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Abstract. We develop variational formulas for certain Neumann and Green functions
of multiply connected planar domains, valid for any smooth homotopy of the boundary.
The modified Neumann and Green functions under consideration arise in the study of
holomorphic functions with single-valued primitives.

1. Introduction

1.1. Statement and motivation of results. In this paper we derive first-order varia-
tional formulas for Green and Neumann functions of multiply connected planar domains,
which are valid for arbitrary smooth homotopies of the boundary curves. Variational for-
mulas are given for the Neumann function of the domain, as well as for certain modified
Green and Neumann functions which play a central role in the theory of complex ana-
lytic functions with primitives in multiply connected domains [3] [5] [7]. The variational
formula for the ordinary Green function was proven in [8].

The formulas obtained in this paper are improvements of the classical Hadamard vari-
ational formulas. The Hadamard formulas are valid for variations of the boundary curves
along the normal (that is, they are of the form z(s)+∆n(s)n(s) where z(s) traces the orig-
inal boundary curve, n(s) is the unit outward normal and ∆n(s) is an arbitrary smooth
quantity). In brief, the improvement is that while the Hadamard variation can be used
to provide necessary conditions for validity of certain functional inequalities, the formulas
provided here are often sufficient.

More precisely, assume that one wants to show that some quantity I depending on
intrinsic domain functions (such as the Green or the Neumann function and its derivatives)
increases as the domain increases set-theoretically. That is, if D1 ⊂ D2 then I(D1) <
I(D2). In particular, I must increase under a Hadamard variation, so taking the functional
derivative of I with respect to a Hadamard variation one obtains a necessary condition
for monotonicity. However, this does not rigorously establish the result for arbitrary

pairs of domains D1 and D2 such that D1 ⊂ D2, since 1) it is not possible to reach an
arbitrary domain by a normal variation and 2) one cannot even establish that the quantity
I is increasing on a small interval. Note that given a normal variation zt(s) = zt0(s) +
∆nt0(s)n(s) it is usually not possible to write zt(s) = zt1(s)+∆nt1(s)nt1(s) for t0 < t1 < t
for any function ∆nt1(s). Nevertheless, Hadamard variations are generic enough that one
suspects that the necessary conditions should be sufficient for monotonicity.
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The solution presented here is based on the intuitive idea that a generic smooth variation
of a curve is a normal variation up to first order. We give precise formulas for the first-order
variations of various domain functions under general homotopies. Using these formulas,
for any homotopy of domains Dt we may simply differentiate the quantity I(Dt) with
respect to t, and if it is positive then by elementary calculus I(Dt) must in fact be
increasing. This establishes that I(D1) < I(D2) for any pair of domains D1 ⊂ D2 with
homotopic boundary curves. For examples of such applications see [8].

The assumption that the boundaries are smooth is not an obstacle in proving inequali-
ties, since one can easily extend inequalities to the non-smooth case by using exhaustions
by smoothly bounded domains (see [8, Remark 2]). This can be contrasted with the
variational methods of Schiffer and others, which handle the non-smooth case directly
and provide necessary conditions that a particular domain be extremal, but often are
not sufficient to prove that an inequality holds in general. The variational techniques
presented here and in [8] are designed for sufficient conditions, and thus can be seen as
complementary to Schiffer variation.

In this paper we will focus on the establishment of such variational formulas for other
domain functions besides the Green function. In particular, we have devoted considerable
effort into establishing the formulas for certain modified Green and Neumann functions
considered in for example [3] [5] [7], with an eye to future applications. These domain
functions are important to the study of the class of exact holomorphic one-forms.

Our results are the following: (1) Theorem 3.5 establishes the variational formula for
the modified Green function under an arbitrary homotopy. As described above, this gen-
eralizes the Hadamard variational formula; (2) Theorem 3.1 yields a variational formula
under an arbitrary homotopy for a modified Neumann function H defined by Schiffer
and Hawley [7]. The formula was proven in the special case of Schiffer variations in [7]
and therefore it has not even been established for arbitrary Hadamard variations; (3) In
Theorem 3.7 we establish the formula for variation of the ordinary Neumann function N
under an arbitrary homotopy.

1.2. Preliminaries. Let G be a domain in the complex plane bounded by m smooth
curves.

Definition 1.1. Let D(G) denote the set of harmonic functions on G with finite Dirichlet
energy.

Two facts concerning D(G) will be crucial. First, by a result of Privalov, Plessner,
Marcinkiewicz, Zygmund and Spencer, see e.g. [11], for almost every point p ∈ ∂G,
any element of D(G) has non-tangential limit at p. See also [10] for detailed proofs and
generalizations to all dimensions and domains with various boundary regularities. Second,
it is known that if G is a smoothly bounded domain and u is a harmonic function with
finite Dirichlet energy then the boundary value of u is an L2(∂G) function with respect
to the boundary measure of the domain, see Aronszajn [1] and Sobolev [9].
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Now let z = z(s) be the parametric representation of the boundary curves in terms of
the arc length s. Denote differentiation with respect to s with a dot, e.g. ż. Assume that
the boundaries are traced with positive orientation with respect to the interior. We will
use the following conventions in this paper: (1) n denotes the unit outward normal; (2)
the curvature κ of z(s) is a signed curvature, so that the curvature is positive if z̈ points
in the direction of the outward normal n (i.e. z̈ = κn). With these conventions, we have
that

(1.1) n = −iż

and

(1.2) κ(s) = i
z̈

ż
.

Following Schiffer and Hawley [7], we define the subspace D0(G) of D(G) consisting of
functions which satisfy

(1.3)

∫

∂G

f(z(s))κ(s)ds = 0.

By the Cauchy-Schwarz inequality and the preceding discussion the integral
∫

∂G
fκ exists.

