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Abstract. Let S̃ denote the class of functions which are univalent and holo-
morphic on the unit disc. We derive a simple differential equation for the
Loewner flow of the Schwarzian derivative of a given f ∈ S̃. This is used to
prove bounds on higher order Schwarzian derivatives which are sharp for the
Koebe function. As well we prove some two-point distortion theorems for the
higher order Schwarzians in terms of the hyperbolic metric.

1. Introduction

Let S̃ denote the class of holomorphic functions {f : D −→ C, f 1− 1}. Let

S(f) =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

denote the Schwarzian derivative, and λ(z) = 1
(1−|z|2) be the hyperbolic line ele-

ment on the disc. It has long been known that univalence is partly characterized
by bounds on the Schwarzian derivative. Nehari [5] proved that f ∈ S̃ ⇒ |S(f)| ≤
6λ(z)2, and also proved that if f is holomorphic on D, then |S(f)| ≤ 2λ(z)2 implies
that f is one to one. Aharanov and Harmelin [2] studied higher order Schwarzian
derivatives ψn(f) with invariance under composition on the left by Möbius transfor-
mations T , ψn(T ◦ f) = ψn(f), and their relation to univalence. Lavie [3] improved
Nehari’s sufficient condition in terms of these kinds of invariants. Tamanoi [9]
considered some of the combinatorial and algebraic aspects.

In this paper a differential equation for the Loewner flow of the Schwarzian de-
rivative of a univalent map is derived. This is used to prove bounds on higher order
Schwarzians σn(f) which are invariant under composition on the right with Möbius
transformations; these bounds are sharp for suitable transforms of the Koebe func-
tion. The proof is of interest for its simplicity; it is very similar to Loewner’s proof
of the bounds on coefficients of inverse functions [8]. Bertilsson [1] recently derived
sharp bounds on another series of Schwarzians with this invariance property as a
corollary of estimates on coefficients of negative powers of the derivative, using the
method of deBranges. (I would like to thank David Minda for bringing this to
my attention). We also derive two-point geometric distortion theorems for univa-
lent functions in terms of higher order Schwarzians, making use of some interesting
properties of the extremal functions.
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Definition 1. The higher order Schwarzian derivatives are defined inductively as
follows. For f : D −→ C, let

σ3(f) =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

and

σn+1(f) = σn(f)′ − (n− 1)
f ′′

f ′
σn(f)

For example,

σ4(f) =
f ′′′′

f ′
− 6

f ′′′f ′′

f ′2
+ 6

(
f ′′

f ′

)3

σ5(f) =
f ′′′′′

f ′
− 10

f ′′′′f ′′

f ′2
− 6

(
f ′′′

f ′

)
+ 48

f ′′′f ′′2

f ′3
+ 36

(
f ′′

f ′

)4

It’s easy to show by induction that for all Möbius transformations R, the follow-
ing invariance property holds:

σn(f ◦R) = σn(f) ◦R · (R′)n−1

In particular for disc automorphisms T and affine maps S,

λ (T (z))n−1 |σn(S ◦ f ◦ T )(z)| = λn−1(z)|σn(f) ◦ T (z) |
This invariance is suited to families of functions whose domain is fixed as the disc D;
for instance for the family S̃, we have that sup

f∈S̃
λ(z)n−1|σn(f)(z)| is independent of

z. Derivatives with this invariance property relate formally via a simple identity to
derivatives with invariance under post-composition with Möbius transformations,
namely,

(1)
(

∂n−3

∂zn−3
σ3(f−1)

)
◦ f =

σn(f)
f ′n−1

It is also worth mentioning that Schwarzians with invariance under pre-composition
with Möbius transformations can be written in terms of the derivatives of the
hyperbolic metric of the image domain.

In the first section we derive the differential equation for the Schwarzian of the
Loewner flow of a univalent function f and use this to prove the bounds on |σn(f)|.
In the second section, we derive the geometric two-point distortion theorems directly
from some elementary observations about the extremal functions.

