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Abstract. We derive a generalization of the Grunsky inequalities using the
Dirichlet principle. As a corollary, sharp distortion theorems for bounded
univalent functions are proven for invariant differential expressions which are
higher-order versions of the Schwarzian derivative. These distortion theorems
can be written entirely in terms of conformal invariants depending on the
derivatives of the hyperbolic metric, and can be interpreted as ‘Schwarz lem-
mas’. In particular, sharp estimates on distortion of the derivatives of geodesic
curvature of a curve under bounded univalent maps are given.

1. Introduction and statement of results

Let B denote the set of holomorphic univalent maps from the unit disc into
itself. This paper is mainly concerned with finding necessary conditions for a map
to be in B. These conditions can be expressed in two ways: as estimates of the
derivatives of the function, or as comparisons between kernel functions related to
Green’s function.

The estimates readily admit a geometric interpretation; they can be used to get a
comparison between the geometry of the image domain to the geometry of the unit
disc in which it is embedded. In a sense the theorems are like Schwarz lemmas, but
for higher-order geometric quantities. The first order case is the Schwarz lemma
itself. The second order case is a bound on the distortion of geodesic curvature
under a univalent map, and was derived by Flinn and Osgood from the Schiffer-
Tammi inequality [7]. This paper derives higher-order cases, for example bounds
on the derivative of geodesic curvature.

One of the main themes is the relation between higher-order Schwarzians [18], [4]
and the distortion of the derivatives of hyperbolic geodesic curature. Higher-order
Versions of the Schwarzian derivatives were first considered by Aharanov [1] and
Harmelin [8]. Their Schwarzians have a different invariance property than those in
[4] and [18].

It is natural to try to relate univalence to the distortion of curves under a map-
ping. The relation of the Schwarzian to the distortion of the derivative of geodesic
curvature appears in Osgood and Stowe [14] in a more general setting. Epstein
[5],[6] relates the Schwarzian derivative of a map to the principal curvature of a
certain surface in hyperbolic three-space naturally associated to the map. Further-
more, he explicitly relates univalence of the map to the curvature of this surface.
This paper is another variation on the theme of relating curvature to univalence -
more precisely, to change in curvature. However, here we do not leave the plane.
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We now state the main theorem, which is a generalization of the Grunsky in-
equalities. Let gi be Green’s function of Di, i = 1, 2, and let

Ki = − 2
π

∂2gi

∂z∂w̄

be the Bergman kernel. Consider also the related kernel function (see [3])

li(z, w) =
1
π

1
(z − w)2

+
2
π

∂2gi

∂z∂w
.

Then we have

Theorem 1. If D1 and D2 are simply-connected domains, bounded by piecewise
smooth curves, and D1 ⊂ D2, then for any collection of points ζµ ∈ D1 and scalars
αµ ∈ C, µ = 1, . . . n, and m ≥ 0,

<
(∑

µ,ν

[
αµαν

∂2mK1

∂zm∂wm (ζµ, ζν)− αµαν
∂2ml1

∂zm∂wm
(ζµ, ζν)

])

≥ <
(∑

µ,ν

[
αµαν

∂2mK2

∂zm∂wm (ζµ, ζν)− αµαν
∂2ml2

∂zm∂wm
(ζµ, ζν)

])
.

The proof of this theorem uses a method of Nehari’s which exploits the Dirichlet
principle. The derivatives of the kernel functions l and K are in fact geometric
quantities, representing how the domain embeds in the plane; they are closely
related to some ‘Schwarzian tensors’ generalizing that of Osgood and Stowe [13].
This will be explained in Section 5.

Since the kernel functions can be written in terms of a map from the unit disc to
the domain in question, Theorem 1 immediately leads to estimates on the deriva-
tives of functions in B. More precisely, when z = w, the kernels

∂2ml

∂zm∂wm
(z, w)

have expressions in terms of higher-order Schwarzians [18] which we now define.

Definition 1.