Besides the ordinary Neumann function, we will consider a modified Neumann and
Green function on D0(G). These functions were considered by Schiffer and Hawley [7] in
the study of connections on planar domains, and play a central role in the construction of
kernel functions in D0(G) and holomorphic functions of finite Dirichlet energy satisfying
the same normalization. D0(G) and the corresponding space of holomorphic functions
are in one-to-one correspondence with exact harmonic and holomorphic one-forms on G
respectively via application of the exterior derivative, which accounts for their importance.
The non-standard normalization is a key part of the machinery developed in [7] for the
construction of intrinsic differentials on G.

We now define the Neumann and Green functions considered in this paper. First we
define the ordinary Neumann function N of a domain G in the plane. As is well-known
this function is defined by the properties that N(z, ζ) = − log |z − ζ|+ N1(z, ζ) where N1

is harmonic in z on G,

(1.4)
∂N

∂nz

(z, ζ) =
2π

L
, z ∈ ∂G,

where
∫

∂G
ds = L and the normalization

(1.5)

∫

∂G

N(z, ζ) dsz = 0.

Because of its logarithmic pole, N satisfies Green’s third identity, see [6], for any u which
is harmonic on G:

(1.6) u(ζ) =
1

2π

∫

∂G

(

N(z, ζ)
∂u

∂n
(z) − u(z)

∂N

∂n
(z, ζ)

)

ds.
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Of course if
∫

∂G

u(z)dsz = 0

then

u(ζ) =
1

2π

∫

∂G

N(z, ζ)
∂u

∂n
(z)dsz.

Next we define the “modified Neumann function” H of Schiffer and Hawley [7].
Given a planar domain G bounded by m smooth closed curves, H(z, ζ) is the unique
function with the following properties:

(1.7) H(z, ζ) = −m log |z − ζ| + H1(z, ζ)

where H1 is harmonic in z,

(1.8)
∂H

∂n
(z, ζ) = −κ(z)

where once again n denotes the unit outward normal and

(1.9)

∫

∂G

κ(z)H(z, ζ)dsz = 0.

Remark 1.2 (Comparison with the sign conventions in [7]). Schiffer and Hawley [7] choose
the inward normal for n and also choose curvature to have opposite sign κ as that used
here. Unfortunately their choices of sign are inconvenient in the present setting. Thus
with these two changes, the condition

∂H

∂n
= −κ

defines precisely the same function H as in [7].

Because of the logarithmic pole, H has the property that for any harmonic function u
on G

u(ζ) =
1

2πm

∫

∂G

(

H(z, ζ)
∂u

∂n
(z) − u(z)

∂H

∂n
(z, ζ)

)

dsz(1.10)

=
1

2πm

∫

∂G

(

H(z, ζ)
∂u

∂n
(z) + u(z)κ(z)

)

dsz

In particular, if u satisfies the normalization
∫

∂G

κ(z)u(z)dsz = 0

then

u(ζ) =
1

2πm

∫

∂G

H(z, ζ)
∂u

∂n
(z) dsz.

Thus H is the “Neumann function” for the class of harmonic functions with this normal-
ization.
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Finally, we define the modified Green function G introduced in [7]. Again, note that
some signs differ from [7] because of our choice that n denotes the outward rather than
inward normal. Let g(z, ζ) denote the ordinary Green function defined to be the unique
function in ζ satisfying

g(z, ζ) = − log |z − ζ| + g1(z, ζ)

where g1 is harmonic in ζ and

g(z, ζ) = 0

for any ζ ∈ G and z ∈ ∂G. Let ∂G = ∪m
µ=1Cµ,

ωµ(ζ) = −
1

2π

∫

Cµ

∂g

∂nz

(z, ζ)dsz

denote the harmonic measures of G, and

Pµν =
1

2π

∫

Cµ

∂ων

∂n
ds

denote the period matrix. Let cνµ be the symmetric matrix defined by the conditions

δµρ −
1

m
= 2π

m
∑

ν=1

cνµPνρ

where δµρ is the Kronecker delta and

m
∑

ν=1

cνµ = 0 µ = 1, . . . ,m.

The modified Green function G is defined by

(1.11) G(z, ζ) = g(z, ζ) + 2π
m

∑

µ,ν=1

cνµων(z)ωµ(ζ).

G so defined, is harmonic for z 6= ζ and has a logarithmic pole for z = ζ:

(1.12) G(z, ζ) = − log |z − ζ| + G1(z, ζ)

where G1 is harmonic in ζ. Of course G1 is also symmetric.
From the representation above, it follows that G(z, ζ) is symmetric in z and ζ. It can

be shown that G satisfies the following relations:

(1.13)
1

2π

∫

Cµ

∂G(z, ζ)

∂nz

dsz = −
1

m
, µ = 1, . . . ,m.

On each boundary curve Cµ, G(z, ζ) takes a constant value in the sense that

(1.14) G(z, ζ) = kµ(ζ), z ∈ Cµ,
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with

(1.15)
m

∑

µ=1

kµ(ζ) = 0.

Furthermore

(1.16)

∫

∂G

κ(sz)G(z, ζ)dsz = 0.

See [7] for the details and proofs of these statements.

2. Homotopies of the boundary curves

In this section we carefully define the kind of variation under consideration, establish
some notation, and collect some crucial technical lemmas.

2.1. Definition of admissible homotopies and notation.

Definition 2.1. Let Gt be a family of domains for t ∈ (a, b), which are bounded by m Cp

simple closed curves for each fixed t. A collection of functions F i : (a, b) × [0, 2π] → C,
i = 1, . . . ,m is called an admissible Cp homotopy for Gt if

(1) F i is injective for each i, except that F i(t, 0) = F i(t, 2π)
(2) F i is Cp for each i; furthermore, the right-hand derivatives in the second variable

up to order p at (t, 0) match the left-hand derivatives at (t, 2π) for all t ∈ (a, b)
(3) for each fixed t the curves F i(t, ·) are the boundary curves of Gt, and
(4) Gt′ ⊂ Gt whenever t′ < t.

We will refer to the collection of functions F i as “the homotopy F”.
The following definition fixes notation regarding the infinitesimal variation correspond-

ing to an admissible homotopy.

