
ORDERABLE GROUPS AND TOPOLOGY MINICOURSE

NOTES

ADAM CLAY

Abstract. The goal of this minicourse is to study the orderability prop-
erties of fundamental groups of 3-manifolds, and when possible, explain
orderability or non-orderability of the fundamental group via topologi-
cal properties of the manifold. In particular it covers bi-orderability of
knot groups, connections with foliations, group actions and the L-space
conjecture; these notes include plenty of open problems and conjectures
that are active areas of research.

Goal: To study orderability properties of fundamental groups of 3-manifolds
M , specifically which fundamental groups are left orderable (and which are
not), which are bi-orderable (and which are not). When possible, explain
orderability or non-orderability of π1(M) via topological properties of M .

Owing to a theorem of Boyer, Rolfsen and Wiest (covered in the first
section), this material is naturally best organized into two cases: The case
of infinite first homology, and the case when the first homology is finite, so
the material will be organized as follows:

Lecture 1: Manifolds with |H1(M)| =∞
Lecture 2: Manifolds with |H1(M)| <∞: Seifert fibred manifolds
Lecture 3: Manifolds with |H1(M)| <∞: L-spaces and Dehn fillings

1. Manifolds with |H1(M)| =∞

Let M be a compact, connected, orientable 3-manifold. We stick to ori-
entable manifolds here only to make the discussion easier, to deal with non-
orientable cases one needs only to do a bit of extra work (or consult the
references). For background on 3-manifolds, see [45].

We first reduce the question of orderability of π1(M), where M is arbi-
trary, to a class of simpler manifolds. For this we need a definition.

Definition 1.1. A 3-manifold M is irreducible if every tamely embedded
2-sphere in M bounds a ball.

Example 1.2. The sphere S3 is irreducible, as are lens spaces

L(p, q) = S3/ ∼, where (z1, z2) ∼ (e
2πi
p · z1, e

2pπi
q · z2)
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where p, q are coprime with p 6= 0, as are complements of nontrivial knots
in S3:

Manifolds which are not irreducible are S2 × S1, or manifolds obtained by
gluing together two manifolds Mi 6= B3 (i = 1, 2) by cutting a copy of B3 out
of each and gluing along the resulting boundaries. The resulting manifold is
M1]M2.

The prime decomposition theorem says that every orientable 3-manifold
M admits a decomposition into irreducible 3-manifolds Mi and copies of
S2 × S1 (these are prime manifolds):

M = M1] . . . ]Mk](S
2 × S1)] . . . ](S2 × S1)

As such, for every orientable 3-manifold its fundamental group is a free
product

π1(M) = π1(M1) ∗ . . . ∗ π1(Mk) ∗ Z ∗ . . . ∗ Z.
where the Mi’s are irreducible. Now we can reduce the problem of left- or
bi-orderability to a simpler problem, thanks to a theorem of Vinogradov:

Theorem 1.3 (Vinogradov, [48]). The free product G1∗ . . .∗Gk of groups is
left-orderable (resp. locally indicable or bi-orderable) if and only each factor
is left-orderable (resp. locally indicable or bi-orderable).

So, in order to understand orderability of fundamental groups of 3-manifolds,
it suffices to consider orderability of π1(M) where M is irreducible.

1.1. Left-ordering fundamental groups when |H1(M)| =∞. With this
restriction, one could say that the ‘fundamental theorem’ for left-ordering
3-manifold groups is

Theorem 1.4 (Boyer-Rolfsen-Wiest [3], Howie-Short [26]). If M is a com-
pact, connected, orientable, irreducible 3-manifold (M 6= S3) then π1(M)
is left-orderable if and only if there exists a surjection π1(M) → L onto a
nontrivial left-orderable group.

It is then clear why one might naturally want to cover the case |H1(M)| =
∞ first, because this restriction gives π1(M) a left-orderable quotient.

Corollary 1.5. If M is a compact, connected, orientable, irreducible 3-
manifold and |H1(M)| =∞ then π1(M) is left-orderable.

Proof. If |H1(M)| =∞ then the fundamental group has Z as a quotient. �
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Example 1.6. All knot groups are left-orderable, since H1(S
3 \K) = Z for

all knots K ⊂ S3.
More generally, if M is compact connected, orientable, irreducible and

∂M 6= 0 contains no copies of S2, then an Euler characteristic argument
gives |H1(M)| =∞ and so π1(M) is left-orderable.

In order to prove Theorem 1.4, there are a couple of theorems that one
must have in hand–one from the theory of orderable groups, and one from
3-manifold topology.

Theorem 1.7 (Burns-Hale [5]). A group G is left-orderable if and only if for
every finitely generated nontrivial H ⊂ G there exists a surjection H → L,
where L is a nontrivial left-orderable group.

Theorem 1.8 (Scott [46]). Suppose that M is a noncompact 3-manifold and
that π1(M) is finitely generated. Then there exists a compact submanifold
C ⊂ M such that the inclusion i : C → M induces an isomorphism i∗ :
π1(C)→ π1(M).

Proof of Theorem 1.4, [3]. One direction is trivial, the difficult direction is
to show that a nontrivial homomorphism π1(M) → L onto a left-orderable
group is sufficient to left-order π1(M). We show this by applying Burns-
Hale, so let H ⊂ π1(M) be finitely generated and nontrivial.

Case 1: |π1(M) : H| < ∞. Then we have a nontrivial map H → L by
restriction.

Case 2: |π1(M) : H| = ∞. Then there exists a covering space p : M̃ →
M such that p∗(π1(M̃)) = H. While M̃ is noncompact, its fundamental
group is finitely generated by assumption. So Scott’s theorem gives us a

compact core C ⊂ M̃ such that i∗ : π1(C)→ π1(M̃) is an isomorphism.