σ3(f)(z) =
f ′′′

f ′
− 3

2
f ′′2

f ′2

σn+1(f)(z) = σn(f)′(z)− (n− 1)
f ′′

f ′
σn(f).

(These are also best thought of as n-differentials.) They satisfy the invariance

(1) σn(S ◦ f ◦ T )(z) = σn(f)(T (z))T ′(z)n−1

for all Möbius transformations T and affine S. These compare hyperbolic geometry
on the domain to Euclidean on the image, and are appropriate for maps into the
plane. A variation of these are more appropriate for maps into the unit disc:

Definition 2. Let
σh

n(f)(a) = σn(T−f(a) ◦ f)(a)
where

Tw =
z + w

1 + wz
.
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Note that σ3(f) = σh
3 (f). These are invariant under both pre- and post-composition

by Möbius transformations. The invariants σn(f) are holomorphic while σh
n(f) are

not.
Finally let

(2) Dh
nf(a) =

∂n

∂zn

∣∣∣∣
z=0

T−f(a) ◦ f ◦ Ta

be the non-holomorphic hyperbolic derivatives of Minda [10]. Then we have that

Theorem 2. If f ∈ B, then
(1)

|σh
3 (f)(z)|
λ(z)2

≤ 6
(
1− |Dh

1 f(z)|2)

(2)

|σh
5 (f)(z) + σh

3 (f)(z)2|
30λ(z)4

≤ |Dh
2f(z)|2

|Dh
1f(z)|2 + 2

(
1− |Dh

1 f(z)|4)

(3)

|18σh
7 (f)(z) + 36σh

5 (f)(z)σh
3 (f)(z) + 81σh

4 (f)(z)2 + 80σh
3 (f)(z)3|

2520λ(z)6

≤
∣∣∣∣
σh

3 (f)(z)
λ(z)2

− 3
2

Dh
2f(z)2

Dh
1f(z)2

∣∣∣∣
2

+ 18
|Dh

2 f |2
|Dh

1 f(z)|2 + 12
(
1− |Dh

1f(z)|6)

This is sharp for T1 ◦k ◦T2 where k is the Koebe function and Ti are disc automor-
phisms.

The first estimate is due to Nehari (see [17], p 99).
Theorem 1 only produces inequalities for odd orders of differentiation. However,

we were also able to derive

Theorem 3. If f ∈ B, then

|σh
4 (f)|
λ3

+ 2
|Dh

2 f |
|Dh

1 f |
|σh

3 (f)|
λ2

≤ 96− 48|Dh
1 f |2 + 48|Dh

1 f |3.

This is probably not sharp.
In section 5 we show that Theorems 2 and 3 have a natural formulation in terms

of conformal invariants associated to a pair of hyperbolic domains, one a subset of
the other. When written this way, the distortion theorems can be seen as higher-
order Schwarz lemmas comparing the hyperbolic geometry of the image of f to
that of the disc containing the image. In particular, we will derive the following
corollary.

Corollary 1. Let λ denote the hyperbolic line element on the unit disc. If γ is
a smooth curve, and f ∈ B, then, denoting by k(γ) and k(f ◦ γ) the hyperbolic
geodesic curvatures of γ and f ◦ γ, and by ds hyperbolic arc length, we have the
following inequalities.

|k(f ◦ γ)dsf◦γ − k(γ)dsγ | ≤ 4 (dsγ − dsf◦γ)∣∣∣∣
dk

ds
(f ◦ γ)ds2

f◦γ −
dk

ds
(γ)ds2

γ

∣∣∣∣ ≤ 6
(
ds2

γ − ds2
f◦γ

)
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If we furthermore assume that γ is a hyperbolic geodesic, then

(3)
∣∣∣∣
d2k

ds2
(f ◦ γ)

∣∣∣∣ ≤ 48

(
1 +

ds3
f◦γ

ds3
γ

+

(
1− ds2

f◦γ
ds2

γ

))

The first two inequalities are sharp.

The first inequality was given by Flinn and Osgood [7] in a slightly different
form.