Definition 2.2. Let Gt be a collection of domains for t ∈ (a, b) and F be an admissible
homotopy for Gt. For t0 ∈ (a, b) denote the outward unit normal to F i(t0, ·) at F i(t0, τ)
by nt0(τ) as above. Let ∆ni

t0
(t, τ) denote the distance from F i(t0, τ) to the curve F (t, ·)

along the normal line at F i(t0, τ) (see Figure 2.1). Furthermore denote

νi
t0
(τ) =

d

dt

∣

∣

∣

∣

t=t0

∆ni
t0
(t, τ).

If F is suitably regular, the definitions of ∆ni
t0
(τ) and νi

t0
(t, τ) make sense for some

interval (t0 − ǫ, t0 + ǫ) × [0, 2π] by Lemma 2.5 ahead.

Remark 2.3. We will often drop the index i to reduce clutter.

Remark 2.4. Note that it is usually not true that F (t0, τ) + ∆nt0(t, τ) nt0(τ) = F (t, τ).
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Figure 1. Definition of ∆n

F (t0, ·)

F (t, ·)

F (t0, τ)

∆nt0(t, τ)nt0(τ)

2.2. Technical lemmas regarding homotopies. Here we collect some crucial lemmas
established in [8], as well as an elementary formula for the variation of curvature κ.

Given such a homotopy, fix t0 ∈ (a, b). It is intuitively clear that for small t−t0 the curve
F (t, ·) can be obtained from F (t0, ·) by variation along the normal line. That is, for small
t − t0 a general homotopy is in fact a normal variation (that is, up to reparametrization
of the curve F (t, ·); see Remark 2.4). For our applications it is necessary to have control
over the interval on which this is true. The following two lemmas proved in [8] are for
this purpose.

Lemma 2.5. Let F be an admissible C2 homotopy, and [c, d] be a compact subinterval of

(a, b). There is a fixed ε > 0, such that for every t0 ∈ [c, d] and t ∈ (t0 − ε, t0 + ε), the

curve τ 7→ F i(t, τ) intersects the normal line r 7→ F i(t0, τ0)+ rni
t0
(τ0) once and only once

for every τ0 ∈ [0, 2π] and i = 1, . . . ,m.

Clearly ∆nt0(t, τ) is approximately (t − t0)νt0(τ). We will need a uniform version of
this approximation:

Lemma 2.6. The ε of Lemma 2.5 can be chosen so that

∆nt0(t, τ) = (t − t0)νt0(τ) + O(|t − t0|
2)

for |t − t0| < ε, where the remainder is uniform for (t0, τ) ∈ [c, d] × [0, 2π].

We will also need the following elementary formula for the variation of curvature κ.

Lemma 2.7. Let F be an admissible C3 homotopy corresponding to domains Gt. Let zt1(s)
parametrize the curve τ 7→ F (t1, τ) with respect to arc length, and let zt2(s) = zt1(s) +
∆nt1(t2, τ(s)) n(s) parametrize the curve τ ′ 7→ F (t2, τ

′). Let κti(s) denote the curvature

of these two curves as a function of s for i = 1, 2 respectively. Let νt1(s) = νt1(τ(s)).
Then denoting differentiation with respect to s with a dot,

κt2(s) = κt1(s) + (t2 − t1)
(

κ2
t1
(s)νt1(s) + ν̈t1(s)

)

+ O(|t2 − t1|
2).
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The remainder term is uniformly bounded by K|t2 − t1|
2 on the entire curve F (t1, ·) for

some K.

Proof. For simplicity denote u(t2) = ∆nt1(t2) n = −i∆nt1(t2)ż, (suppressing the depen-
dence on s). Then we have

κt2 = −
1

|żt1 + ü(t2)|
Im

(

z̈t1 + ü(t2)

żt1 + u̇(t2)

)

.

Note that ∆n(t1), ∆̇n(t1) and ∆̈n(t1) are all identically zero. It follows that u(t1), u̇(t1)
and ü(t1) are also identically zero. Denoting differentiation with respect to t2 with a ′, it
is then easy to compute that

d

dt2

z̈t1 + ü(t2)

żt1 + u̇(t2)

∣

∣

∣

∣

t2=t1

=
ü′(t1)

żt1

−
u̇′(t1)

żt1

z̈t1

żt1

and
d

dt2

1

|żt1 + u̇′(t2)|

∣

∣

∣

∣

t2=t1

= −Re

(

u̇′(t1)

żt1

)

.

Thus

d

dt2
κt2(s)

∣

∣

∣

∣

t2=t1

= Re

(

u̇′(t1)

żt1

)

Im

(

z̈t1

żt1

)

− Im

(

ü′(t1)

żt1

−
u̇′(t1)

żt1

z̈t1

żt1

)

(2.1)

= −2Re

(

u̇′(t1)

żt1

)

κt1 − Im

(

ü′(t1)

żt1

)

.

In the second equality we used equation (1.2); note that z̈t1/żt1 is pure imaginary since
zt1(s) is parametrized by arc length.

Again using equations (1.1) and (1.2)

u̇(t2) = −i∆̇n(t2)żt1 − ∆n(t2)κt1 żt1 .

Therefore since ∆n′(t1) = νt1

(2.2) 2Re

(

u̇′(t1)

żt1

)

= −2κt1νt1 .

Differentiating u̇, we obtain

ü(t2) = −i∆̈n(t2)żt1 − 2κt1∆̇n(t2)żt1 − ∆n(t2)κ̇t1 żt1 + i∆n(t2)κ
2
t1
żt1 ,

so

ü′(t1) = i
(

κ2
t1
νt1 − ν̈t1

)

żt1 − (2κt1 ν̇t1 + κ̇t1νt1) żt1 .

It then follows that

(2.3) Im

(

ü′(z1)

żt1

)

= κ2
t1
νt1 − ν̈t1 .