2. A sharp estimate for σn(f)

In this section we prove a differential equation for the Schwarzian derivative as
a corollary of the Loewner differential equation. Using this it is possible to prove
that

sup
f∈S̃

λ(z)n−1|σn(f)(z)| = 4n−3(n− 2)!6

This is sharp for a suitable transform of the Koebe function.
We briefly summarize the Loewner method here (for details and theorems see

[6], [7]). Let S denote the class of functions in S̃ normalized so that f(0) = 0 and
f ′(0) = 1. Every f ∈ S can be embedded in a Loewner chain; that is, there is a
map f : D ×R+ −→ Gt ⊂ C with the following properties:
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i) ft(0) = 0, f ′t(0) = et,
ii) Each ft is analytic and univalent on D,
iii) limt→t0 ft = ft0 locally uniformly,
iv) Gs ⊆ Gt whenever s ≤ t,

where dot denotes differentiation with respect to time and prime denotes differen-
tiation with respect to z. Define the functions Φ(ζ, t) = f−1 ◦ ft(ζ), with domain
f−1

t (f(D)) for each fixed t. For fixed z, Φ is absolutely continuous on compact
intervals in t, so the time derivative exists almost everywhere. Furthermore, for
all t at which it exists, limh→0[Φ(ζ, t + h) − Φ(ζ, t)]/h = Φ̇(ζ, t) locally uniformly.
Also, Φ(ζ, 0) = ζ, and limt→∞Φ(e−tζ, t) −→ f−1 locally uniformly, and Φ satisfies
the Loewner differential equation

(2) Φ̇(ζ, t) = ζp(ζ, t)Φ′(ζ, t)

a.e., where Re(p) ≥ 0, p(0, t) = 1.

Theorem 1. Let Φ and p be as above. Then,
i) σ3(Φ)(ζ, 0) = 0, limt→∞ σ3(f)(e−tΦ)(ζ, t) = σ3(f−1)(ζ) locally uniformly,
ii) limt→t0 σ3(Φ)(ζ, t) = σ3(Φ)(ζ, t0) locally uniformly,
iii) limh→0 [σ3(Φ)(ζ, t + h)− σ3(Φ)(ζ, t)] /h exists a.e., and where it exists, the
limit converges locally uniformly.
iv) σ3(Φt) satisfies the differential equation

˙σ3(Φ) = ζpσ3(Φ)′ + (2p + 2ζp′)σ3(Φ) + (3p′′ + ζp′′′)

Proof. i) follows from the fact that Φ(ζ) = ζ, and limt→∞Φ(e−tζ, t) = f−1(ζ)
locally uniformly. Similarly ii) holds since Φ(ζ, t) → Φ(ζ, t0) locally uniformly,
using Cauchy estimates and the fact that Φ′t(0) 6= 0 so that Φ′t(0)−1 is uniformly
bounded away from zero on compact sets in ζ and t. To show iii), we apply
Cauchy estimates to

[
Φ(j)(ζ, t + h)− Φ(j)(ζ, h)

]
/h for j = −1, 1, 2, 3 using the fact

that limh→0 [Φ(ζ, t + h)− Φ(ζ, t)] /h converges locally uniformly. This also justifies
interchanging differentiation with respect to t and ζ, and the following calculations
can be made using the differential equation (2) in order to prove iv).

Φ̇′ = Φ′(p + ζp′) + Φ′′ζp

Φ̇′′ = Φ′(2p′ + ζp′′) + Φ′′(2p + 2ζp′) + Φ′′′ζp(3)

Φ̇′′′ = Φ′(3p′′ + ζp′′′) + Φ′′(6p′ + 3ζp′′) + Φ′′′(3p + 3ζp′) + Φ′′′′ζp

Also,

(4)
∂

∂t

(
Φ′′′

Φ′
− 3

2

(
Φ′′

Φ′

)2
)

=
Φ̇′′′

Φ′
− Φ′′′

Φ′
Φ̇′

Φ′
− 3

Φ′′

Φ′
Φ̇′′

Φ′
+ 3

(
Φ′′

Φ′

)2 Φ̇′

Φ′
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Plugging 3 into 4,

˙σ3(Φ) = ζp
Φ′′′′

Φ′
+ (3p + 3ζp′)

Φ′′′

Φ′
+ (6p′ + 3ζp′′)

Φ′′

Φ′
+ (3p′′ + ζp′′′)