2. Nehari’s method and the main theorem

Nehari invented a method of deriving inequalities for classes of holomorphic
functions directly from the Dirichlet principle. The method is as follows. Let D1,
D2, and R be Riemann surfaces, with D1 and D2 bounded by piecewise smooth
curves, and D1 ⊂ D2 ⊂ R. Let S be a real, single-valued harmonic function on R,
with the exception of finitely many points, at which S has specified singularities.

Let p1 and p2 be the solutions of the Dirichlet problem

∆(pi + S) = 0 in Di, pi|∂Di
= 0.

Applying the Dirichlet principle to the function

u =
{

S D2\D1

p1 + S D1

we get ∫∫

D2

∇u · ∇u dA ≥
∫∫

D2

∇(p2 + S) · ∇(p2 + S) dA.

After using Green’s formula we get Nehari’s theorem [12]

Theorem 4 (Nehari). Let n denote the outward unit normal, and let R, Di, S and
pi be as above. Then

∫

∂D1

S(z)
∂p1

∂n
(z) ds ≥

∫

∂D2

S(z)
∂p2

∂n
(z) ds.

This is the work-horse inequality, from which many other inequalities follow.
The functions pi depend on the singularity function S and the domains Di; and in
many cases can be written in terms of canonical domain functions (such as Green’s
function and its derivatives). Thus by judicious choice of S, inequalities can be
derived for domain functions or for mapping functions onto canonical domains.

Below we derive the Schwarz lemma (for the special case of univalent maps) using
this method. This is included both to illustrate the method with a simple example,
and also to exhibit the unified nature of the approach: we will see in the proof of
Theorem 1 that by modifying the order of the pole in the singularity function one
gets Schwarz lemmas of various orders.

Example 1. The Schwarz lemma
Choosing S(z) = −< log(z − ζ), we get the Schwarz lemma (in the special case

of univalent maps into the disc). Let F : D1 → D2 be a one-to-one, onto map. We
get that

p1(z, ζ) = −g1(z, ζ) = < log
F (z)− F (ζ)
1− F (ζ)F (z)
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where g1 denotes Green’s function of the domain D1. Let

q1(z) = log
F (z)− F (ζ)
1− F (ζ)F (z)

and
σ(z) = − log(z − ζ).

so that <(q1) = p1, <(σ) = S (note that q1 and σ are multi-valued). Now p1 = 0 on
∂D1, and consequentially ∂p1

∂n ds = 1
i q1

′dz; using both of these facts we can compute
that ∫

∂D1

S
∂p1

∂n
ds =

∫

∂D1

(S + p1)
∂p1

∂n
ds = <

(
1
i

∫

∂D1

(σ + q1)q1
′dz

)
.

But σ + q1 is analytic and single-valued, so we can replace q′1 with −σ′:
∫

∂D1

S
∂p1

∂n
ds = <

(
1
i

∫

∂D1

(
− log(z − ζ) + log

F (z)− F (ζ)
1− F (ζ)F (z)

)
1

z − ζ
dz

)

= 2π log
|F ′(ζ)|

1− |F (ζ)|2 .

In particular, letting F (z) = z and D2 = D, we get that∫

∂D2

S
∂p2

∂n
ds = 2π log

1
1− |ζ|2 .

Now for any conformal map f : D → D1 let F = f−1, so that∫

∂D1

S
∂p1

∂n
ds =

|f ′(z)|
1− |f(z)|2 .

Applying Nehari’s theorem gives the Schwarz lemma.

We now derive the main theorem,

Proof. (of Theorem 1). Set k=m+1 in order to simplify notation in the proof. Let

σk = − (k − 1)!
2

∑
ν

αν

(z − ζν)k

and

p1k(z) = <
(∑

ν

αν
∂kg1

∂ζk
ν

(z, ζν)

)
,

where g1 is Green’s function. Also let Sk = <(σk).