M̃ C

Note that we must have ∂C 6= ∅, and in fact we can be sure that ∂C contains
no 2-spheres as follows:

If ∂C did contain 2-spheres, then S2 ⊂ M̃ would bound a ball, since
irreducibility is inherited by coverings (see [24], for example). So there

exists B ⊂ M̃ satisfying one of the following two cases:

(i) C ⊂ B, which is impossible since i∗ : π1(C)→ π1(M̃) is nontrivial.

(ii) B ∩ int(C) 6= ∅, in which case C ′ = B ∪ C serves as a new “compact

core” for M̃ , but with one less sphere in its boundary. So, we can fill all the
2-spheres.
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M̃ C ′

B

But now if ∂C contains no 2-spheres (and is still nonempty!), then |H1(C)| =
∞. Thus there exists a map H ∼= π1(C) → H1(C) → Z, and Burns-Hale
shows that π1(M) must be left-orderable.

�

We can actually glean more from this proof than we had first hoped.
Note that for every finitely generated infinite index subgroup H, we actu-
ally showed that there exists a homomorphism H → Z. Therefore, as long
as every finitely generated finite index subgroup has Z as a quotient, we’ve
shown that the group is actually locally indicable. Every finite index sub-
group will have Z as a quotient as long as the group itself does, and so we
have

Corollary 1.9. If M is compact, connected, orientable and irreducible and
|H1(M)| =∞, then π1(M) is locally indicable.

Thus, in the case |H1(M)| = ∞ the only “orderability property” that
remains to be investigated is bi-orderablity of π1(M).

1.2. Bi-ordering fundamental groups when |H1(M)| = ∞. First we
note that the restriction of |H1(M)| = ∞ is a necessary restriction if we
are to talk about bi-orderability. We’re assuming that M is compact, and
therefore π1(M) is finitely generated, say by g1, . . . , gk. Without loss of gen-
erality say gk is the largest of the generators–then there exists a largest con-
vex subgroup C not containing gk. Moreover since this is a bi-ordering, the
largest convex subgroup is normal and π1(M)/C inherits and Archimedean
ordering, and is therefore abelian (and obviously infinite). But then the
map π1(M)→ π1(M)/C must factor through the abelianization H1(M), so
H1(M) must be infinite (see [16] for details of this argument in the case of
Conradian orders, which apply in the bi-orderable case as well).

Also of note is that the question of virtual bi-orderability has already
been largely resolved. It is a consequence of Ian Agol’s proof of the virtual
Haken conjecture that every π1(M), when M is closed and hyperbolic, is
virtually bi-orderable [1]. This follows from showing that every M has a
finite sheeted cover whose fundamental group is isomorphic to a subgroup
of a RAAG, which is a bi-orderable group. Wise and Przytycki have also
recently dealt with the case of graph manifolds [44]. So while the question
of virtual bi-orderability is interesting, the primary question that remains
is whether or not π1(M) itself is bi-orderable (and not some finite-index
subgroup).
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In general, this seems to be a difficult problem and so results thusfar
are piecemeal. The manifolds that have been considered to date are Seifert
fibered manifolds, knot complements, some 3-manifolds fibering over S1, and
manifolds whose fundamental groups have two generators and one relator.
To keep things simple, we’ll focus on knot complements.

Recall a knot K is said to be fibered if its complement fibers over S1 with
fiber a surface Σ with ∂Σ 6= ∅. The first theorem we have is:

Theorem 1.10. Suppose that K ⊂ S3 is fibered, and let ∆K(t) denote the
Alexander polynomial of K. Then:

(1) If all the roots of ∆K(t) are positive real numbers, then π1(S
3 \K)

is bi-orderable [43] .
(2) If π1(S

3 \ K) is bi-orderable, then ∆K(t) has at least one positive
real root. [13].

There are some generalizations of these theorems, but again the results
only apply in the case where the manifold fibers. For example, the same
theorems hold if you replace the fibered knot complement S3 \K with the
mapping torus

M ∼= Σ× [0, 1]/ ∼ where (x, 0) ∼ (φ(x), 1)

for some φ : Σ → Σ. In this case we interpret the Alexander polynomial
as the characteristic polynomial of φ∗ : H1(Σ) → H1(Σ). The proof of this
fact is more or less the same as the proof of the knot complement case, but
some easy results about free groups need to be replaced with more difficult
theorems about surface groups [33].

It is also possible to slightly relax the condition of all roots of ∆K(t) being
positive in the statement of (1) above. In [34], the authors show that (1)
holds if you replace “∆K(t) has all roots positive” with “∆K(t) is special”,
where special is a restrictive condition defined for the purpose of their paper.
Special polynomials need not have all positive roots, yet a special polynomial
still satisfies some necessary properties that make the proof of (1) possible.

There have also recently been some advances that allow for the investiga-
tion of non-fibered knots. To state these new theorems, we need to prepare
some technical combinatorial definitions having to do with the relators of a
group presentation.

We write ab in place of b−1ab, and for a word w ∈ F (a, b) in the free group
on generators a and b, write wb and wa for the total exponent sum of b and
a in the word w. If wb = 0 then we can rewrite w as

w = am1bd1 · · · amrbdr

for some integers mi, di and r ≥ 1. For all j ∈ Z, set τj(w) = {i : di = j}
and let Sw = {j :

∑
i∈τj(w)mi 6= 0}.