The lemma now follows from equations (2.1), (2.2) and (2.3). �
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3. Main theorems: variational formulas for domain functions

3.1. Variational formula for the modified Neumann function H. We now state
and prove the variational formula for H. The same formula was derived by Schiffer and
Hawley [7] in the special case of a Schiffer variation. Since not every normal variation of a
curve arises from a Schiffer variation, even the Hadamard variational result has not been
proven for H. Here we extend the formula to arbitrary homotopies of the boundary, in
the case that the boundaries are smooth, significantly generalizing Schiffer and Hawley’s
result for the smoothly bounded case. On the other hand, Schiffer and Hawley gave
formulas for domains whose boundaries are not smooth.

H satisfies certain useful identities. Let z(s) parametrize ∂G with respect to arc length,
and let ż denote the unit tangent vector. Then

(3.1) 2
∂H

∂z
ż =

∂H

∂s
+ i

∂H

∂n

and so

(3.2) Re

(

4
∂H

∂z
(z, ζ)

∂H

∂z
(z, η)ż2

)

=
∂H

∂s
(z, ζ)

∂H

∂s
(z, η) −

∂H

∂n
(z, ζ)

∂H

∂n
(z, η).

Finally we have the identity

(3.3) 2Re

(

∂2H

∂z2
ż2

)

=
∂2H

∂s2
+ κ2.

To see this, an elementary computation yields for z = x + iy,

∂2H

∂s2
= ẋ2∂2H

∂x2
+ ẏ2∂2H

∂y2
+ 2ẋẏ

∂2H

∂x∂y
+ ẍ

∂H

∂x
+ ÿ

∂H

∂y
.

Now since H is harmonic we have that (suppressing z and ζ dependence)

∂2H

∂s2
=

∂2H

∂s2
−

1

2

(

ẋ2 + ẏ2
)

(

∂2H

∂x2
+

∂2H

∂y2

)

=
1

2

(

ẋ2 − ẏ2
)

(

∂2H

∂x2
−

∂2H

∂y2

)

+ 2ẋẏ
∂2H

∂x∂y
+ ẍ

∂H

∂x
+ ÿ

∂H

∂y

= 2Re

(

∂2H

∂z2
ż2

)

− κ2

In the last step we have used the fact that

ẍ
∂H

∂x
+ ÿ

∂H

∂y
= 2Re

(

(ẍ + iÿ)
∂H

∂z

)

= −2Re

(

κiż
∂H

∂z

)

= κ
∂H

∂n
= −κ2

which follows from equations (1.2) and (1.8).
We now state the variational formula for H. In the following, we drop the index i

on the quantities νi
t0
, ∆ni

t0
to reduce clutter. Where the integrals are taken over the

entire boundary ∂Gt0 for example, it is understood that nt0 , ∆nt0 and νt0 stand for the



10 ERIC SCHIPPERS AND WOLFGANG STAUBACH

appropriate function along each boundary component. Also, we write νt0(z) for νt0(τ)
where F (t0, τ) = z.

Theorem 3.1. Let Gt, t ∈ (a, b) be a collection of domains bounded by m simple closed

C3 curves and F an admissible C3 homotopy for Gt. Denoting arc length by s we have

that

Ht(ζ, η) − Ht0(ζ, η) =
t − t0
2πm

∫

∂Gt0

(Re(Rt0(z, ζ, η)ż2) + 2κ2
t0
)νt0(z) dsz + R1(t0, η; t, ζ)

where

(3.4) Rt0(z, ζ, η) = −4
∂Ht0

∂z
(z, ζ)

∂Ht0

∂z
(z, η) − 2

∂2Ht0

∂z2
(z, η) − 2

∂2Ht0

∂z2
(z, η).

The remainder term R1 is harmonic in ζ and satisfies R1(t0, η; t, ζ) = O(|t − t0|
2) uni-

formly in ζ on any compact subset of Gt0.

Remark 3.2. More precisely, by “uniformly in ζ on any compact set in Gt0” we mean that
for any compact subset K of Gt0 and t large enough so that K ⊂ Gt the remainder term
is bounded by C|t − t0|

2 for a constant C which depends on K but not ζ ∈ K.

Remark 3.3. Note that since Ht(ζ, η) = Ht(η, ζ) for all t and the first order variation is
also symmetric, the remainder terms must be symmetric and hence we know that the
estimate is also uniform in compact sets in η in the same sense.

Proof. First assume that t < t0. By equations (1.9) and (1.10)

Ht(ζ, η) − Ht0(ζ, η) =
1

2πm

∫

∂Gt

(

∂Ht

∂n
(z, η) −

∂Ht0

∂n
(z, η)

)

Ht(z, ζ) dsz(3.5)

−
1

2πm

∫

∂Gt

Ht0(z, η)κt(z) dsz.

We first claim that Ht(ζ, η)−Ht0(ζ, η) ≤ C|t− t0| where the constant C is independent
of ζ ∈ Gt0 . (More precisely, for some ε > 0, given any fixed t such that |t − t0| < ε
this inequality holds for any ζ ∈ Gt). Let I and II denote the first and second integrals
respectively in (3.5). In Lemma 2.7 set t1 = t and t2 = t0 (so that in (3.5) z = zt). Denote
the normal to the curve F (t, ·) by nt (so that in the above formula n = nt). If ε > 0 is
small enough, then

∂Ht0

∂nt

(z, η) −
∂Ht0

∂nt0

(zt0 , η) = O(|t − t0|)

uniformly for all z in the strips ∪iF
i((t0 − ε, t] × [0, 2π]). Thus the first integral is

I =
1

2πm

∫

∂Gt

[κt(s) − κt0 (z(s) + ∆nt(t0, τ(s))nt)] dst + O(|t − t0|).

Since F is C3 it follows that κ2
t , νt and ν̈t are uniformly bounded in s and t ∈ (t0 − ε, t0].

Thus I is O(|t − t0|) by Lemma 2.7.
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In the same manner, approximating Ht0(z, η) with Ht0(zt0 , η), we have that the second
integral is

II =
1

2πm

∫

∂Gt

Ht0(zt0 , η)κt0(zt0)ds + O(|t − t0|)

and, using equation (1.9) and the fact that ds = dst0 + O(|t − t0|) we have that II =
O(|t − t0|). This proves the first claim.