−Φ′′′

Φ′

(
(p + ζp′) + ζp

Φ′′

Φ′

)

−3
Φ′′

Φ′

(
(2p′ + ζp′′) + (2p + 2ζp′)

Φ′′

Φ′
+ ζp

Φ′′′

Φ′

)

+3
(

Φ′′

Φ′

)2 (
(p + ζp′) + ζp

Φ′′

Φ′

)

= ζp

(
Φ′′′′

Φ′
− 4

Φ′′′Φ′′

Φ′2
+ 3

(
Φ′′

Φ′

)3
)

+(2p + 2ζp′)

(
Φ′′′

Φ′
− 3

2

(
Φ′′

Φ′

)2
)

+ (3p′′ + ζp′′′)

¤

In order to prove the bounds on σn(f), we will need Caratheodory’s lemma,
which states that the coefficients cn of an analytic function p on the unit disc
with p(0) = 1 and Re(p(z)) ≥ 0 satisfy |cn| ≤ 2, n ≥ 2. For all n, equality
|c1| = · · · = |cn| = 2 holds iff p is given by

p(z) =
1 + eiθz

1− eiθz
= 1 + 2eiθz + 2e2iθz2 + · · ·

If we let p(z, t) be one of the extremal functions given above, then the solution
Φ of the differential equation (2) generates the inverse of a rotation of the Koebe
function k̃(z) = z

(1−eiθz)2
as t →∞ (see [8]).

Theorem 2.
sup
f∈S̃

λ(z)n−1|σn(f)(z)| = 4n−3(n− 2)!6

This is sharp iff f = S ◦ k ◦ T where k is the Koebe function, S an affine transfor-
mation, and T a disc automorphism.

Proof. Using the invariances of σn(f), it suffices to prove this at the origin for
functions with f(0) = 0 and f ′(0) = 1. Let Φ be the transition function for a
normalized Loewner flow of f , and p be the infinitesimal generator, as above. Now

(5) σ3(Φ) = s0(t) + s1(t)ζ + s2(t)ζ2 + · · ·
where

sn(t) =
1
n!

∂n

∂zn
σ3(Φ)(0)

By theorem 1,

lim
t→∞

e−(n+2)tsn(t) =
1
n!

(
∂n

∂zn
σ3(f−1)

)
(0)

By (1), and the normalization f ′(0) = 1,

(6) lim
t→∞

e−(n+2)tsn(t) =
1
n!

σn+3(f)(0)
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We can expand the differential equation of theorem 1 in a power series and equate
coefficients. Supressing t,

(7) ˙σ3(Φ) = ṡ0 + ṡ1ζ + ṡ2ζ
2 + · · ·

ζpσ3(Φ)′ = ζ

( ∞∑
n=0

cnζn

)( ∞∑
n=0

(n + 1) sn+1ζ
n

)

=
∞∑

n=0

(
n∑

k=0

cn−k (k + 1) sk+1

)
ζn+1(8)

Also,

(2p + 2ζp′) = 2

( ∞∑
n=0

cnζn +
∞∑

n=1

ncnζn

)
= 2

( ∞∑
n=0

(n + 1) cnζn

)

So

(2p + 2ζp′)σ3(Φ) = 2

( ∞∑
n=0

(n + 1) cnζn

)( ∞∑
n=0

snζn

)

= 2
∞∑

n=0

(
n∑

k=0

(n + 1− k) cn−ksk

)
ζn(9)

3p′′ + ζp′′′ = 3
∞∑

n=2

n(n− 1)cnζn−2 + ζ

∞∑
n=3

n(n− 1)(n− 2)cnζn−3

=
∞∑

n=2

(n + 1)n(n− 1)cnζn−2

=
∞∑

n=0

(n + 3)!
n!

cn+2ζ
n(10)

So applying theorem 1 to the expansion (5) using (7), (8) (9), and (10), and equating
coefficients, we get the following simple recursive differential equation for sn.