We say that a word w of the form above is tidy if τj(w) = ∅ for all j
satisfying either j > max{Sw} or j < min{Sw}. Set ` = max{Sw}; we
say that w is principal if |τ`(w)| = 1. In the case that w is principal and



6 ADAM CLAY

τ`(w) = {k}, we call w monic if in addition mk = 1. Set s = min{Sw},
when π1(S

3 \K) = 〈a, b|w〉 with w as above, the Alexander polynomial has
formula ∆K(t) =

∑r
i=1mit

di−s. We can group like powers and rewrite this
as

∆K(t) =
∑
j∈Z

 ∑
i∈τj(w)

mi

 tj−s

where we understand that the coefficient of tj−s is zero when τj(w) = ∅.
Theorem 1.11 (Chiswell-Glass-Wilson, [10]). Let K be a knot in S3, and
suppose that π1(S

3 \K) has a presentation of the form 〈a, b|w〉 where w is
tidy. Let ∆K(t) denote the Alexander polynomial of K. Then:

(1) If π1(S
3 \K) is bi-orderable, then ∆K(t) has a positive real root.

(2) If w is monic and all the roots of ∆K(t) are real and positive, then
π1(S

3 \K) is bi-orderable.
(3) If w is principal, ∆K(t) = a0+· · ·+ad−1td−1−mtd where gcd{a0, . . . , ad−1} =

1 and ad−1 is not divisible by m, and all the roots of ∆K(t) are real
and positive, then π1(S

3 \K) is bi-orderable.

Example 1.12 (C-Desmarais-Naylor, [12]). Consider the twist knots with
m twists:

m twists
Km =

When m ≥ 2 is even,

∆Km(t) = −m
2

+ (m+ 1)t−
(m

2

)
t2

and both roots are real. If m = 2 then Km is the figure eight knot, which
fibres, so the group is bi-orderable by [43]. For m > 2 it does not fiber, and
you need to use the presentation

π1(S
3 \Km) = 〈x, y|(y−1xy)(x−

m
2 )(y−1x

m
2 y)(y−2x−

m
2 y2)(y−1x

m
2 y)〉

and check that the relator satisfies the technical condition of being “principal”
(which it does), and that the coefficients of the Alexander polynomial satisfy
certain divisibility conditions (they do). So again, the group is bi-orderable,
this time by [10].

On the other hand when m ≥ 3 is odd,

∆Km(t) =
m+ 1

2
−mt+

(
m+ 1

2

)
t2

both roots are imaginary and Km does not fiber. The presentation in this
case is

π1(S
3 \Km) = 〈x, y|(y−1xy)(x−

m−1
2 )(y−1x

m+1
2 y)(y−2x−

m+1
2 y2)(y−1x

m−1
2 y)〉

which is a presentation with a “tidy” word, so we apply [10] to conclude the
group is not bi-orderable.
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These are all the available theorems that I know of which have been
applied to knot groups. If we plug away at the knot tables to see how many
knot groups we can understand using these theorems, we do pretty well at
the beginning:

Here, we writeX for biorderable, " for not bi-orderable, and blank for
unknown.

X " X " " X "

" " " " " "
For higher crossing number the results are more sparse. For example if we

consider 12 crossing knots, we can only determine orderability of 27 of the
first 100 knot groups coming from knots with 12 crossings [12]. In general,
the ‘percentage’ of knots that we can deal with becomes very small as the
crossing number becomes large.

All of the availble theorems about bi-orderability are proved using a simi-
lar argument (though with substantially different details). So, as an example
of how the proofs go, let’s consider a proof of Theorem 1.10(1) from [43].

So we prove: If K is fibered and ∆K(t) has all positive roots, then π1(S
3\

K) is bi-orderable.
Here, “K fibered” means that S3 \K is a mapping cylinder

S3 \K ∼= (Σ× [0, 1])/ ∼ where (x, 1) ∼ (h(x), 0)

for some surface with boundary Σ and some map h : Σ → Σ called the
monodromy. For a fibered knot, ∆K(t) is the characteristic polynomial of
the linear map H1(Σ)→ H1(Σ) induced by h.

We can compute the fundamental group, it turns out to be the HNN
extension

π1(S
3 \K) = 〈x1, . . . , x2g, t|h∗(xi) = txit

−1〉
where h∗ : π1(Σ)→ π1(Σ) is the induced map.

So we have a surjection onto the infinite cyclic group 〈t〉

1→ π1(Σ)→ π1(S
3 \K)→ 〈t〉 → 1

where, since Σ is compact and has boundary, π1(Σ) is a finitely generated
free group. Therefore π1(S

3 \K) will be bi-orderable if (exercise: and only
if) π1(Σ) has an ordering preserved by conjugation by t, i.e. by h∗ : π1(Σ)→
π1(Σ). So the lemma we need is:
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Lemma 1.13 (Perron-Rolfsen, [43]). Let F be a finitely generated free group
and h : F → F an automorphism. Suppose that all the eigenvalues of
h∗ : H1(F ;Q) → H1(F ;Q) are real and positive. Then there exists a bi-
ordering of F preserved by h.

We prove the lemma by constructing an invariant bi-ordering in a classical
way, using the lower central series quotients Fi/Fi+1: You can order F by
choosing orderings<i of each Fi/Fi+1 and declaring x > 1 if xFi+1 ∈ Fi/Fi+1

is positive, where i is the largest subscript such that xi ∈ Fi. We just need
to take some care in choosing <i so that the result is invariant under h.

First, if a linear map L : Qn → Qn has all positive eigenvalues, then
it preserves a bi-ordering of Qn (think lexicographically, though this claim
takes some work).

Then the map h : F → F induces maps

hi : Fi/Fi+1 → Fi/Fi+1

each of which can be shown to be a restriction to a certain subspace of the
map

h⊗i : (F/F ′)⊗i → (F/F ′)⊗i

The assumption that h∗ has all positive eigenvalues means the same is true
of every h⊗i, since the eigenvalues of h⊗i are i-fold products of eigenvalues
of h.