Next we derive an expression for Ht−Ht0 involving Dirichlet energy which will be useful

in computing the first-order variation. Denoting Hζ
t (z) = Ht(z, ζ) and the Dirichlet inner

product on a domain G by

(f, g)G =

∫∫

G

∇f · ∇g dA,

we have using Green’s identity that

1

2πm

(

Hζ
t − Hζ

t0
, Hη

t − Hη
t0

)

Gt

=
1

2πm

∫

∂Gt

(Ht(z, ζ) − Ht0(z, ζ))
∂

∂nz

(Ht − Ht0) (z, η)dsz.

Next, using Green’s identity and the fact that H satisfies (1.8) and (1.9) it follows that

1

2πm

(

Hζ
t0
, Hη

t0

)

Gt0
\Gt

= −
1

2πm

∫

∂Gt

Ht0(z, ζ)
∂Ht0

∂n
(z, η) dsz

= −
1

2πm

∫

∂Gt

Ht0(z, ζ)
∂

∂n
(Ht0 − Ht)(z, η) dsz

+
1

2πm

∫

∂Gt

Ht0(z, ζ)κt(z) dsz.

Combining these two equations with (3.5) we have that

Ht(ζ, η) − Ht0(ζ, η) =
1

2πm

(

Hζ
t − Hζ

t0
, Hη

t − Hη
t0

)

Gt

+
1

2πm

(

Hζ
t0
, Hη

t0

)

Gt0
\Gt

(3.6)

−
1

2πm

∫

∂Gt

(Ht0(z, ζ) + Ht0(z, η)) κt(z) dsz.

We will compute each of these terms up to first order in t − t0. The first term is
O(|t− t0|

2). To see this, first note that since the difference Ht(ζ, η)−Ht0(ζ, η) is harmonic
in ζ and Ht − Ht0 → 0 uniformly on compact sets as t → t0, the derivative

∂Ht

∂ζ
−

∂Ht0

∂ζ

is holomorphic and converges to zero uniformly on compact sets. The same is true for the
derivative with respect to ζ̄. From this we can conclude that the estimate

∇ζHt(ζ, η) −∇ζHt0(ζ, η) = O(|t − t0|)

holds uniformly on Gt in the same sense as above. Thus
(

Hζ
t − Hζ

t0
, Hζ

t − Hζ
t0

)

Gt

= O(|t − t0|
2)
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as claimed.
Next we compute the second term. We will parametrize the region Gt0\Gt as follows.

Let z0(s) parametrize ∂Gt0 with respect to arc length. Let nt0(s) ≡ nt0(τ(s)) denote
the unit outward normal to ∂Gt0 parametrized with respect to arc length. Then for
∆nt0(t, τ(s)) ≤ r ≤ 0 the lines r 7→ z0(s) + rnt0(s) sweep out the region Gt0\Gt. We have
by an easy computation of the Jacobian determinant ∂(x, y)/∂(s, r) (for z = x + iy) that

dA = (1 + rκt0(s)) ds dr = ds dr + O(|t − t0|).

The remainder term is uniform on Gt0\Gt since κt0(s) is uniformly bounded since all
the functions F i are C3, and by Lemma 2.6 ∆nt0(t, τ(s)) = O(|t − t0|) since |νt0(τ(s))| is
uniformly bounded on ∂Gt0 . Thus |r| = O(|t − t0|) uniformly for the specified range of s
and r, and the claim follows.

Since

∇H(z, ζ) · ∇H(z, η) =
∂H

∂s
(z, ζ)

∂H

∂s
(z, η) +

∂H

∂n
(z, ζ)

∂H

∂n
(z, η),

using the identity (3.2) we have that

1

2πm

(

Hζ
t0
, Hη

t0

)

=
2

πm

∫

∂Gt0

∫ 0

∆nt0
(t,τ(s))

Re

[

∂Ht0

∂z
(z, ζ)

∂Ht0

∂z
(z, η)ż2

]

dr dsz

+
1

πm

∫

∂Gt0

∫ 0

∆nt0
(t,τ(s))

∂Ht0

∂n
(z, ζ)

∂Ht0

∂n
(z, η)drdsz + O(|t − t0|)

= −
2

πm

∫

∂Gt0

Re

[

∂Ht0

∂z
(z, ζ)

∂Ht0

∂z
(z, η)ż2

]

∆nt0(t, τ(t))dsz

−
1

πm

∫

∂Gt0

κt0(z)2 ∆nt0(t, τ(s))dsz + O(|t − t0|
2)

where we have applied the mean value theorem in the second equality. Since (∂Ht0/∂n)(z, ζ)
is C∞ in z and ζ away from the diagonal z − ζ = 0, this estimate is uniform in ζ for
compact sets in Gt. Finally, by an application of Lemma 2.6 we have that

1

2πm

(

Hζ
t0
, Hη

t0

)

Gt0
\Gt

= −(t − t0)
2

πm

∫

∂Gt0

Re

[

∂Ht0

∂z
(z, ζ)

∂Ht0

∂z
(z, η)ż2

]

νt0(z)dsz(3.7)

− (t − t0)
1

πm

∫

∂Gt0

κt0(z)2 νt0(z)dsz + O(|t − t0|
2)

where again the estimate is uniform in ζ on compact subsets of Gt.
Next we estimate the third term. We will apply Lemma 2.7 with t1 = t0 and t2 = t,

and z = zt = zt0 + ∆nt0nt0 . We have that

(3.8) Ht0(z, ζ) = Ht0(zt0 +∆nt0nt0 , ζ) = Ht0(zt0 , ζ)+(t− t0)νt0

∂Ht0

∂n
(zt0 , ζ)+O(|t− t0|

2).
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Let u(t) = ∆nt0nt0 as in the proof of Lemma 2.7. Since

dst = |żt0 + u̇(t)|dst0

and by equation (2.2)

d

dt

∣

∣

∣

∣

t=t0

|żt0 + u̇(t)| = Re

(

u̇′(t0)

żt0

)

= −κt0νt0

it follows that

(3.9) dst =
(

1 − (t − t0)κt0νt0 + O(|t − t0|
2)

)

dst0 .

