norm.

Remark 2.3. One should note that if E is an interior weight on Q and t > % then X; does not contain
C(Q). To see this use [20) to see that if C>(Y) C X, then E' € H () which we know to be false. For
t < 1 we do have C(Q) C X;.

Theorem 2.3. Suppose t # % and E an interior weight on Q2. Then
1
/ E*|Vul|%dr > (t — 5)2/ |VE[4 E* %u?dx, (26)
Q Q

for all w € X;. Moreover the constant is optimal and not attained.

Proof. Let t # 0,1, u € COHQ\K) and define w := E'u € C2H(Q\K). Put w into

1 [ |VEJ]?
Vuw|4dr > = Aw?de,
/Q| w|Agc_4Q o wdx

and re-group to obtain (26). We now show the constant is optimal. Let v, € C%(Q\K) be such that

_ fQ Vo, |4 de

|[VE|?
fsz v, de

1
D,, : —.
1

12



Define u,, := E~tv,, € X;. A computation shows that

Jo B? |V, 4 de

=D+t —t,
Jo IVE[A E?=202 dx

and since D,,, — % we see that (¢ — %)2 is optimal.

For the case v := mingg E > 0 we can show the constant is not obtained by using later results on improve-

ments. If v = 0 we then sub w into () instead of (I9) and hold onto the extra term

/ E|\V(E'" 2u)[%dx
Q

to see the optimal constant is not attained.

Theorem 2.4. (i) Suppose 0 £t < % and E is a boundary weight on Q. Then

1
/ E*|Vu|3dr — (t — —)2/ |VE[4E* 2u?dr > 0,
Q 27 Ja
for all uw € X;. Moreover the constant is optimal and not attained.

1 Suppose 0 £t < L and E is a boundary weight on Q. Then

(ii)  Supp 2 y weig

1 1
/ E*|Vul|%dr — (t — 5)2/ |VEAE* 2u?dx > (5 - t)/ E*~1u2dy,
Q Q Q
for all w € X;. Moreover the constant on the right is optimal and not attained.

(iti) ~ Suppose t > 3 and E € L*(Q) is a boundary weight on Q. Then

i Jo E?'Vuldx
inf { [o IVER E2—2u2dx cue X \{0} =0

Proof. We first prove @28) for u € C%1(Q) which then gives us ([27) for the same class of u’s.

(27)

(28)

Suppose

0#t< % and F is a boundary weight on 2. We now use the notation introduced in the proof of lemma 2T}
namely E. is the standard mollification of E and F. := L£4(E.). Recall that for any u € C%!(Q) we have

uF. — up in H~Y(Q) and that we have

|VE. |A )2 1 v?
\V4 dr > - dx —F.d
/|v|,4 / Ftiide 5 [ R

for all v € H}(Q). Now let u € C21(Q) and set v := Elu € C%1(Q). Putting v into the above gives

1 1
/ E2|Vul4dx > (t — 5)2/ |VE.[4AE?2u?dx + (5 —t) | E* '?F.da.
Q Q Q

Now since E2* — E?!in L]

(Q) we have

/E§t|Vu|f4d:c—>/E2t|Vu|124d:1:,
Q Q

and using similar ideas from the proof of lemma [2.I] one can show that

/Egt_lu2F5da:—>/E2t_lu2du.
Q Q

(29)

So using these results, sending £ \, 0 in (29)) and after an application of Fatou’s lemma we arrive at (28] for

u € COHQ).

13



Now we show the constants are optimal. Recalling the proof of theorem 2.1] there exists v, € C°(2) such
that

VE[;
Do fQ |va|?4dl' . 1 P fQ |VUm|?4dx — ifg | Ez‘AUEndQU B 1
m o 2 ’ m T v2 N
fQ IVEEJA,U”Qnd:r 4 fQ 2y 2

Define u,, := F~'v,, which one easily sees is an element of X;. Then

Jo E? |V, 4 dx

2th E~'v,, Vv, - AVEdz

®,, 1= =Dy, +t* — and
Jo IVE|L E?=22 dx o IVEE2\2AU72nd:C

o o Jo B Vunlhde — (t = 3)° Jo VERE Pufde oty VB[ 02 da — 2t [, B~ 0, Vo, - AV Eda

' Jo B dp Ja %d,u '
Using E., F; as defined above one can show, using similar methods, that

2 E 2
2/ E~ 0, Vo, - AV Edz = / I g +/ VEZ 2 g (30)
Q o F o E?

So from this we see that

and noting that

v, 1
Jo B Dm—3
VEQ )
Jo | E2IA”v2nd Fom

we see that (27)) is optimal. Similarly one sees using [B0)) that ¥,, = F,,, — ¢t and hence (28] is optimal.

To show the constants are not obtained we as usual hold on to the extra term that we dropped in the above
calculations. Since [, E~!|[VE|%dx = oo one can show this extra term is positive for u € X;\{0}.