So, every h⊗i preserves an ordering, and thus so does every hi : Fi/Fi+1 →
Fi/Fi+1, call the preserved ordering <i. Now use the “classical construction”
above, and get an ordering of F preserved by h : F → F .

1.3. Questions. There are several natural questions that arise as a result
of how ‘sparse’ our understanding of bi-orderability is:

Q1. Is the knot group of 62 bi-orderable?

Q2. If π1(S
3 \K) is bi-orderable, must ∆K(t) have a positive real root?

Does one positive root imply that the group if bi-orderable? How many
positive roots do you need?

Remarks. An example of Chiswell-Glass-Wilson appearing in [10] shows
that there exist HNN extensions 〈a, b|r〉, for which we can define an “Alexan-
der polynomial” which satisfies:

• 〈a, b|r〉 is not bi-orderable, and
• there exists a positive real root.

However their groups do not arise as knot groups.

Q3.[10] Call and element g ∈ G generalized torsion if there exist hi ∈ G
such that

n∏
i=1

high
−1
i = 1
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If there is no generalized torsion in a knot group, does it imply that the knot
group is bi-orderable?

Remarks. Dale Rolfsen and his student Geoff Naylor have shown that
knot groups admit generalized torsion. This is an easy fact for torus knot
groups, but for hyperbolic knots finding generalized torsion (if it exists)
seems harder in general. They computed, for example, that the knot group
of 52 is

G = 〈a, b : b2A2b2aB3a〉

(where we use A and B in place of a−1 and b−1 to simplify notation) and
then with w = AbaB they found

(a4B2wb2A4)(a4BaB2wb2abA4)(a4BaBwbAbA4)(bawAB)(bwB)(b2wB2) = 1.

Therefore w is generalized torsion.

Q4. [34] If F is a free group, what are necessary and sufficient conditions
for an automorphism φ : F → F to preserve a bi-ordering?

Remarks. This is precisely what is needed to bi-order the groups G that
arise from short exact sequences

1→ F → G→ Z→ 1

for example, fibered knot groups. There is some work towards answering
this, see [34]. What about conditions for some power φk : F → F to preserve
a bi-ordering, so we can find a finite-index bi-orderable group corresponding
to the cover with monodromy φk?

Q5. Is there a topological meaning to bi-orderability of π1(M), aside
from Alexander polynomial restrictions?

2. Manifolds with |H1(M)| <∞: The Seifert fibered case

In this section, since we are restricting to finite first homology none of the
groups under consideration can be either bi-orderable or locally indicable,
as each implies |H1(M)| =∞. So, the problem we’ll consider is when π1(M)
is left-orderable.

One of our stated goals was also to explain why π1(M) is left-orderable
based upon the topology of M . There is a very satisfying answer to this in
the case that M is a Seifert fibered manifold, so we restrict to Seifert fibred
manifolds for now and explain the topological meaning of left-orderings of
π1(M).

First, we introduce Seifert fibered manifolds following Hatcher [24], for
more details see [29]. A model Seifert fibering of the solid torus D2×S1 is a
decomposition of D2 × S1 into disjoint circles, called fibers. The fibers are
constructed by taking the solid torus T 2 and building it as

T 2 = (D2 × [0, 1])/ ∼
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where ∼ identifies D2 ×{0} with D2 ×{1} with a 2πp
q twist for some p

q ∈ Q
(p, q, relatively prime). Illustrated below is the case q = 6, then if p = 5, for
example, we would rotate the top by 5 ‘clicks’ and glue it to the bottom.

Rotate 5 clicks...

then glue top to bottom.

The fibers of T 2 are then built out of segments {x} × [0, 1] and are of two
kinds:

• The image of {0} × [0, 1], called an exceptional fiber
• The image of q equally spaced segments {x}× [0, 1] which are glued

together end to end, called a regular fiber.

A Seifert fibering of a 3-manifold is a decomposition of M into circles such
that every circle (fiber) has a neighbourhood that is fiber-preserving diffeo-
morphic to the neighbourhood of a fiber in a fibered solid torus. Such a
manifold is called a Seifert fibered manifold.

Here is a way to construct Seifert fibered manifolds. Let Σ be a compact,
connected surface with b boundary components. Choose disks D1, . . . , Dn ⊂
int(Σ), and let

Σ′ = Σ \ (int(D1) ∪ . . . ∪ int(Dn))

Let M ′ → M be an oriented S1-bundle over Σ′, so if Σ′ is orientable then
M ′ ∼= S1 × Σ. Otherwise it is a bundle with a torus over every orientation-
preserving path in Σ, and a Klein bottle over the orientation-reversing ones.

Note that above each ∂Di ⊂ Σ′ there’s a corresponding Ti ⊂ ∂M ′. Fix a
section s : Σ′ → Σ, which fixes a basis π1(Ti) for each i, namely our basis
will be [h∗i ] = [s(∂Di)] and [hi], the class of the fiber S1 ↪→ M ′. Now with
a fixed basis, we have a correspondence between curves γ : S1 ↪→ Ti and
fractions βi

αi
∈ Q ∪ {∞} by representing the class of such curves relative to

our basis:
[γ] = αi[h

∗
i ] + βi[hi]

We can construct a Seifert fibered manifold M over the surface Σ by
choosing fractions βi

αi
⊂ Q, for i = 1, . . . , n. Then to each Ti ⊂ ∂M ′, attach

D2 × S1 by gluing ∂D2 × {y} to the curve αi[h
∗
i ] + βi[hi] on Ti. Writing g

for the genus of Σ and b for the number of boundary components, we denote
the resulting manifold by

M(±g, b; β1
α1
, . . . ,

βn
αn

)

with ± in front of the g to indicate whether or not Σ is orientable.
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This is a good way to understand Seifert fibered manifolds, since

Proposition 2.1. Every orientable Seifert fibered manifold is fiber-preserving
diffeomorphic to one of the model manifolds M(±g, b; β1α1

, . . . , βnαn ) for some

choice of Σ and fractions βi
αi

. Two models are diffeomorphic if and only if
βi
αi
∼= β′i

α′i
mod 1 (up to permuting indices) and if b = 0 then also Σ βi

αi
= Σ

β′i
α′i

.