Lemma 1. For piecewise smoothly bounded domains D1, and fixed ζ, ∂kg1
∂ζk (z, ζ)

vanishes as z → ∂D1.

Proof. Let F : D1 → D be a conformal map onto the unit disc, so that g1(z, ζ) =
g(F (z), F (ζ)). Let w = F (z), ξ = F (ζ). It is easily checked directly that ∂kg

∂ξk → 0
as w → ∂D for all k. Now apply the chain rule. ¤

Thus we have that p1k(z, ζ) → 0 as z → ∂D1. Also, for fixed ζν , p1k + Sk is
harmonic in z and single-valued. It is non-singular because

p1k + Sk = <
(∑

ν

αν
∂k

∂ζk
ν

(g1(z, ζν) + log |z − ζν |)
)

.
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Let

q1(z) = − log
F (z)− F (ζ)
1− F (ζ)F (z)

.

q1 is analytic in z for fixed ζ and g1 = <(q1) (q1 is of course multi-valued). Then

p1k(z) = <
(∑

ν

αν
∂kg1

∂ζk
ν

(z, ζν)

)
=

1
2
<

(∑
ν

αν
∂k

∂ζk
ν

(q1 + q1)

)

=
1
2
<

(∑
ν

αν
∂kq1

∂ζk
ν

+ αν
∂kq1

∂ζk
ν

)

=
1
2
<

(∑
ν

αν
∂kq1

∂ζk
ν

+ αν
∂kq1

∂ζ
k

ν

)
.

Now let

h1k =
1
2

∑
ν

(
αν

∂kq1

∂ζk
ν

+ αν
∂kq1

∂ζ
k

ν

)
.

Lemma 2. h1k is analytic in z for fixed ζν , and h1k + σk is non-singular.

Proof. Note that ∂kq1
∂ζk

ν
is single valued for k ≥ 1. It’s easy to compute that ∂kq1

∂ζ
k
ν

is

non-singular using the explicit formula

q1(z) = − log
F (z)− F (ζ)
1− F (ζ)F (z)

.

It is clearly analytic in z, as is ∂kq1
∂ζk

ν
. Now

∑
ν

αν

2
∂kq1

∂ζk
ν

+ σk =
∑

ν

αν

2
∂k

∂ζk
ν

(q1 + log(z − ζν))

and q1 + log(z − ζν) is single-valued and non-singular. The lemma follows. ¤

Now using the fact that ∂p1k

∂n ds = 1
i h
′
1kdz on ∂D1, (since p1k = 0 on ∂D1),

∫

∂D1

Sk
∂p1k

∂nz
ds =

∫

∂D1

(Sk + p1k)
∂p1k

∂nz
ds

= <
(

1
i

∫

∂D1

(σk + h1k)h′1k dz

)

= −<
(

1
i

∫

∂D1

(σk + h1k)σ′k dz

)
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since by the previous lemma we can replace h′1k with −σ′k. So

∫

∂D1

Sk
∂p1k

∂nz
ds = −<

[
1
2i

∫

∂D1

∑
ν

(
αν

∂kq1

∂ζk
ν

− (k − 1)!αν

(z − ζν)k
+ αν

∂kq1

∂ζ
k

ν

)
·

(∑
µ

αµ

2
k!

(z − ζµ)k+1

)
dz

]

= −π

2
<

[∑
µ,ν

αµαν

(
∂2kq1

∂ζk
µ∂ζk

ν

+ (−1)k+1 (2k − 1)!
(ζµ − ζν)2k

)
+

∑
µ,ν

αµαν
∂2kq1

∂ζk
µ∂ζ

k

ν

]
.

By the Cauchy-Riemann equations, ∂q1
∂z = 2∂g1

∂z , so the right-hand side becomes

π<
[∑

µ,ν

(
αµαν

∂2k−2K1

∂ζk−1
µ ∂ζ

k−1

ν

(ζµ, ζν)− αµαν
∂2k−2l1

∂ζk−1
µ ∂ζk−1

ν

(ζµ, ζν)

)]
.