(11) ṡn =
n∑

k=0

(2 (n + 1)− k) cn−ksk +
(n + 3)!

n!
cn+2

or, bringing the k = 0 term to the left hand side,

(12)
d

dt

(
e−(n+2)tsn

)
= e−(n+2)t

(
n∑

k=1

(2n + 2− k) cn−ksk +
(n + 3)!

n!
cn+2

)

So (compare Schober [8]
(13)

e−(n+2)tsn =
∫ t

0

e−(n+2)τ

(
n∑

k=1

(2n + 2− k) cn−k(τ)sk(τ) +
(n + 3)!

n!
cn+2(τ)

)
dτ

By Caratheodory’s lemma, each ck is bounded in modulus by 2. So the maximum
of the right hand side can occur for each fixed t iff |c1| = · · · |cn| = |cn+2|. By the
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discussion preceding the theorem, then, p(z, t) = 1+2eiθ

1−2eiθ for all t (it’s not hard to
check that the maximum is indeed attained for all of these). Thus,

(14) |σn(f)(0)| = | lim
t→∞

e−(n+2)tsn(t)| ≤ |σn(k̃)(0)|

where k̃ is a rotation of the Koebe function. A calculation shows that |σn(k̃)(0)| =
4n−3(n− 2)!6.

¤

3. Geometric two-point distortion theorems
for the class S̃

We now derive a two-point distortion theorem for the higher order Schwarzians.
First it is necessary to derive a two-point geometric version of the classical distortion
theorem for the class S. Though easy to prove, it is of interest in its own right. It
is similar to a two-point reformulation of the classical growth theorem due to Kim
and Minda [4] (which is in fact also sufficient for univalence).

After Minda and Peschl, denote

Dif(a) =
∂i

∂zi

∣∣∣∣∣
z=0

f ◦ Ta

where Ta(z) = z+a
1+āz . In particular for i = 1, 2,

D1f(z) = (1− |z|2)f ′(z)(15)
D2f(z) = (1− |z|2)2f ′′(z) + 2z̄(1− |z|2)f ′(z)(16)

These satisfy the invariance

Dn(f ◦ T ) = Dn(f) ◦ T · T ′n

|T ′n|(17)

Theorem 3. If f ∈ S̃, then ∀z1, z2 ∈ D,

exp (−4dλ (z1, z2)) ≤ |D1f(z2)|
|D1f(z1)| ≤ exp (4dλ (z1, z2))

where dλ(z1, z2) is the hyperbolic distance between z1 and z2. This is sharp in
the following way: fix z1, and let z2 vary along a hyperbolic geodesic through z1.
If T is any disc automorphism taking this geodesic to the real axis, S any affine
transformation of the plane, and k the Koebe function, then the function k̃ = S◦k◦T
takes on the upper bound if T (z2) ≥ T (z1), and the lower bound if T (z1) ≥ T (z2).
Furthermore for this function, arg D1k̃(z2)

D1k̃(z1)
is constant while z2 remains on one side

of z1.

Proof. Let Ta(z) = z+a
1+āz . Given f ∈ S̃, the function

g(z) =
f ◦ Ta(z)− f ◦ Ta(0)

(f ◦ Ta)′(0)

is in S, so the second coefficient of g, namely 1
2

D2f(z)
D1f(z) , is bounded in modulus by

2. Thus ∀f ∈ S̃,
∣∣∣D2f(z)
D1f(z)

∣∣∣ ≤ 4. Now by an easy computation

d log |D1f | = Re

(
λ

D2f(z)
D1f(z)

dz

)
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So for all smooth curves γ joining z1 to z2,

log |D1f(z2)| − log |D1f(z1)| =
∫

γ

Re

(
λ

D2f(z)
D1f(z)

dz

)
(18)

Now for the Koebe function k, D2k(z)
D1k(z) = 4 ∀z ∈ (−1, 1). Let α be the geodesic

segment joining z1 to z2 (parametrized with respect to arc length, increasing from z1

to z2). Let T be a disc automorphism taking α to the real line, with T (z2) ≥ T (z1).
Then k ◦ T satisfies (using (17))

Re

(
λ ◦ α

D2 (k ◦ T ) ◦ α

D1 (k ◦ T ) ◦ α
α′

)
= Re

(
λ ◦ α

(D2k) ◦ T ◦ α

(D1k) ◦ T ◦ α

T ′ ◦ α

|T ′ ◦ α|α
′
)