Shortening the names of these manifolds to simply ‘M ’ and then using
the Siefert Van Kampen theorem, we can calculate that the fundamental
groups under consideration in this section are:

π1(M) = 〈a1, b1, . . . , ag, bg, γ1, . . . , γn, h|

h central , γ
αj
j = h−βj , [a1, b1] . . . [an, bn]γ1 . . . γn = hb〉

if g ≥ 0 and

π1(M) = 〈a1, . . . , a|g|, γ1, . . . , γn, h|

ajha
−1
j = h−1, γ

αj
j = h−βj , γjhγ

−1
j = h, a21 . . . a

2
|g|γ1 . . . γn = hb〉

if g < 0. In the case that either g 6= 0,−1 or the boundary of Σ is nonempty,
these groups have infinite abelianization, i.e. |H1(M)| = ∞. These cases
were dealt with in the last section, and we find

Theorem 2.2. [3] If M is Seifert fibered and |H1(M)| =∞, then π1(M) is
left-orderable as long as M 6∼= RP 2 × S1.

Proof. Use Theorem 1.4, and deal with the few reducible cases by hand. �

So the question of left-orderability is, as expected, only interesting the
case |H1(M)| < ∞. In this case Σ is either S2 or RP 2 and the groups in
question become

π1(M) = 〈γ1, . . . , γn, h|h central , γ
αj
j = h−βj , γ1 . . . γn = 1〉

and

π1(M) = 〈γ1, . . . , γn, y, h|

yhy−1 = h−1, γ
αj
j = h−βj , γjhγ

−1
j = h, y2γ1 . . . γn = 1〉

We have a theorem that characterizes orderability completely in terms of
the topology of M .

Theorem 2.3. [3] If M is Seifert fibered and |H1(M)| <∞ then π1(M) is
left-orderable if and only if M admits a co-orientable horizontal foliation.

First, we digress for a moment to introduce foliations, for more informa-
tion see [8, 9]. Here, our foliations will be codimension one, meaning that
we can partition the manifold M into connected surfaces called leaves, and
cover M by charts φ : U → R2 × R such that each leaf L ⊂M satisfies

φ(L ∩ U) =
⋃
i∈I

R2 × {yi}
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In other words, each connected component of L∩U is a small bit of a plane,
called a plaque. The plaques piece together to form leaves. This can also be
turned around and understood by saying that the atlas {Uα, φα} of M has
charts so that the planes fit together neatly on M , as in

R3

φ−1
1→

M

φ−1
2←

R3

We are considering foliations of a special sort in this theorem, namely
horizontal ones. A foliation of a Seifert fibered manifold is horizontal if
regular fibers are transverse to the leaves. In the picture above this would
mean that [h] is the class of a curve that cuts vertically through the plaques
in M . Co-orientable means that the leaves of the foliation admit a coherent
choice of normal vector. Here is an example of a standard construction used
to produce foliations, for simplicity we consider a codimension one foliation
of a surface.

Example 2.4. If f : S1 → S1 is an orientation-preserving homeomorphism,
then construct a copy of the torus as

T 2 ∼= S1 × [0, 1]/ ∼

where (x, 0) ∼ (f(x), 1) for all x ∈ S1. This torus naturally has a codimen-
sion one foliation whose leaves are in 1−1 correspondence with orbits under
f :

L =
⋃
n∈Z
{fn(x)} × [0, 1]

We will see that a construction similar to the one above is essential in
understanding left-orderings of Seifert fibered manifolds.

Proof of Theorem 2.3. First we suppose that π1(M) is left-orderable, and
we fix a corresponding dynamical realization ρ̂ : π1(M) → Homeo+(R)
[37]. Using the relators γ

αj
j = h−βj , one can argue that ρ̂(h) must act

without fixed points. Thus ρ̂(h) is conjugate to one of ρ(h)(x) = x + 1 or
ρ(h)(x) = x − 1. Without loss of generality, assume that ρ̂(h) conjugates
to ρ(h)(x) = x+ 1 and so ρ̂ conjugates correspondingly to a representation
ρ : π1(M)→ Homeo+(R).

As this point, observe that if M is constructed using the surface Σ = RP 2,
then there exists y ∈ π1(M) such that yhy−1 = h−1, or in other words
hy = yh−1. But then we can calculate that for every x,

ρ(y)(x) < ρ(hy)(x)︸ ︷︷ ︸
since ρ(h)(x) = x+ 1

= ρ(yh−1)(x) < ρ(y)(x)︸ ︷︷ ︸
since ρ(h−1)(x) = x− 1
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a contradiction. Thus Σ = S2 and h ∈ π1(M) is central, therefore the image
of ρ is contained within a certain subgroup of Homeo+(R), namely

ρ : π1(M) ˜→ Homeo+(S1) = {f ∈ Homeo+(R)|f(x+ 1) = f(x) + 1}
There is a second homomorphism of interest, which we will call φ

φ : π1(M)→ π1(M)/〈h〉
The group π1(M)/〈h〉 acts on a space X whose interior is homeomorphic to
R2, specifically X is the “universal orbifold cover” of S2 with singular points
of order α1 . . . , αn

X → S2(α1, . . . , αn).