Combining this with Lemma 2.7 we have

κtdst =
(

κt0 + (t − t0)ν̈t0 + O(|t − t0|
2)

)

dst0 .

Thus by (3.8)
∫

∂Gt

Ht0(z, ζ)κ(z)ds =

∫

∂Gt0

Ht0(zt0 , ζ)κt0dst0

+ (t − t0)

∫

∂Gt0

(

Ht0(zt0 , ζ)ν̈t0 − (κt0)
2νt0

)

dst0 + O(|t − t0|
2)

so integrating by parts twice and using (1.9) we have
∫

∂Gt

Ht0(z, ζ)κ(s)ds = (t − t0)

∫

∂Gt0

(

∂2Ht0

∂st0
2

(zt0 , ζ) − κt0
2

)

νt0 dst0 + O(|t − t0|
2).

Applying the identity (3.3) to the above we have that

(3.10)

∫

∂G

Ht0(z, ζ)κ(s)ds = (t−t0)

∫

∂Gt0

(

2Re

(

∂2Ht0

∂z2
ż2

t0

)

− 2κ2
t0

)

νt0 dst0+O(|t−t0|
2).

The estimation of the fourth term gives the identical result. Combining equations (3.6),
(3.7) and (3.10), and using the fact that the second term is O(|t−t0|

2), proves the Theorem
in the case that t < t0.

Finally, we consider the case that t > t0. To do this, we enclose both domains Gt and
Gt0 inside the larger domain GT for T > t, and apply the first part of the proof. The main
difficulty is that although it may be possible to reach the curve F (t, ·) from F (t0, ·) by
a normal variation, it is not obvious that you can enclose the two curves in a larger one
F (t, τ) from which it is possible to reach them by a normal variation). (For example, it is
even possible that F (t, ·) can be reached from F (t0, ·) by a normal variation, but F (t0, ·)
cannot be reached from F (t, ·) as in Figure 3.1.)

Lemma 2.5 solves the problem. Fixing t0; let [c, d] be a compact interval such that
t0 ∈ (c, d), and let ε1 be as in Lemma 2.5. By possibly shrinking ε1 we can ensure
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Figure 2. F (t0, ·) not a normal variation of F (t, ·)

F (t, ·)

F (t0, ·)

that (t0 − ε1, t0 + ε1) ⊂ [c, d]. Choose ε = ε1/2. For any t ∈ [t0 + ε), set T so that
T − t0 = 2(t − t0). By the first part of the proof we have that

Ht(ζ, η) − HT (ζ, η) =
t − T

2πm

∫

GT

(

Re
(

RT (z, ζ, η)ż2
)

+ 2κ2
T (z)

)

νT (z)dsz + R1(T, η; t, ζ)

and

Ht0(ζ, η)−HT (ζ, η) =
t0 − T

2πm

∫

GT

(

Re
(

RT (z, ζ, η)ż2
)

+ 2κ2
T (z)

)

νT (z)dsz +R1(T, η; t0, ζ).

Subtracting the second equation from the first leads to

Ht(ζ, η) − Ht0(ζ, η) =
t − t0
2πm

∫

GT

(

Re
(

RT (z, ζ, η)ż2
)

+ 2κ2
T (z)

)

νT (z)dsz

+ R1(T, η; t, ζ) −R1(T, η; t0, ζ).

Since T − t = t − t0 and T − t0 = 2(t − t0) it follows that both remainder terms are
O(|t − t0|

2). Furthermore since HT and its derivatives converge uniformly on compact
sets to Ht0 , RT converges uniformly on compact sets to Rt0 . Also since F is C3, κT → κt0

and νT → νt0 , both uniformly.
Therefore we obtain

Ht(ζ, η) − Ht0(ζ, η) =
t − t0
2πm

∫

∂Gt

(

Re
(

Rt0(z, ζ, η)ż2
)

+ 2κ2
t0
(z)

)

νt0(z) dsz + R1(t0, η; t, ζ),

and this proves the theorem.
�

Remark 3.4. Figure 3.1 provides an example where a normal variation based at the curve
F (t0, ·) traces out the curve F (t, ·) in a one-to-one way, whereas the normal variation
based at F (t, ·) tracing out F (t0, ·) is not one-to-one. In order to complete the proof, it
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was necessary to establish that given t0, there is an interval containing t0 on which this
does not happen. Thus Lemma 2.5 is indispensible.

In fact, this issue already appears in the proof of the weaker Hadamard variational
formula. Many sources do not treat this point carefully.

3.2. Variational formula for the modified Green’s function. Since G is constant
on each boundary,

∂G

∂s
= 0

on all boundaries, so if z(s) parametrizes the boundary by arc length,

(3.11) 2
∂G

∂z
ż = i

∂G

∂n
.

Therefore

(3.12) 4
∂G

∂z
(z, ζ)

∂G

∂z
(z, η)ż2 = −

∂G

∂n
(z, ζ)

∂G

∂n
(z, η).

It is easy to see that

∇G(z, ζ) · ∇G(z, η) =
∂G

∂s
(z, ζ)

∂G

∂s
(z, η) +

∂G

∂n
(z, ζ)

∂G

∂n
(z, η)

Hence since ∂G/∂s = 0

(3.13) ∇G(z, ζ) · ∇G(z, η) =
∂G

∂n
(z, ζ)

∂G

∂n
(z, η) = −4

∂G

∂z
(z, ζ)

∂G

∂z
(z, η)ż2

by equation (3.12). Note that the last expression is real.

Theorem 3.5. Let Gt, t ∈ (a, b) be a collection of domains bounded by m simple closed

C2 curves and F an admissible C2 homotopy for Gt. Then

Gt(ζ, η) − Gt0(ζ, η) = −(t − t0)
1

2π

∫

∂Gt

4
∂G

∂z
(z, ζ)

∂G

∂z
(z, η)ż2νt0(z) dsz + R2(t0, η; t, ζ)

where the remainder term R2 is harmonic in ζ and satisfies R2(t0, η; t, ζ) = O(|t − t0|
2)

uniformly in ζ in the sense of Theorem 3.1 and Remark 3.2.