(iii) Now take ¢t > & and E a boundary weight on Q. For &,7 > 0 but small define

e r () = 0 E<e
ST T BT —e" E > ¢
Then u. , € X;. Now use the sequence u,, where u,, := uc,, -, to see desired result where €, := m~" and

Tm = m L

O
2.2 More general weighted inequalities
We now investigate the possibility of inequalities of the form
/ W(z)|Vulide > / U(x)u’dz, u € COHQ\K).
Q Q
Theorem 2.5. Suppose E is an interior weight on Q with v := mingagF and 0 < f € C*°(y,00). Then
2 2 2 f(E)2 " 2
[ 1PVl > [ 1vEE (L + 1B)(B)) s, (31)

for allu € COL(Q\K). In addition this is optimal (in the sense that the optimal constant is 1) ifliminf,_, . f"(z) >

I 22 _
0 orif lim, O 0.
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Proof. Let u € COY(Q\K) and define w := f(E)u € CO1(Q\K). Putting w into ([T), integrating by parts
and re-grouping gives @I). Let v,, € C%*(Q\K) be such that

Jo VU [*dzx 1

Dy i= e — —.
Q |VEE2‘AU2 dx 4
Without loss of generality we can assume the supports of v, concentrate on K. Define u,, = % €
CY1(Q\K). Then a computation shows that
Jo F(E)? V|4 dx

JoIVER ( 2532 + f(E)f"(E )) u? dx

fQ [Vom|%de + fQ IVELAL () U da

f(E)?
IVE| IVE|Z " (E)
Jo Tt vindr + [ F(E)? v dx
Now suppose liminf, o, f”/(z) > 0. Then using the monotonicity of x — gii, where o and 3 are positive
2 e
constants, shows Q,, — 1. Now suppose lim,_, o, = ff(z()z) = (. Using this and the fact that the v,,’s support

concentrates on K one easily sees that

VE 2 f// E
fszl f‘(AE)2( )vfnda:

— U.
f IVE% o d 0
Q Tapz Ym@T

Using this one sees that @, — 1.

2.3 Improvements

We now investigate the possibility of improving (I9) in the sense of potentials. The method we employ was
first used by Ghoussoub and Moradifam (see [GM]). We now define precisely what we mean by a potential.
Suppose E is an interior weight on 2 and 0 <V € C*°(Q\K) (recall K is the support of ). We say V is a

potential for E provided
E
/|V % dx ——/ v |A u?dx >/V(:v)u2d:v, (32)
Q

for all u € Hi(£2). We analogously define a potential V' for the case that E is a boundary weight on €2 except
we restrict our attention to 0 <V € C*°(£2). The next theorem gives necessary and sufficient conditions for
V to be a potential of E in terms of solvability of a singular linear equation. For the necessary direction we
will need to assume some conditions on {2.

(B1) Suppose E is an interior weight on 2. We assume that that there exists a sequence (0,)m of
non-empty subdomains of Q which are connected, have a smooth boundary, Q,, CC Q\K, Q,, CC Q1
and O\K = U, Q,

(B2) Suppose F is a boundary weight on 2. We assume that there exists a sequence (Qy,)., of non-empty
subdomains of €2 which are connected, have a smooth boundary, €2, CC Q,,11 and Q = U,

Theorem 2.6. (interior improvements) Suppose E is an interior weight on Q and 0 <V € C>*(Q\K).

(i)  Suppose there exists some 0 < ¢ € C*(Q\K) such that

AVE -Vo¢

—La(¢) + 5

+Ve¢p <0 in K. (33)
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Then V' is a potential for E. After the change of variables 0 := E%¢ one sees that it is sufficient to find a
0 < 0 € C*O\K) such that
~£a6) |, [VEL,
0 4F?
(i)  Suppose V is a potential for E and Q satisfies (B1). Then there exists some 0 < 6 € C*(Q\K)

which satisfies (34).
It is important to note that the above theorem can be used (in theory) for best constant calculations;

without the need for constructing appropriate minimizing sequences. To see this suppose 0 < V' is a potential
for the interior weight E and let C(V') > 0 denote the associated best constant, ie

1V <0 inQ\K. (34)

|VE\A
(V) = mf{fﬂlv“| dj_V_ufgx utdr ueﬂé(Q)\{O}}.
Q

Then one sees that

—LA(0) n IVE|4

_ . 2
C’(V)—sup{c>0.5|0<9€c (Q\K) s.t. 7 1E?

+eV <0 inQ\K}.

After theorem 2.9] which is analogous result to the above theorem but phrased in terms of solvability of
a linear ode, this remark on best constants will be of more importance because of the shear magnitude of
results concerning solvability of ode’s.

Theorem 2.7. (boundary improvements) Suppose E is a boundary weight on Q and 0 <V € C®(9).

(i) Suppose E € C%Y(Q), V is a potential for E and Q satisfies (B2). Then there exists some
0<0eCH¥(Q) for all « < 1 such that

—LA(0) n IVE|4
0 4E2

(ii)  Suppose there exists some 0 < ¢ € C*(Q) such that

—La(¢)  AVE-Vé u .
P 4 5 —ﬁ—FVSO in €. (36)

4V <0 inQ. (35)

Then V' is a potential for E.

Remark 2.4. Note that putting 0 := E2¢ into (38) gives, at least formally, (33). Also one can replace
by the absolutely continuous part of p in (30).

Proof of theorem (i) Suppose V € C*(Q\K) is non-negative and there exists some 0 < ¢ €
C%(Q\K) which solves (33). Let v € C%'(Q\K) and define v := E 2 u so by lemma 1] we have

E
/|Vu|Ad ——/ v |A u?dx /E|Vv|124d:c.
Q

Now define ¢ € CO1(Q\K) by v := ¢b. A calculation shows that
E|Vulh = BY?[Vol5 + EG*| VY[ + 2E¢p AV - Vi, (37)

and integrating, by parts, the last term over {2 we obtain

/ V2E|NV |4 dr + 2 / MEAVS - Vipde = / V2 (La(P)PE — QAVE - Vo) dx
Q Q

_ AVE V¢
/uz <£A<¢>> ¢—E ) "
Q

= Q,
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but by @B3) Q > [, V(z)u*dz and so we see

/|v % dx ——/ |VE|A u?de >/E¢2|v¢|i,d:c+/vu2d:c,
Q Q

for all u € C21(Q\K). Now since C%1(Q\K) is dense in H} () and using Fatou’s lemma one can show (32)
holds for all u € H}(Q).