By Theorem 4, the corresponding quantity for D2 is smaller. Letting m = k − 1
finishes the proof. ¤

Remark 1. Choosing m = 0 and D2 = D, we recover the Grunsky inequalities, in
a form due to Bergman and Schiffer (see [12]). They also gave a variational proof
[3] of the monotonicity of this quantity for m = 0.

3. Invariant derivatives

The results in this paper involve hyperbolic geometry. It is convenient therefore
to make explicit use of covariant differentiation in the hyperbolic metric in the
computations. This has the advantage of both making the geometry more explicit
and computations themselves simpler.

This section has two purposes. The first is to briefly review the derivatives
of Minda [9, 10]; the second is to introduce some sesquilinear and antisymmetric
derivatives. These latter vastly simplify the explicit computations of the derivatives
of l and K necessary to exploit Theorem 1.

We now define the covariant derivatives of Minda. These first appeared in func-
tion theory in a paper of Peschl [15] for the hyperbolic metric, and were later
generalized by Minda [11] to arbitrary conformal metrics. We define them here in
this generality; this introduces no extra difficulty and later allows us to deal with
several cases at once. Let w = f(z) be a locally univalent map from a domain D1

to a domain D2, and let ρ(z)2|dz|2 and σ(z)2|dz|2 be conformal metrics defined in
D1 and D2 respectively. Let

Γρ = 2
∂

∂z
log ρ and Γσ = 2

∂

∂w
log σ

be their Christoffel symbols. One differentiates a tensor of the form

g(z)
∂

∂w
⊗ dzn
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according to the rule

∇ρ,σ

(
g

(
∂

∂w

)m

⊗ dzn

)
= [g′ + (mΓσ ◦ f · f ′ − nΓρ) g]

(
∂

∂w

)m

⊗ dzn+1.

(This is just the usual Riemannian covariant derivative followed by a projection
onto the

(
∂

∂w

)m⊗dzn component). It is easily checked that ∇ρ,σ satisfies a Leibniz
rule with respect to the multiplication

g1

(
∂

∂w

)m1

⊗ dzn1 × g2

(
∂

∂w

)m2

⊗ dzn2 7→ g1g2

(
∂

∂w

)m1+m2

⊗ dzn1+n2 .

The n-th order derivatives of f are defined inductively by

∇ρ,σ
1 f = f ′

∂

∂w
⊗ dz

and
∇ρ,σ

n+1f = ∇ρ,σ(∇ρ,σ
n f).

Now let λ(z) = (1 − |z|2)−1 be the hyperbolic line element on the unit disc. In
keeping with Minda’s notation [9],[10] we define Dnf and Dh

nf by

(4) ∇λ,1
n f = λnDnf

∂

∂w
⊗ dzn

(5) ∇λ,λ
n f =

λn

λ ◦ f
Dh

nf
∂

∂w
⊗ dzn.

These satisfy certain invariances. Let S be an affine map, and T1 and T2 be disc
automorphisms. Then

(6) |Dn(S ◦ f ◦ T2)| = |Dn(f) ◦ T2|
and

(7) |Dh
n(T1 ◦ f ◦ T2)| = |Dh

n(f) ◦ T2|
Since Γλ(0) = 0, this proves the equivalence of (2) with the definition above. Fur-
thermore we have the useful identities

(8) Dn(T−f(a) ◦ f)(a) = Dh
n(f)(a)

and

(9)
(T−f(a) ◦ f)′′

(T−f(a) ◦ f)′
=

f ′′

f ′
+ Γλ ◦ f · f ′

Next we define the invariant derivatives which will be useful in differentiating
l and K. These are defined analogously to covariant derivatives, in a way which
must produce invariant quantities.

We first note the following identities for disc automorphisms T .