Remark 3.6. Again, since G is symmetric, R2 is also harmonic in η and the estimate is
uniform in compact sets in the same sense.

Proof. Using (1.13), (1.14) and (1.15), we have for any t

1

2π

∫

∂Gt

Gt(z, ζ)
∂Gt

∂n
(z, η)dsz =

1

2π

m
∑

µ=1

kµ(t, ζ)

∫

Cµ

∂Gt

∂n
(z, η)dsz(3.14)

=
−1

2πm

m
∑

µ=1

kµ(t, ζ) = 0,

where kµ(t, ζ) denotes the boundary value of Gt(z, ζ).
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Since Gt has a logarithmic pole (1.12) it satisfies Green’s third identity

u(ζ) =
1

2π

∫

∂Gt

(

Gt(z, ζ)
∂u

∂n
(z) − u(z)

∂Gt

∂n
(z, ζ)

)

dsz(3.15)

for any u harmonic on G and for any t. Setting u(·) = Gt(·, η) − Gt0(·, η) we have using
equation (3.14)

Gt(ζ, η) − Gt0(ζ, η) =
1

2π

∫

∂Gt

Gt0(z, η)
∂Gt

∂n
(z, ζ)dsz −

1

2π

∫

∂Gt

Gt(z, ζ)
∂Gt0

∂n
(z, η)dsz.

(3.16)

Using Green’s identity and equation (3.14) we have

1

2π

(

Gζ
t0
, Gη

t0

)

Gt0
\Gt

= −
1

2π

∫

∂Gt

Gt0(z, ζ)
∂Gt0

∂n
(z, η)dsz

and
1

2π

(

Gζ
t − Gζ

t0
, Gη

t − Gη
t0

)

Gt

= −

∫

∂Gt

Gt0(z, ζ)
∂Gt

∂n
(z, η)dsz −

∫

∂Gt

Gt(z, ζ)
∂Gt0

∂n
(z, η)dsz.

+

∫

∂Gt

Gt0(z, ζ)
∂Gt0

∂n
(z, η)dsz

Putting the last three equations together we have that

Gt(ζ, η) − Gt0(ζ, η) =
1

2π

(

Gζ
t0
, Gη

t0

)

Gt0
\Gt

+
1

2π

(

Gζ
t − Gζ

t0
, Gη

t − Gη
t0

)

Gt

(3.17)

+
1

2π

∫

∂Gt

Gt0(z, ζ)
∂Gt

∂n
(z, η)dsz +

1

2π

∫

∂Gt

Gt0(z, η)
∂Gt

∂n
(z, ζ)dsz.

We first show that
Gt(ζ, η) − Gt0(ζ, η) = O(|t − t0|)

uniformly on Gt0 .
To do this we use the representation (3.16). Denote the right hand side by I + II.
To estimate the first term I, as in the proof of Theorem 3.1 set z = zt0+∆nt0(t, τ(s))nt0(s).

Equations (1.13), (1.14) and (1.15) yield

I =
1

2π

∫

∂Gt

Gt0(z, η)
∂Gt(z, ζ)

∂n
ds =

1

2π

∫

∂Gt

Gt0(zt0 , η)
∂Gt0(zt0 , ζ)

∂n
ds + O(|t − t0|)

=
1

2π

∫

∂Gt0

Gt0(zt0 , η)
∂Gt0(zt0 , ζ)

∂n
dst0 + O(|t − t0|)

=
1

2π

∑

µ

kµ(t0, η)

∫

C
t0
µ

∂Gt0(zt0 , ζ)

∂n
dst0 + O(|t − t0|) = O(|t − t0|)

where Ct0
µ is the µ−th boundary curve of Gt0 .
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This yields I = O(|t − t0|). To show that II = O(|t − t0|), we observe that

II = −
1

2π

∫

∂Gt

Gt(z, ζ)
∂Gt0

∂n
(z, η)dsz

= −
∑

µ

kµ(t, ζ)

∫

Ct
µ

∂Gt0

∂n
(z, η)ds

= −
∑

µ

kµ(t, ζ)

∫

C
t0
µ

∂Gt0

∂n
(z, η)ds + O(|t − t0|)

=
1

m

∑

µ

kµ(t, ζ) + O(|t − t0|) = O(|t − t0|).

Therefore I + II = O(|t − t0|) and thereby Gt(ζ, η) − Gt0(ζ, η) = O(|t − t0|).
Since the difference is harmonic, the ζ-derivative is holomorphic and we have that

∂
∂ζ

(Gt −Gt0)(ζ, η) converges to zero uniformly on compact sets, and similarly for ∂
∂ζ̄

(Gt −

Gt0)(ζ, η). Thus we also have that

1

2π

(

Gζ
t − Gζ

t0
, Gη

t − Gη
t0

)

Gt

= O(|t − t0|
2).

Next we estimate the first term in equation (3.17). Proceeding as in the proof of
Theorem 3.1

1

2π

(

Gζ
t0
, Gη

t0

)

Gt0
\Gt

= −
2

π

∫

∂Gt0

∫ 0

∆nt0
(t,τ(s))

∂Gt0

∂z
(z, ζ)

∂Gt0

∂z
(z, η)ż2 (1 + O(|t − t0|)) drdsz

(3.18)

=
2

π

∫

∂Gt0

∂Gt0

∂z
(z, ζ)

∂Gt0

∂z
(z, η)ż2∆nt0(t, τ(s))dsz + O(|t − t0|

2)

= (t − t0)
2

π

∫

∂Gt0

∂Gt0

∂z
(z, ζ)

∂Gt0

∂z
(z, η)ż2νt0(z)dsz + O(|t − t0|

2)

where the last equality follows from Lemma 2.6. This estimate is uniform in ζ for compact
sets in Gt.