(ii) Now suppose V € C*(Q\K) is a potential for E and (£, ), is the sequence of domains from assump-
tion (B1). Define the elliptic operator P by

IVER ,

P(u):=La(u) — 15

— Vu.

Using a standard constrained minimization argument along with the strong maximum principle there exists
some 0 < 0,,, € H}(Qy,) such that

P(On) = Amb  in Qn
0, = 0 on 0Q,,, (38)

where 0 < Ay, ie. (0, Am) is the first eigenpair of P in H}(Qn). Since H} (Qm) C HE(Qm+1) we see that
Am is decreasing and hence there exists some 0 < X such that A, \, A. Let zg € N,;,,, and suitably scale
0., such that 6,,(z¢) =1 for all m. Now fix k and let m > k + 1. Then

P(bm) — Ambm =0 in Qgy1,
and we now apply Harnacks inequality to the operator P — \,, to see there exists some C} such that

sup(bp,) < C inf(0,,) < Ci.
Q 2,

So we see that (0,,) is bounded in LS (Q\K). Now applying elliptic regularity theory and a bootstrap
argument one sees that (6, )m>k+1 is bounded in C1(€y,) for a < 1 and after applying a diagonal argument
one sees that there exists some non-zero 0 < 6§ € C1*(Q\K) such that 6,, — 6 in C1(Qy,) for all k. Using
this convergence one can pass to the limit in [B8) to see that P(f) = A0 in Q\K and after applying the
strong maximum principle on €, one sees that § > 0 in Q\ K. Now applying regularity theory one sees that
0 € C*(O\K).

O
Proof of theorem 2.7l (i) The proof is essentially unchanged from the proof of theorem
(i)  Again the proof is the same as in theorem 26| except now the measure p does not drop out. O

The next theorem gives some explicit examples of potentials.

Theorem 2.8. (i) Suppose E is an interior weight on , 0 < v := mingg E and 0 < f € C?((7,)).
Then for all u € CO1(Q\K) we have

[t [ 52 VER 2, /|VE|A( " )_f’gs))u%_

In particular by taking f(E) := \/log(y~"1E) we obtain

2
/|V 1% dx __/ % wldx 1 &Qﬁd% (39)
0 o E?log?(y~'E)
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for all uw € H}(Q). Now suppose 0 <y = E on 0. Then 1 (on the right hand side of (39)) is optimal.
(i)  Suppose E € L*°(Q) is a boundary weight. Then

2
/lv |Ad __/ |VE|A 2d > 1/ |QVE|A u2d:c, (40)
Q E?log (7e|‘E}ﬁLm)

for all u € HL ().

Proof. (i) Let E be an interior weight on €, v := mingg F > 0 and suppose 0 < f € C?((y,0)). Put
¢:= f(E) mto (BZﬂ) to obtain the result.

Now take f(E) := /log(y"'E) to obtaln B9) for all u € CO1(Q\K) and extend to all of H}(Q2) by density
and by Fatou’s lemma We now show 1 7 is optimal.

Fix 0 < t < § and for 7 > 3 define u, := E'log” (y"'E). By lemma22 u, € Hj({2). A computation shows
that

Jo Vurlyde — 3 Jo Bgbuzde 1 fy B2V, log® (By ! )da

= (2 ) .
Jo risgrderyudda 47 [ B2 2|VE log” *(Evy~)dz

+72
Jo E* 2| VE log” Y (BEy~)dw
Jo 22| VE[} log” *(Ey—1)dx

oo TP Is

= (-

where J;(7) is defined in lemma 22 Sending 7\, 1 and using results from lemma 22 we see 1 is optimal.

(ii) Suppose E € L>*(2) is a boundary weight on €. Here we use the notation from the proof of lemma
2Tt E. :=n.+E, F. := La(E.). Let 0 < f € C%((0, || E||L=<]). Then starting at ([22)) for E. and decomposing
v as usual one arrives at

/|Vu|Ad ——/ |VE |A u?dx |V )i( f(E:) — féE:))u%x (41)
+A (féﬁzi oE) @

for all u € C°(Q) after using methods similar to the proof of (i). Now take f(z) := ,/— log(m) and
let uw € C°(€2). Then one has

E. 1 E|?
/|Vu|Ad __/ |V 2|A w2da / . |Z |AE wlde + I,
o EZ =1 o E2log™(z1=)

1/ u? 1
L= 2 (14— 2 \Frde
2 9E3< 10g(7€||§||1°°>> :

Using methods similar to ones used in the proof of lemma 2.1] one easily sees that lim.\ o I > 0. Using this
and standard results on convolutions and Fatou’s lemma we obtain the desired inequality for u € CZ°(£2)
and we then extend to all of H{(€).

where

O

We now obtain a more useful (than (34)) necessary and sufficient condition for V' to be a potential for E;
at least in the case where E is an interior weight on 2 and E =~ > 0 on 9. As in theorem 2.6l we assume
some geometrical properties of ).
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Theorem 2.9. (Interior improvements using ode methods) Suppose E is an interior weight on Q,
E=7>00n0Q,0< fe€C®(y,00) and Q :={z € Q:v+ 1 < E(zx) <t} is connected for sufficiently
large t. Then the following are equivalent:

(i)  Forallu e HE(Q)

E
/ |Vu|%de — —/ v |A ulde > / f(B)|VE|Au?dx. (43)
Q
(ii)  There exists some 0 < h € C?(~y,00) such that
1
h'(t) + (f( )+ @) h(t) <0, (44)

n (7, 00).