Construct a manifold M̂ as a quotient

M̂ = X × R/ ∼
where ∼ is defined by (x, t) ∼ (φ(g)(x), ρ(g)(t)). Then by construction, we

get π1(M) ∼= π1(M̂), and from this we can check that in fact M and M̂
are homeomorphic. So, this is a way of constructing our original manifold
M , and this construction makes it clear that M admits a horizontal, co-
orientable codimension one foliation:

The planes X×{t} descend to leaves as in the torus example, and the lines
{x}×R descend to Seifert fibers. The Seifert fibers are obviously transverse
to the leaves, and provide a coherent choice of normal to the leaves as well.

Conversely, suppose that M admits a horizontal co-orientable foliation F .

Let p : M̃ → M be the universal cover, and F̃ the pullback foliation of M̃ .

The fiber h in M pulls back to p−1(h) ∼= R, and every leaf L̃ ⊂ M̃ intersects

p−1(h) transversely exactly once. Collapsing each leaf L̃ to a point, we
therefore get

M̃/F̃ ∼= R,
a copy of the reals (see [18] for full details). The action of π1(M) on M̃ by

deck transformations descends to an action on M̃/F̃ , and “co-orientable”
guarantees that the action will be order-preserving. Thus we have a repre-
sentation

ρ : π1(M)→ Homeo+(R)

and it follows that π1(M) is left-orderable by applying Theorem 1.4. �

Moreover, the works [18, 30, 36] and more recently [7] completely deter-

mine when the manifold M(±g, b; β1α1
, . . . , βnαn ) admits a co-orientable, hori-

zontal foliation, and thus determines when π1(M) is left-orderable. Their

condition is a system of diophantine inequalities involving the βi
αi

which must

have a solution if a foliation/left-ordering is to exist.
Thus we have proved that for Seifert fibered manifolds M , the funda-

mental group is left-orderable if and only if M admits a co-orientable taut
foliation–but an inspection of the proof yields more. We have actually set
up a correspondence between foliations of M and left-orderings of π1(M).
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The same correspondence between orderings and foliations exists when the
surface Σ used in the construction of M has boundary, as the construction
of the proof can be modified to fit this case. Then if Σ = D2, for instance,
we get

π1(M) = 〈γ1, . . . , γn, h|h central , γ
αj
j = h−βj 〉

By carefully keeping track of the boundary behaviour of the foliations, one
can extend this correspondence between left-orderings and foliations to ra-
tional homology sphere graph manifolds W constructed by gluing together
foliated Seifert fibered manifolds.

Theorem 2.5 (Boyer-C, [11]). Let W be a rational homology 3-sphere
graph manifold. Then π1(W ) is left-orderable if and only if W admits a
co-orientable taut foliation.

This correspondence naturally raises a number of questions.

2.1. Questions. In the questions below, M is always Seifert fibered unless
otherwise specified.

Q1. Several authors have shown that the groups

π1(M) = 〈γ1, . . . , γn, h|h central , γ
αj
j = h−βj 〉

can admit isolated points in their space of left-orderings [17, 38, 28, 27], this
is exactly the fundamental group you get when you start with Σ = D2. How
can the property of being ‘isolated’ be topologically characterized in terms
of the corresponding foliation?
Remarks: As a specific example, the complement of the trefoil has funda-
mental group B3, the braid group on three strands. The group B3 admits
an isolated ordering, namely the DD-ordering [17]. What can be said about
the foliation which corresponds to the DD-ordering?

Q2. Is there an analogous correspondence for any other classes of 3-
manifolds, perhaps via Thurston’s universal circle construction for some
class of hyperbolic manifolds?
Remarks: Suppose that M is an integer homology 3-sphere and M admits
a co-orientable taut foliation. Then the universal circle gives us

ρ : π1(M)→ Homeo+(S1)

and this homomorphism lifts to ρ̃ : π1(M) → ˜Homeo+(S1) since H2(M) is
trivial. This gives a way of constructing orderings from foliations, but is the
correspondence reversible? Is there anything that can be done in the case
that H2(M) is nontrivial, and so the representation may not lift? (See [6]
for more information on the universal circle construction).
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3. Manifolds with |H1(M)| <∞: Dehn filling and the L-space
conjecture

What remains in our study is closed, connected, orientable, irreducible
non-Seifert fibered manifolds with finite first homology. There is a conjecture
which, if true, tells us exactly what to expect in these cases (indeed, the
conjecture happens to hold in all the cases already covered).

Heegaard-Floer homology is a way of associating a finitely generated

abelian group, ĤF (M), to every closed, orientable, irreducible 3-manifold
M . We will treat this homology theory as a black box, in the sense that
we’ll call upon theorems from this theory while giving no background on
Heegaard-Floer homology itself. There are many introductions to the sub-
ject available, see [42]. An irreducible manifold M with |H1(M)| < ∞ is
called an L-space if

rankĤF (M) = |H1(M)|.
The following conjecture predicts which manifolds will have left-orderable

fundamental group.

Conjecture 3.1 (Boyer-Gordon-Watson [2]). An irreducible 3-manifold with
|H1(M)| <∞ is an L-space if and only if its fundamental group is not left-
orderable.

In [2], the authors verify that the conjecture holds for all geometric non-
hyperbolic manifolds, as well as some hyperbolic ones.

Example 3.2. Lens spaces are L-spaces, as is any 3-manifold with fi-
nite fundamental group. In fact, since the conjecture has been verified for
all Seifert fibered manifolds, every Seifert fibered M with π1(M) non-left-
orderable is also an example of an L-space [2].

In general, this conjecture is part of a program to tie together orderings,
foliations, and L-spaces. While we only understand the triangle below in
some special cases, all sides are conjectured to be equivalences [31, Conjec-
ture 5].