Next we estimate the third term of equation (3.17). Letting z = zt0+∆nt0(t, τ(s))nt0(τ(s))
as above, since

Gt0(z, ζ) = Gt0(zt0 , ζ) + ∆nt0(t, τ(s))
∂Gt0

∂n
(zt0 , ζ) + O(|t − t0|

2)



18 ERIC SCHIPPERS AND WOLFGANG STAUBACH

we have that
1

2π

∫

∂Gt

Gt0(z, ζ)
∂Gt

∂n
(z, η)dsz =

1

2π

∫

∂Gt

Gt0(zt0 , ζ)
∂Gt

∂n
(z, η)∆nt0(t, τ(s))

+
1

2π

∫

∂Gt

∂Gt0

∂n
(zt0 , ζ)

∂Gt0

∂n
(z, η)∆nt0(t, τ(s))dsz + O(|t − t0|

2).

We have used the fact that ∆nt0 = O(|t − t0|).
The first term of the above equation is

1

2π

∫

∂Gt

Gt0(zt0 , ζ)
∂Gt

∂n
(z, η)∆nt0(t, τ(s))dsz =

1

2π

m
∑

µ=1

kµ(t0, ζ)

∫

Cµ

∂Gt

∂n
(z, η)dsz = 0

by equation (1.15).
Now since the arc lengths dst0(zt0) on Gt0 and dst(z) on Gt differ by O(|t−t0|) uniformly

on ∂Gt, and
∂Gt0

∂n
(z, η) =

∂Gt0

∂n
(zt0 , η) + O(|t − t0|),

uniformly on ∂Gt, we have that

1

2π

∫

∂Gt

Gt0(z, ζ)
∂Gt

∂n
(z, η)dsz =

1

2π

∫

∂Gt0

∂Gt0

∂n
(z, ζ)

∂Gt0

∂n
(z, η)∆nt0(t, τ(s))dsz + O(|t − t0|

2)

= −(t − t0)
2

π

∫

∂Gt0

∂Gt0

∂z
(z, ζ)

∂Gt0

∂z
(z, η)ż2νt0(z)dsz + O(|t − t0|

2)(3.19)

by Lemma 2.6 and equation (3.13). The same expression approximates the fourth term.
Adding equations (3.18) to (3.19) and using the fact that the second term is O(|t − t0|

2)
the theorem is proven in the case that t < t0. The case that t > t0 is dealt with in the
same manner as in the proof of Theorem 3.1. �

3.3. Variation of the Neumann function. We now establish the variational formula
for N under an arbitrary homotopy. Surprisingly, we were unable to find even the
Hadamard variational formula for N in the literature. Bergman [2] gives a formula for
a difference of Neumann functions and Bergman and Schiffer [4] give a formula for a
Neumann function satisfying the normalization ∂N/∂n = 0 (which is correspondingly
different than the one given here).

Theorem 3.7. Let Gt, t ∈ (a, b) be a collection of domains bounded by m simple closed

C3 curves and F an admissible C3 homotopy for Gt. Then

Nt(ζ, η) − Nt0(ζ, η) = −(t − t0)
1

2π

∫

∂Gt

Re

(

4
∂N

∂z
(z, ζ)

∂N

∂z
(z, η)ż2

)

νt0(z) dsz

− (t − t0)
1

L

∫

∂Gt0

(Nt0(z, ζ) + Nt0(z, η)) κt0(z)νt0ds + R3(t0, η; t, ζ)
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where the remainder term R3 is harmonic in ζ and satisfies R3(t0, η; t, ζ) = O(|t − t0|
2)

uniformly in ζ in the sense of Theorem 3.1 and Remark 3.2.

Remark 3.8. Since N is symmetric R3 is harmonic in η and the estimate is uniform in η
in the same sense.

Proof. The proof is very similar to the proofs of Theorems 3.1 and 3.5, so we will be brief.
Assume that t < t0. Setting u(ζ) = Nt(ζ, η) − Nt0(ζ, η) in equation (1.6) and using

equations (1.4) and (1.5) we have

Nt(ζ, η) − Nt0(ζ, η) =
1

2π

(

N ζ
t − N ζ

t0
, Nη

t − Nη
t0

)

Gt

(3.20)

+
1

2π

(

N ζ
t0
, Nη

t0

)

Gt0
\Gt

+
1

L

∫

∂Gt

(Nt0(z, ζ) + Nt0(z, η)) ds.

It can easily be shown as before that the first term of equation (3.20) is O(|t − t0|
2).

Using the fact that

∇Nt0(z, ζ) · ∇Nt0(z, η) = 4Re

(

∂N

∂z
(z, ζ)

∂N

∂z
(z, η)ż2

)

+ 2
∂N

∂n
(z, ζ)

∂N

∂n
(z, η)

and proceeding as in the proofs of Theorems 3.1 and 3.5 and using equation (1.4) we have
that

1

2π
(Nt0(·, ζ), Nt0(·, η))Gt0

\Gt
= −(t − t0)

2

π

∫

∂Gt0

Re

(

∂N

∂z
(z, ζ)

∂N

∂z
(z, η)ż2

)

νt0(z)dsz

(3.21)

− (t − t0)
4π

L2

∫

∂Gt0

νt0dsz + O(|t − t0|
2).

Finally, the third term can be estimated in the same manner as before. Using equations
(3.9) and (1.4)

1

L

∫

∂Gt

Nt0(z, ζ)dsz =
1

L

∫

∂Gt0

(

Nt0(z, ζ) +
∂Nt0

∂n
(z, ζ)∆nt0(t, τ(s)) + O(|t − t0|

2)

)

·
(

1 − (t − t0)κt0(z)νt0(z) + O(|t − t0|
2)

)

dsz

= (t − t0)
2π

L2

∫

∂Gt0

νt0(z)dsz

− (t − t0)
1

L

∫

∂Gt0

Nt0(z, ζ)κt0(z)νt0(z)dsz + O(|t − t0|
2).

Combining this with equation (3.21) proves the theorem in the case that t < t0. The case
that t > t0 is dealt with as in the proof of Theorem 3.1. �
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