Proof. Let E be an interior weight on Q, E =~ >0 on 9Q and 0 < f € C®(y, 00).

(i1) = (i)

Setting 0 := h(FE) and using (ii) along with theorem [2.0] gives (i).

The proof will be similar to theorem (ii). Let v < ty, " oo and define Q,, := {x € Q : v+ i <
E(z) < tm}. By hypothesis we can take ), to be connected and non-empty for each m. Now define
Hj 5(Qn) :={¢ € Hj(Qn) : ¢ is constant on level sets of E} and set

F@) =g [ (VoRdn, J0)= g [ IVERUEN)etde. My i {0 € B p(,): T(0) =27}

Standard methods show the existence of 0 < ¢, € Hj 5(Qn) such that X, := infyr,, F = F(¢y,) and hence
La(¢m) = Am|VER(f(E) + 752)0m in Q, with ¢, = 0 on Q. Since Hy 5(Qn) € H) 5(Qmy1) one sees
that Am is decreasing and from ([@3]) one sees that A,, > 1 and hence there exists some A > 1 such that

Am \\ A. By su1tably scaling ¢, as before and after an application of Harnacks inequality we can assume
that ¢, — ¢ in C’l F(Q\K) where ¢ > 0 is nonzero and constant on level sets of E. Passing to the limit

shows that )

£a@) = AVER (£(B)+ gz )6 in 0\,

and a strong maximum principle argument shows that ¢ > 0 in Q\K. Since ¢ constant on level sets of E
we have ¢ = h(E) for some 0 < h in (v, 00) and since ¢ smooth on Q\K we see that h is smooth on (v, 00).
Writing the equation for ¢ in terms of h gives

W(B)VER = Ah(E) <f(E) n 5) VER i O\K.

and using Hopfs lemma we can cancel the gradients.
O

Using the vast knowledge of ode’s one can use the above theorem to obtain various results concerning
potentials of the form V(z) = |VE|? f(E). We don’t exploit this fact other than to look at one result.

Corollary 2.2. Suppose E is an interior potential on Q and E =0 on 9. Then there no 0 < f € C(0, 00)

such that v
/|v 1% dx ——/' 4 u?da >/f WWVEPu?de,  ue HYHRQ).
Q
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Proof. Suppose there is such a function f. Using the proof of theorem one sees that there is some
0 < h € C?%(0,00) such that

R (t) + A (f(t) + 4—12> h(t) = 0,

n (0,00) where A > 1. Now set h(t) = /ty(t) to see that

D (o + 25,

in (0,00) and y(t) > 0. But oscillation theory from ordinary differential equations shows this is impossible.
O

Other than some regularity issues this ode approach extends immediately to the case where E is a
boundary weight in Q. Using this corollary (but in the boundary case) one can show the result mentioned in
the examples section regarding improvements of Hardy’s boundary inequality in the half space; the regularity
is not an issue in this example since §(x) := dist(x, OR"}) = x,, is smooth.

We now present a result obtained by Avkhadiev and Wirths (see [AW]). Given a domain 2 in R™ we
say it has finite inradius if §(x) = dist(x,0Q) is bounded in Q. We let Ay (Lambs constant) denote the
first positive zero of Jo(t) — 2tJ;(t) where J, is the Bessel function of order n. Numerically one sees that
Ao = 0.940.... Now for their result.

Theorem 2.10. (Avkhadiev, Wirths) Suppose § is a convexr domain in R™ with finite inradius. Then

2 1 u? A3 2 1
|Vu| dx > = dr + s [ uidz, u € Hy ()
) 0 16017 Ja

is optimal.

This extends a result of H. Brezis and M. Marcus (see [BM]) which said that if £ is a convex subset of

R"™ then .2
1 1
Vul?de > = | —dr+ —— 2d Hg(Q
Q| ulde / ez 4diam?(Q) /Qu “ w € Ho(6)

where diam(€2) denotes the diameter of 2. Note that there are unbounded convex domains with infinite
diameter but finite inradius; for example take a cylinder.

We establish a generalized version of this result. Suppose p is a nonnegative nonzero locally finite measure
in © (possibly unbounded) and 0 < E € L>*(Q) is a solution to

La(E) = p in Q
IVE|4 = 1 a.e. in
E =0 on 0N.

We then have the following theorem.