= Re

(
λ ◦ (T ◦ α)

D2 (k ◦ T ) ◦ α

D1 (k ◦ T ) ◦ α
(T ◦ α)′

)

= 4

Similarly, if we choose T such that T (z2) ≤ T (z1), we get that

Re

(
λ ◦ α

D2 (k ◦ T ) ◦ α

D1 (k ◦ T ) ◦ α
α′

)
= −4

So when the lower and upper bound of the right hand side of (18) are taken on, it is
along the entire geodesic segment. Since the integral of d log |D1f | is independent
of path, we can fix the path as a hyperbolic geodesic α connecting z1 to z2. We get
that the maximum and minimum of the integral (18) must be taken on by these
functions, so

−
∫

α

4λ|dz| ≤ log
|D1f(z2)|
|D1f(z1)| ≤

∫

α

4λ|dz|
which implies that

−4dλ(z1, z2) ≤ log
|D1f(z2)|
|D1f(z1)| ≤ 4dλ(z1, z2)

That these are all the sharp functions follows directly from the fact that the only
functions in S with |a2|=2 are the Koebe function and its rotations. ¤

We now use this to get a two point distortion theorem involving σn(f), also in
terms of hyperbolic distance.

Theorem 4. Let cn = 4n−3(n− 2)!6. The estimate
∣∣∣∣
f ′(z1)n−1

f ′(z2)n−1
σn(f)(z2)− σn(f)(z1)

∣∣∣∣ ≤ cnλ(z1)n−1 exp (4(n− 1)dλ(z1, z2))

holds ∀f ∈ S̃, and this is sharp only for f = S ◦ k ◦ T .

Proof. We have
∂

∂z

(
σn(f)
f ′n−1

)
=

σn+1(f)
f ′n−1

so ∣∣∣∣
f ′(z1)n−1

f ′(z2)n−1
σn(f)(z2)− σn(f)(z1)

∣∣∣∣ =
∣∣∣∣
∫ z2

z1

f ′(z1)n−1

f ′(z)n−1
σn+1(f)(z)dz

∣∣∣∣
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Assume |σn+1(f)(z)| ≤ cn+1λ(z)n ∀f ∈ S̃. First we observe that it suffices to
estimate the right hand side fixing the path of integration as a hyperbolic geodesic.
Denote this again by α, travelling from z1 to z2. Next, using

σn(k)(z) =
(−1)ncn

(1− z2)n−1

an argument similar to that in the last theorem shows that for a disc automorphism
T taking α to the real axis, the function k̃ = k ◦ T satisfies

|σn+1(k̃)| ◦ α = cn+1(λ ◦ α)n

and along α,

arg

(
k̃′(z1)n−1

k̃′(z)n−1
σn+1(k̃)(z)dz

)

is constant. Applying theorem 3, we get
∣∣∣∣∣
∫

α

f ′(z1)n−1

f ′(z)n−1 σn+1(f)(z)dz

∣∣∣∣∣ ≤
∫

α

exp (4(n− 1)dλ(z1, z))
λ(z1)n−1

λ(z)n−1
cn+1λ(z)n|dz|

= λ(z1)n−1

∫

α

exp (4(n− 1)dλ(z1, z))cn+1λ(z)|dz|

To integrate the right hand side, let

x(t) =
∣∣∣∣

α(t)− z1

1− z̄1α(t)

∣∣∣∣ = T ◦ α(t)

where T is the disc automorphism above, and note that

ẋ(t) = T ′(α(t))α̇(t) = |T ′(α(t))||α̇(t)|

Also let u(x) = 1
2 log 1+x

1−x . So u(x(t)) = dλ(α(t), z1).

du

dt
=

1
1− x2

T ′(α(t))α̇(t) =
| ˙α(t)|

1− |α(t)|2
= λ(α(t))| ˙α(t)|

Thus,

∫

α

exp 4(n− 1)dλ(z, z1)cn+1λ(z)|dz| = cn+1

∫ α−1(z2)

0

exp 4(n− 1)u ◦ x(t)d(u ◦ x)

= cn exp 4(n− 1)dλ(z1, z2)

¤

It’s easy to see that this theorem also implies theorem 2.
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