M admits a C0 co-
orientable taut foliation

M is not an L-space

π1(M) is
left-orderable

�
�
�
�
�
�
�
�
��

@
@

@
@

@
@
@

@
@

Ozsváth-Szabó
Kazez-Roberts
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What we will do for this section is focus on a particular special case of
interest, namely the 3-manifolds that arise from Dehn surgery on a knot in
S3. Our reason for choosing this class of manifolds is that Heegaard-Floer
homology behaves particularly well with respect to Dehn surgery, so there
are many theorems about L-spaces and Dehn surgery that should translate
directly into something about left-orderability (if the conjecture is true).

First we recall the construction of Dehn surgery along a knot in S3 (See
[45]). Let K ⊂ S3 be a knot, and remove a tubular neighbourhood N(K) of
K from S3, think of N(K) ∼= S1 ×D2. The curve S1 × {0} is our original
knot, and λ ∼= S1×{1} is called a longitude (it is disjoint from and parallel
to K). We choose λ so that [λ] ∈ H1(S

3 \K) is the identity, this particular
λ doesn’t link the original knot K and is called the preferred longitude of
K. The curve µ ∼= {1} × ∂D2 is called a meridian of K. See below for the
standard longitude and a meridian of a trefoil, the longitude λ is in red.

Added twists to ensure that
λ and K are unlinked

The curves µ and λ represent classes in π1(∂(S3\N(K))) ∼= π1(T ) ∼= Z⊕Z
that generate the subgroup of the boundary torus.

For a fixed [J ] = µpλq ∈ π1(∂N(K)) we construct the manifold

S3(K,
p

q
) =

(
S3 \ int(N(K))

)
∪φ (S1 ×D2)

where φ : ∂(S1 × D2) → ∂N(K) sends {1} × ∂D2 to J . The fundamental
group of the resulting manifold is

π1(S
3(K,

p

q
)) = π1(S

3 \K)/〈〈µpλq〉〉

i.e., we set µpλq = 1.
Mayer-Vietoris can be used to calculate that H1(S

3(K, pq )) ∼= Z/pZ, more-

over these manifolds are almost always irreducible (this can be made very
precise). So, we have a way of building many manifolds with |H1(M)| <∞
in order to test the conjecture.

Recall that Heegaard-Floer homology is very “well-behaved” with respect
to Dehn surgery. To show what is meant by this, below is a sample of a
few of the available theorems concerning L-spaces and Dehn surgery, with
corresponding ‘translations’ into conjectures about left-orderability.

3.1. Non-left-orderable fillings behave like L-spaces.
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Theorem 3.3 (Ozsváth-Szabó, consequence of triad condition, [41]). Let

K ⊂ S3, and suppose that S3(K, pq ) is an L-space. Then S3(K, p
′

q′ ) is also

an L-space whenever p′

q′ >
p
q .

So what should be true if we believe the conjecture is:

Conjecture 3.4. Let K ⊂ S3, and suppose that π1(S
3(K, pq )) is not left-

orderable. Then π1(S
3(K, p

′

q′ )) is also not left-orderable whenever p′

q′ >
p
q .

Discussion. This behaviour has been verified for several infinite families
of knots [14, 15], in particular torus knots, some cable knots and the knots
Tm3,5, which appear as in the figure below.

m twists →

The knot Tm3,5

It is known that the knots Tm3,5 satisfy the following property: There exists

r ∈ Q such that for all p
q ∈ [r,∞], the manifold S3(K, pq ) is an L-space.

Correspondingly there should be r ∈ Q such that the group π1(S
3(K, pq )) is

non-left-orderable whenever p
q ∈ [r,∞]. In [15], it is shown that indeed such

an r exists, specifically for p
q ≥ 15 + 2m, the result of p

q -surgery on the knot

Tm3,5 is a manifold with non-left-orderable fundamental group.
At present I do not know of any published strategies that work towards

proving this conjecture, only of strategies to verify that the necessary prop-
erty holds for a given knot. Perhaps it would be easier to prove the weaker
conjecture:

Conjecture 3.5. Let K ⊂ S3, and suppose that π1(S
3(K, pq )) is finite.

Then π1(S
3(K, p

′

q′ )) is also not left-orderable whenever p′

q′ >
p
q .

3.2. Non-left-orderable fillings detect knot genus. For a fixed knot
K ⊂ S3, Heegaard-Floer homology also gives the exact value of the smallest
slope p

q ∈ Q such that S3(K, pq ) is an L-space. Let g(K) denote the smallest

genus of a surface Σ ⊂ S3 such that ∂Σ = K. Then g(K) is the knot genus,
and we have a theorem:
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Theorem 3.6 (Ozsváth-Szabó, [41, 40]). Let K ⊂ S3, and suppose that

there exists p
q ∈ Q such that S3(K, pq ) is an L-space. Then S3(K, p

′

q′ ) is an

L-space if and only if p′

q′ > 2g(K)− 1.

Correspondingly, we should have

Conjecture 3.7. Let K ⊂ S3, and suppose that there exists p
q ∈ Q such that

π1(S
3(K, pq )) is not left-orderable. Then π1(S

3(K, p
′

q′ )) is not left-orderable

if and only if p′

q′ > 2g(K)− 1.

Discussion. For all known examples of knots with non-left-orderable Dehn
fillings, aside from torus knots, there is a slight ‘gap’. For example, the knot
T 1
3,5 (using the notation of the previous section) has g(T 1

3,5) = 5 (it is the

(−2, 3, 7) pretzel knot, or 12n0242 in DT-notation), and so the conjecture
predicts:

• Slopes that should yield left-orderable groups: p
q ∈ (−∞, 9)

• Slopes that should yield non-left-orderable groups: p
q ∈ [9,∞]

However the computation in [15] only gave non-left-orderability for p
q ∈

(17,∞]. Implicit in the work of [32] is an improvement which shows non-
left-orderability for p

q ∈ (10,∞]. So there is a gap p
q ∈ [9, 10] where non-left-

orderability is unknown, though from the conjecture above we know exactly
what is predicted (Of course we’re also missing left-orderability of all of
(−∞, 9)).