Theorem 2.11. Suppose E is as above. Then
1 u? A2
Vu|adx > /—da:—l—io/lﬁd:z:,
Jywetie= 5 [ e g |

Proof. Let E be as above. Now extend E to all of R” by setting £ = 0 on R"\Q, let E. denote the
mollification of E and F; := L4(E.). Returning to the proof of theorem 2.8 (ii) we have

|VE |A |VE€|?4 " f/(EE)
/|VU|Ad ——/QT u?dz /QTEE) <—f (EE)_TE) wde + I,
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where

[ (PE) N a
IE"/Q<f<E€> 2E€) Fedz,

for u € C°(Q) and 0 < f € C%((0, ]| E||1=]). Now set X :=
f(t) :== Jo(v/At). Tt is possible to show that

A2 .
W where \g is Lambs constant and define
LOO

Ly @Y ,:
ft) >0, f(t)( O ) NOF

in (0,||E||Le). Fixing u € C2°(2) and subbing this f into the above gives

E 2
/|Vu|Ad ——/ v |A u?dx 0 /|VE| w?de + I,

2
L

after noting that ||E.||p~ < ||E|L~ and where I, := le(E5>u2FEdIZ?. It is possible to show that [ €
C>=((0,]|E||z=]). A standard argument shows that [(E.)u — [(E)u in H}(Q) and uF.dz — up in H=1(Q)
and hence one can conclude that liminf.\ o I. > 0. Passing to the limit (as ¢ \, 0) in the remaining integrals
gives the desired result. O

We now look at improvements of the weighted generalized Hardy inequalities. The next theorem allows
us to transfer our knowledge of improvements from the non-weighted case to the weighted case, at least in
the case that E is an interior weight.

Theorem 2.12. (Weighted interior improvements) Suppose E is an interior weight on Q and 0 <V €
C>®(Q\K). Then the following are equivalent:

(i)  For all u € H}(Q)
/|Vu|Ad > - /'VE|A u?dx +/Vu2d:1:. (45)
Q Q

(ii) Forallt# 1 andu e X,

1
/E2t|vu|§,dxz (t— 5)2/ |VE|2AE2t_2u2d:v+/ VE*u%dx. (46)
Q Q Q

(i)  For allu € X1
/ E|Vul4dz > / V Eu?dz. (47)
Q Q

Using similar arguments one can obtain a version of theorem [2.12] for the case when E is a boundary
weight on ; we omit the details since the results is not as clean.

Proof. Let E be an interior weight on 2 and 0 <V € C*(Q\K).
(i) = (i)
Suppose (i) holds, ¢t < 3, u € CX(Q\K) and define v := E'u € C'(Q\K). Then putting v into (@F) and
performing some integration by parts gives (0l
(i) = (iii)
Suppose (ii) holds. Let u € C%1(Q\K) which is an element of X; for all t. Now using (@8] for this u and
sending ¢t /" 1 gives ({T).
(iii) = (i)
Suppose (iii) holds, u € COM(Q\K) and v := EZu € C*(Q\K). Putting v into (7) and integrating by
parts gives H) for all u € CO1(Q\K).
(]
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2.4 Hardy inequalities valid for u € H!(Q)

Let K be a compact subset of Q with dimpe.(K) < n — 2. Standard arguments show that C%1(Q\K) is
dense in H' ().

Definition 2.2. We say E is a Neumann interior weight on § provided: there exists some compact K C €2,
dimpes(K) <mn—2, E € C®(Q\K), info E > 0, LAo(E) + E is a nonnegative nonzero measure p whose
support is K, E = oo on K and AVE -v = 0 on 0Q where v(zx) denotes the outward normal vector at
x € of.

Theorem 2.13. Suppose E is a Neumann interior weight on Q. Then
(i)  Foru e COYQ\K) and v := E=u we have

1 VE
/|Vu|Ad:c+2/ u?de > 4/ | E2|A u*de + | E|Vou|idr. (48)
Q Q

1 VE
/|Vu|Ad:v+2/ > 4/| i u’dr, (49)

holds for all u € H'(Q)). Moreover X 1 and 3 5 are optimal in the sense that if one fizes % then you can do no

better than % and vice-versa. Also the inequality is not attained.

(i)

One can again view the best constants in a different manner which is analogous to theorem 2.2} we omit
the details.

Proof. Let E be a Neumann interior weight on (2.
(i) Let ue C%Y(Q\K) and define v := E2 u. Then

IVE o
AE?

|Vul} = E|Vo|4 + +ovVu- AVE,

and integrating this over 2 gives

1 VE
|Vu|Ad:c+2/ /Q| 4 u?dx +/§2E|Vv|?4d:c. (50)

(ii)  Using (i) and the fact that C%'(Q\K) is dense in H'({2) one obtains (@) for all u € H' ().
We now show the constants are optimal. We first show that E* € H'(Q) for 0 < ¢ < 4.
As in the proof of lemma the following calculations are only formal but they can be justified as hinted
at there; by first regularizing the measure, obtaining approximate solutions and passing to the limit. Fix
0 < t < 3 and multiply £a(E) + E = p by E*~! and integrate over { using integration by parts and the
fact that £ = oo on K along with the boundary conditions of E to see that

/E%dx:(1—2t)/E2t—2|VE|§,dx, (51)
Q Q

which shows that E* € H'(Q) for 0 < t < % To show the constants are optimal we will use as a minimizing
sequence Et ast / % A computation shows

Jo|VE'Rdz + 5 [o E*'dx 2 1
_ —
fsz IVEEJAE%CM

and we see that % is optimal. One similarly shows % is optimal.
To show the inequality does not attain we, as usual, just hold on to the extra term that we dropped in the
above calculations. This term is positive for non-zero u € H*(Q2) provided E2 ¢ H' () which is the case

after one considers (GBIJ).
(|
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We now examine weighted versions of (@9). Suppose E is a Neumann interior weight on (2 and as usual
we let K denote the support of p. For t # 3 and u € C2!(Q\K) we define

ul]? = Jo E?|Vul?dz + [, E**u*dx t<i
te E?|Vul?dx t> 4
Q

and we let Y; denote the completion of C%!(Q\K) with respect to this norm. We then have the following
theorem.