Proposition 1. (1) (T (z)− T (w))2 = (z − w)2T ′(z)T ′(w)
(2) (1− T (z)T (w))2 = (1− zw)2T ′(z)T ′(w)
(3) T ′′(z)

T ′(z) + 2
z−w = 2T ′(z)

T (z)−T (w)

(4) T ′′(z)
T ′(z) − 2w

1−zw = 2T (w)T ′(z)

1−T (z)T (w)

These identities suggest making the following definitions.

Definition 3.
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(1) α(z, w) = 1
1−zw and G(z, w) = 2 ∂

∂z log α = 2w
1−zw

(2) β(z, w) = 1
z−w and H(z, w) = 2 ∂

∂z log α = − 2
z−w

The functions α and β are like an antisymmetric and a sequilinear metric, re-
spectively. G and H function as their Christoffel symbols. Differentiating using
these Christoffel symbols leads to quantities invariant under composition with disc
automorphisms.

Definition 4.
(1) Let A1(f)(z, w) = f ′(z) and An+1(f)(z, w) = Anz − nG(z, w)An(z, w)
(2) Let B1(f)(z, w) = f ′(z) and Bn+1(f)(z, w) = Bnz − nH(z, w)Bn(z, w)

For example,

A2(f)(z, w) = f ′′(z)− 2w

1− zw
f ′(z)

B2(f)(z, w) = f ′′(z) +
2

z − w
f ′(z).

We also clearly have λn(z)An(f)(z, z) = Dnf(z).

Proposition 2. For a disc automorphism T ,
(1) An(f ◦ T )(z, w) = An(f)(T (z), T (w)) · T ′(z)n

(2) Bn(f ◦ T )(z, w) = Bn(f)(T (z), T (w)) · T ′(z)n

Proof. Let u = T (z) and v = T (w). We use induction to prove 1.

An+1(f ◦ T )(z, w) = (An(f)(u, v) · T ′(z)n)z

−nG(z, w)An(f)(u, v) · T ′(z)n

= An(f)u(u, v) · T ′(z)n+1

+n

(
T ′′(z)
T ′(z)

−G(z, w)
)

An(f)(u, v) · T ′(z)n

The quantity in brackets is −G(T (z), T (w)) · T ′(z) by Proposition 1 part 3. The
proof of part 2 makes similar use of Proposition 1 part 4. ¤

The invariants are best interpreted as nth-order differentials satisying

T ∗(An(f)dzn) = An(f ◦ T )dzn,

where T ∗ denotes the operation of pulling-back under the map T . We thus have
two operators taking n-differentials to n + 1-differentials, namely

Ds(f(z, w) dzn) = (fz(z, w)− nG(z, w)f(z, w))dzn+1

Da(f(z, w) dzn) = (fz(z, w)− nH(z, w)f(z, w))dzn+1

It’s not hard to show that these both satisfy a Leibniz rule; namely, if one defines
the product of k- and l-differentials by f dzk · g dzl = fg dzk+l, then,

D(f dzk · g dzl) = D(f dzk) · g dzl + f dzk ·D(g dzl).

The following identities follow immediately from Definition 3.

Gw(z, w) = 2α(z, w)2(10)
Hw(z, w) = −2β(z, w)2(11)

These allow us to derive two more useful relations.
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Proposition 3.

(1) An(f)w(z, w) = −n(n− 1)α(z, w)2An−1(f)(z, w)
(2) Bn(f)w(z, w) = n(n− 1)β(z, w)2Bn−1(f)(z, w)

Proof. The proof is by induction. We drop the dependence on f , z, and w for
notational convenience.

(An+1)w = ((An)z − nGAn)w

= −n(n− 1)α2(An−1)z − nGwAn + n2(n− 1)α2GAn−1

= −n(n− 1)α2 ((An−1)z − (n− 1)GAn−1)− 2nα2An

= −n(n + 1)α2An

We have used equation 10 and 2αz = Gα. The proof of 2 is similar. ¤

Finally, we have the useful identities

σ3(f)(z) =
B3(f)(z, w)
B1(f)(z, w)

− 3
2

B2(f)(z, w)2

B1(f)(z, w)2
(12)

σ3(f)(z) =
A3(f)(z, w)
A1(f)(z, w)

− 3
2

A2(f)(z, w)2

A1(f)(z, w)2
(13)

4. Distortion theorems

With the help of the invariants of the last section, it is now possible to find the
derivatives of l1 and K1, and so to derive distortion theorems for bounded univalent
maps.