3.3. Alternating knots always give left-orderable Dehn fillings. A
knot K is called alternating if, for some oriented diagram of K, you alter-
nately encounter over and under crossings as you travel around the knot
(following the orientation of the diagram). A knot K is called hyperbolic if
S3 \K a complete Riemannian metric of constant negative curvature, i.e. it
has hyperbolic geometry.

Theorem 3.8 (Ozsváth-Szabó, [41]). If K is an alternating hyperbolic knot,
then no manifold S3(K, pq ) is an L-space.

Conjecture 3.9. If K is an alternating hyperbolic knot, then every group
π1(S

3(K, pq )) is left-orderable.

Discussion. Most left-orderability and Dehn surgery results could be con-
sidered as working towards this conjecture, since many of the computed ex-
amples deal with alternating hyperbolic knots. Here are some of the known
results:

• The figure eight knot has left-orderable surgery quotients whenever
p
q ∈ [−4, 4]∪Z, and the figure eight knot is a hyperbolic alternating

knot [2, 19].
• Consider the twist knots
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m twists
Km =

where m ≥ 2. These knots are alternating and hyperbolic, and
whenever p

q ∈ [0, 4], the manifold S3(Km,
p
q ) has a left-orderable

fundamental group [23].
• More generally, two-bridge knots are alternating and many (most)

of them are hyperbolic. Every two-bridge knot has an interval of
left-orderable slopes that contains zero [47].
• Teragaito and Motegi also construct infinite families of alternating

knots for which every surgery yields a left-orderable fundamental
group [35] (Note that the article [35] also has a good introduction
that covers the current state of Dehn filling and its relationship with
left-orderability).
• A few other examples [22].

In all of these cases, the strategy to produce left-orderable fillings is to
prove that there exists a continuously varying one-parameter family of rep-
resentations ρt : π1(S

3 \K)→ SL(2,R) and an interval of slopes I such that
for every p

q ∈ I, there exists t0 ∈ I such that

• ρt0(µpλq) = 0, and

• The ρt can be lifted to representations ρ̃t : π1(S
3 \ L) → ˜SL(2,R)

which satisfy ρ̃t0(µpλq) = 0.

From this it follows that p
q surgery gives a left-orderable group, by applying

Theorem 1.4 and using the fact that ˜SL(2,R) is left-orderable.

3.4. Fiberedness, bi-orderability and left-orderable quotients.

Theorem 3.10. If K admits a slope p
q such that S3(K, pq ) is an L-space,

then

(1) K is fibered [20, 39]
(2) The Alexander polynomial of K has the form

∆K(t) = (−1)k +

k∑
j=1

(−1)k−j(tnj + t−nj )

for some increasing sequence of integers 0 < n1 < n2 < . . . < nk
[41].

Obviously here we can replace L-space by non-left-orderable and get an-
other conjecture, the most notable being that the existence of a non-left-
orderable Dehn filling of K should imply that K is fibered. However I would
like to point out another consequence, which relates to the bi-orderability
material from the first section.
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Corollary 3.11 (C-Rolfsen [13]). If π1(S
3 \ K) is bi-orderable, then no

manifold S3(K, pq ) is an L-space.

Proof. Suppose π1(S
3\K) is bi-orderable and that S3(K, pq ) is an L-space for

some p
q ∈ Q. Then by (1) above, K is a fibered knot. Then Theorem 1.10(2)

applies, and we conclude that ∆K(t) must have a positive real root since
π1(S

3 \K) is bi-orderable. This is a contradiction, because no polynomial
of the form given in (2) above can have a positive real root [13]. �

Replacing L-space with non-left-orderable in the above theorem we get

Conjecture 3.12. If π1(S
3 \K) is bi-orderable, then for every p

q ∈ Q the

group π1(S
3(K, pq )) is left-orderable.

Discussion. There are no results that I know of specifically addressing this
conjecture, though the twist knots with an even number of twists all have
bi-orderable knot groups and also an interval of left-orderable slopes ([0, 4]
for every knot except the figure eight knot, where it’s [−4, 4], as we saw
above).

This leads naturally to the question

Question 3.13. Suppose that G is a bi-orderable group and let 1 6= q ∈ G
be given. If the group G/〈〈g〉〉 is torsion free, is it left-orderable?

If the answer is “yes” then the conjecture above has nothing to do with
low dimensional topology, and is a purely group-theoretic fact. On the other
hand, if the answer is “no” then an example of a bi-orderable G with torsion-
free non-left-orderable quotient G/〈〈g〉〉 would give insight into what prop-
erties unique to 3-manifold groups may be needed to prove the conjecture
above (if it is true).

Update: This question was answered by Ying Hu, who gives the follow-
ing construction of a torsion-free non-left-orderable quotient: Start with the
figure eight knot group, which is bi-orderable. The fundamental group G
of the 3-fold cyclic cover of this knot has a bi-orderable fundamental group,
since it is a subgroup of index 3 in a bi-orderable group. Now take the quo-
tient of G by the third power of the knot meridian to obtain the fundamental
group of the cyclic branched cover of the figure eight. This is a torsion-free
group, but recent work of Gordon and Lidman [21, Corollary 1.11] shows
that this group is not left-orderable.

Note that this question is related to the theorem of Brodskii and Howie:

Theorem 3.14 (Brodskii [4], Howie [25]). Torsion-free one relator groups
are locally indicable.

The question above is related in that we have replaced “free groups” with
“bi-orderable groups” and “locally indicable” with “left-orderable”.
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