Theorem 2.14. Suppose E is a Neumann interior weight on Q and t # % Then

1 1\?
/ E*|Vul|%dx + (— — t> / E?u?dx > <t — —) / E*72|\VE4u*dz,
Q 2 Q 2 Q

for all w € Yy. Moreover the constants are optimal and not attained.

Note in particular that for ¢t > % one only has a gradient term on the left hand side and so we can

conclude that C*°(£2) is not contained in Y; for ¢ > 3.

Proof. Suppose E is a Neumann interior weight on €2, ¢ # % and let u € C>!(Q\K). Putting E'u into (4B)

gives
1 1\*
/E2t|Vu|?4dx+ (——t>/E2tu2d:c2 <t——) /E2t72|VE|124u2d:17+/ E|\Vw|4dx
Q 2 Q 2 Q Q

where w := E'~2u. To show the constants are optimal one takes the same approach as in theorem 2.3 We
now show the optimal constants are not obtained. Suppose we have equality for some nonzero u € Y;. Then
it is easily seen that vE € H'(Q) which we know is not the case.

O
We now examine improvements of (49).
Theorem 2.15. Suppose E is a Neumann interior weight on Q2. Then
(i) Suppose V € C*(Q\K) and there exists some 0 < ¢ € C*(Q\K) N CH(Q\K) such that
AVE -
—LA(¢)+M+V¢§0 in Q\K, (52)

E
with AV¢ -v >0 on 00. Then

1 1 E|?
|Vl + —/ u?dr — —/ v 2|Au2d:c > / V(z)u?de,
Q 2 Ja 4Jo E Q

for all u € H(Q). B
(i)  Suppose 0 <V € C*(O\K) is such that

1 1 E|?
|Vl + —/ u?dr — —/ v 2|Au2d:c > / V(z)u?de,
Q 2 Ja 4Jo E Q

holds for all w € H'(2). In addition we assume that {x € Q : E(z) <t} is connected for sufficiently large t.
Then there exists some 0 < 8 € C*°(Q\K) such that

0 VE|?
0, IVER

O+VO<0  inQ\K, (53)

with AVO -v =0 on 0N.
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Note that one can go from (52) to (B3) by using the change of variables § = ¢E% in the case that
AV¢ - v =0 on 0f.

Proof. The proof is similar to the proof of theorem
O

Remark 2.5. One can obtain an analogous version of theorem [Z12 for the case where E is an interior
weight on Q satisfying a Neumann boundary condition.

2.5 H'(Q) inequalities for exterior and annular domains

In this section we obtain optimal Hardy inequalities which are valid on exterior and annular domains. More-
over these inequalities will be valid for functions u which are nonzero on various portions of the boundary.
For simplicity we only consider the case where A(x) is the identity matrix and hence £4 = —A; the results
immediately generalize to the case where A(z) is not the identity matrix. We first examine the exterior
domain case.

Condition (Ext.): We suppose that £ > 0 in R”, —AF is a nonnegative nonzero finite measure (which
we denote by p) with compact support K and we let € denote a connected exterior domain in R™ with
dist(K,€) > 0. In addition we assume that the compliment of €2 denoted by Q° is connected, lim|;| .o E =0
and 9, F > 0 on 0f).

We will work in the following function space. Let D'(Q U d2) denote the completion of C°(Q U 9Q)
with respect to the norm ||Vul|12(q). Note we don’t require u to be zero on the boundary of 9Q. We then
have the following theorem.

Theorem 2.16. Suppose E, i, K,Q are as in condition (Ext.). Then
(i)  For allu € DY(QUON) we have

1 E?
|Vu|*dz > —/ v 2| u?da. (54)
Q 4Jo E

Moreover the constant is optimal and not attained.
(ii)  For all u € D'(Q U 0Q) we have

1 VE|? 1 20,E
A |Vul*de > Z/Q | E2| u?dr + 5/852 4 I ds(z). (55)

Proof. Let u € C°(QU Q) and set v := E 2 u. Then as before we have

E 2,,2
NVERY _ pivop +ove-vE, o (56)

2
[Vul* — i i

Integrating the last term by parts gives

2
/ vVou - VEdr = l/ Y 8UEdS(I).
Q 2Joa E

We obtain (B3] by integrating (B8] over  and since 9, E > 0 on 92 we obtain (54]). We now show the
constant is optimal. For big R we set Qi := Q2 N Br where Bp is the ball centered at 0 with radius R. Let
7 <t <1 and multiply —AE = p by E*~! and integrate over Qp to obtain

(2t —1) / E*2\VEP*dz = | 0,EE* 'dS(z)+ 0, EE*1dS(x).
Qr []9] OBr
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Using a Newtonian potential argument one can show that as R — oo the surface integral over the ball Br
goes to zero. So using this one sees that

(2t —1) / E*2|\VEPde = | 0,EE*'dS(x), (57)
Q aQ

and so [, [VE'|?dz < co. With this along with a standard cut-off function argument one sees that E* €

DY (Q U 0Q). Now one uses E! as t \, % as a minimizing sequence to show that % is optimal. We now show

the constant is not attained. Now assume that zo € 9 is such that E(xg) = mingg E. Then by Hopf’s

lemma 9, E(z) > 0 and so using this along with continuity and (57) one sees that £z ¢ D'(Q U dQ). Now

to finish the proof it will be sufficient to show that

E|Vov|’dz >0
Q

for all nonzero u € D*(2 U Q). The only nonzero u’s for which this integral is zero are multiples of E 2
which are not in D'(Q U 99).
O

Example 2.2. Take ) a exterior domain in R™ where n >3, 0 ¢ Q, and such that v(z)-x < 0 on 09 where
v(z) is the outward pointing normal. Define E(z) := |z|>~" and use theorem [Z.10 to see that

—2\? u?
Vul?dz > (n ) —dzx, 58
/Q| | 2 o lz]? (58)

for all w € DY(QUON). Moreover the constant is optimal and not attained. In fact using (i) from the same
theorem shows we can add the following nonnegative term to the right hand side of (58):

(n—2) u?(—x - v)
2 /6(2 || a5(@)-

We now examine the annular domain case.

Condition (Annul.): We assume that 3 CC € are two bounded connected domains in R™ with smooth
boundaries and ) := QQ\Q_]_ is connected. In addition we assume that £ > 0 in Qs with —AF = p in s
where £ is a nonnegative nonzero finite measure supported on K C Q. We also assume that 9, F < 0 on
09.

We then have the following theorem.

Theorem 2.17. Suppose Q, K, E are as in condition (Annul.). Then
(i)  For all u € HY(Q) with u =0 on Qs we have

1 [ |VE]?
2dr > ~ dz. 59
/Q|Vu| ¢ 27 P u”dx (59)

Moreover the constant is optimal and not attained if we assume that E =0 on 0.
(ii)  For all u € H*(Q) with u =0 on 00 we have

1 [|VE? ,. 1 [ u28,E
|Vul?de > = u“dr + —/
Q 4)q E? 2Joa E

ds(z). (60)
Proof. The proof of (59) and (60) is similar to the previous theorem so we omit the details. We now show

the constant is optimal. Let Hg(QUOQ;) denote {u € H'(Q) : u = 0 on 9Qs}. Again we multiply —AE = p
by E?~1 for % < t < 1 and integrate over €) to obtain

(2t — 1)/ E*2|\VE|*dx = — O, EE*~1dS(x),
Q o
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which shows that E* € H}(Q2U 0Q;). From this one obtains

lim (2t — 1)/ E* 2\ VEP*dz = p(4) > 0,
NS Q

which shows that Ez ¢ HL(QUQ;). To see the constant is optimal one uses the same minimizing sequence

as in the previous theorem. To see the constant is not attained one uses the fact that £z ¢ HL(Q U 0.
O

Remark 2.6. These inequalities have analogous weighted versions and using the methods developed earlier
one easily obtains results concerning improvements. We leave this for the reader to develop.

2.6 The non-quadratic case

For 1 < p < n we define L4 ,(E) := —div(|VE|, >AVE). As mentioned earlier Adimurthi and Sekar [AS]
obtained generalized Hardy inequalities of the form

—1\” VE|,
/ |Vullydx — (p ) / VEI4 |ulPdz > 0, (61)
0 p o B

where u € W, *(2). There approach (as their title suggests) was to look at functions E which solve

EA,p(E) = 50 in Q
E =0 on 01,

where 0 € Q and where g is again the Dirac mass at 0.
They posed the question (see [AS]) as to whether (%)p is optimal in ([@I))? The next theorem shows this

is the case (at least for 1 < p < n); infact we show the result for a more general case.

Interior case

Suppose p is a nonnegative nonzero finite measure supported on K C 2, dimpo.(K) < n — p (and hence
CY1(Q\K) is dense in Wol’p(Q)) and 0 < E is a solution of

Lap(E)=p in Q. (62)

By regularity theory (see [D], [T]) there is some 0 < o < 1 such that E € C%?(Q\K) and by the maximum
principle (see [V]) E > 0 in Q\K. Now if we assume that © = o, as was the case in the question posed in
[AS], then one can show E(0) = co.

Theorem 2.18. Suppose E is as above but we don’t assume that E = co on K.

(i) Then
- 1\" [ |[VE|}
2 > p A p
/Q|Vu|Adx_ ( , ) /Q o) |ulPdz, (63)
for all u € WyP(Q).

(i)  Suppose E = 0o on K and E =~ on 00 where v is a non-negative constant. Then the constant in
(63) is optimal.
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Proof. (i) Letu e CO(Q\K). Then VE'~? = (1—p) E-PVE and dotting both sides with |V E[%, > AV E|u|?
and integrating over €) gives

E
/lv Ay par = /QVEl*P-(|VE|f’;2AVE|u|P) dz

= [ BTl
Q

—/ E'"P|VE|} ?AVE - plulP~>uVudz

Q

—/ EY"P|VE[L 2 AVE - plulP~*uVudz,
Q

where we used the divergence theorem and also the fact that « = 0 on K. Now using the Cauchy-Schwarz
inequality on the inner product induced by A(z) we see that

VE VE[P  ulp1
—/ | |A| [Pdx < —| |21p—|1 | |Vuladx,
Q

and we now apply Holder’s inequality on the right after recalling (p — 1)p’ = p where p’ is the conjugate of
p. Now use density to extend to all of WP ().

(ii) We ﬁrst consider the case v > 0. We begin by showing that u; := E* — ' € W, () for 0 < t < pp%l.
Fix 0 <t < -2 and multiply (@2) by E=P+L and integrate over 2 to get

0:/Etp*p+1dlu = (tp—p—l—l)/ |VE|124Etp7pda:—”ytp7p+l/ |VE|Q_2AVE~VdH"71
Q Q 0

= (tp—p—l—l)/ |VE|124Etp7pda:—"ytp7p+l/div(|VE|i(2AVE)d:17
Q Q

= (p—p+1) [ [VERE? Pd 49777 u(0),
Q

where the first integral is zero since £ = co on K and tp — p + 1 < 0. Re-arranging this we arrive at
tp—p+1yp
/ |VE'|dx ( ol ,
—tp—1
from which we see that E* € W1P(Q) for 0 < t < % and we also see that

lim / |VE|LE™ Pdr = 0o
t/ 22t o

Put ¢ as above and set u; := E! —~ € Wy*?(€2). By the binomial theorem we have

o0

(1+x)? Z

m=0

for all |x| < 1 where (p, m) are the binomial coefficients. One should note that (p,m) is eventually alter-
nating and since we have convergence at = —1 we see that ) (p,m)(—1)" converges; which shows that
Y om [(p,m)] < 00. Now we have

t
Y
wl” = E7[1- ]
& _1)m,ytm
— Etp (
Somi
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and we define

VE
Jo % I ‘A |ug|Pdz

Q=
fQ |Vut|Ad:c
So
1 ol VERE (S0 om) ()" o) d
e v [, VE E#Pdx ’
and so

1 1 o Jo [VE[L EP=pytm E=tm g
R <
Q-5 < 5 lem) Io IVEREP=Pda

m=1
1 p—tp—1
B t_pmzzl|(p’m)|p—tp—1+tm
oo
- p—tp—lz|(p,m)|
- tptl1 m
m=1
. p—ip—1
B tp+1 C,
and so we see that .
lim |Q:——|=0,
t, et tp

which shows the constant in (63)) is optimal.
Now we handle the case v =0. Let L4 ,(E) = pin Q and E = 0 on 99 and define E, := ¢ + E where € > 0.
Then L4 ,(E:) = pin Q and E. = ¢ on 9Q. For u € C2°(Q) non-zero we have, after some simple algebra,

Jo IVulfydz - Jo IVultydz

Joo TR juppde [, Vs ufpds

which shows the constant is optimal in the case of v = 0.

Boundary case
Analogously to the quadratic case we will be interested in the validity of (63]) when E is a solution to

Lap(E) = n in Q,
E =0 on 00

where p is a nonnegative nonzero finite measure and where we impose some added regularity restrictions to
E or p. Recall in the quadratic case we added the condition that E € H}(Q). For simplicity we will assume
that p is smooth; say du = fdx where 0 < f € C*°(Q) is non-zero. One can show that £ € C17(Q) for
some 0 < o < 1.

Theorem 2.19. Suppose E is a positive solution to L4 ,(E) = p in  where p is as above.

(i) Then
p—1\" [ IVE" p—1\"" .
(T) /Q A updr + Ep L < [ [vula. (64)
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for all uw € WyP(Q). Since p is a measure we have

( _1> /|VE|A| Pdx </ Vul?, dz, (65)
Q
for all u € WyP(Q).

(i)  Suppose E =0 on Q. Then ([G3) is optimal.
(iii)  Suppose E =0 on 0. If one fizes the optimal constant from part (ii) then the other constant is also
optimal in [64)) ie.

IVE|,
f |Vulhydx — (p—l) f A u|Pdx _1\7!
inf { =2 e ¢ 2 cue Wy P(Q),u#0p = (p_) .
o EeeTdp p

Proof. (i)  Suppose E is a positive solution to L4 ,(E) = p in ©Q and let v € C°(). From the proof of
theorem 218 we have

E p E

p—1) / v |A| [Pdx +/—f|’;;|—1d“ = /|V |A AVE - Vul|ulP~ 2udx
IVE| v ’
P P
< p( Aupdx) (/ Vupdac> .

[P, [ v,

Now let g denote p’ and
IVE[} / |ul?
B = |u|Pdx, C = dp, D := | |Vulfdz.
o EP o Brt Q 4

Using Young’s inequality with ¢ > 0 we arrive at

-1 C
=Yy, ¢ pipt <iptrcomp
p p
where -
Ct):=p tqata,
and so

1 [(p—1 ) 1
— (ZY——t)B+——C <D,
C(t)( P P

for all t > 0. Picking t = ¢? gives the desired result.
(i) Lett> %, multiply L4 ,(E) = p by E®7P*! and integrate over 2 to obtain

/ EP=PHgy = (tp—p + 1)/ |VE|LE™ ?dz, (66)
Q Q
which shows that Et € W, ?(Q) for p > pp%l. If one uses as a minimizing sequence u; := E' and sends
t\, 221 they immediately see that (BF) is optnnal
(iii) Agam one uses u; := E' and sends ¢ N\ 357+ The result is immediate after using (GG).

o

An important example is when A(z) is the identity matrix and E(z) = §(x) := dist(z,9Q) so |Vi| =1
a.e.. Then L4 ,(8) = —div(]V§|P~25) = —AS§ =: pu which is non-negative if we further assume that € is
convex. In this case we have the LP analog of (B):
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Corollary 2.3. Suppose Q is convex and §(x) = dist(x,0). Then for 1 < p < oo and u € WyP(Q) we

have »
1 P
/ |Vu|Pdz > <p_) Md:c,
Q P o oF
_1\? P _1\r! P
[ (2 [ s (222 [
Q P o oF P Q0P
where du := —Addx. Moreover all constants are optimal.

One can view the second inequality as an improvement of the first.
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