The Bergman kernel and l-kernel obey certain transformation laws with respect
to conformal mapping. If f : D2 → D1 is a conformal mapping between simply
connected domains, then we have

(14) K1(f(z), f(w))f ′(z)f ′(w) = K2(z, w)

and

(15) l1(f(z), f(w))f ′(z)f ′(w) = l(z, w) +
1
π

[
f ′(z)f ′(w)

(f(z)− f(w))2
− 1

(z − w)2

]
.

These follow directly from the definition and properties of Green’s function. On
the unit disc, l(z, w) = 0 and K(z, w) = 1

π(1−zw)2 , from which it follows that for
f : D → D1 conformal,

(16) l1(f(z), f(w)) =
1
π

[
1

(f(z)− f(w))2
− 1

f ′(z)f ′(w)(z − w)2

]

and

(17) K1(f(z), f(w)) =
1

πf ′(z)f ′(w)(1− zw)2
.

Remark 2. These quantities satisfy an invariance with respect to disc automor-
phisms T in the following sense: if one denotes Φ(f)(z, w) = l1(f(z), f(w)), then
Φ(f ◦T )(z, w) = Φ(f)(T (z), T (w)); similarly for K1(f(z), f(w)). This can be shown
directly using Proposition 1 parts 3 and 4; or, it can be seen to follow directly from
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the validity of equations (16) and (17) for any choice of conformal map from the
disc to D1. It follows immediately that

∂k+ll1
∂ζk∂ηl

(f(z), f(w)) and
∂k+lK1

∂ζk∂ηl
(f(z), f(w))

are invariant in the same sense.

We now compute the derivatives of l1. This is much easier if one groups terms
into products of β(z,w)2

B1(z,w) and 0-differentials (on which Da acts as ∂
∂z ). Then one

applies the Leibniz rule and either Proposition 3, and the identity

∂

∂z

(
β(z, w)2

B1(z, w)

)
= −β(z, w)2B2(z, w)

B1(z, w)2
.

The results are listed here. The arrangement of terms and products shown below
is geared towards exploiting the rules just mentioned, rather than giving the most
symmetric expression. For convenience, we abbreviate β ≡ β(z, w), βt ≡ β(w, z),
B ≡ B(z, w), Bt ≡ B(w, z), and so on.

l1ζ1(f(z), f(w)) = − 2
(f(z)− f(w))3

+
βt2

Bt
1

B2

B3
1

(18)

l1ζζ(f(z), f(w)) =
6

(f(z)− f(w))4
+

βt2

Bt
1

(
B3

B4
1

− 3
2

B2
2

B5
1

)
(19)

− 3
2

βt2

Bt
1

B2
2

B5
1

l1ζη(f(z), f(w)) = − 6
(f(z)− f(w))4

− β2

B1

Bt
2

Bt
1
3

B2

B2
1

+ 2
β4

B2
1

1

Bt
1
2(20)

l1ζζη(f(z), f(w)) =
24

(f(z)− f(w))5
− βt2

Bt
1

Bt
2

Bt
1
2

(
B3

B4
1

− 3
2

B2
2

B5
1

)
(21)

+
3
2

βt2

Bt
1

Bt
2

Bt
1
2

B2
2

B5
1

− 6
βt4

Bt
1
2

B2

B4
1

l1ζζηη(f(z), f(w)) =
120

(f(z)− f(w))6
+ 18βt4 B2

B4
1

Bt
2

Bt
1
4 − 12

βt6

B3
1Bt

1
3(22)

− βt2
(

B3

B4
1

− 3
B2

2

B5
1

) (
Bt

3

Bt
1
4 − 3

Bt
2
2

Bt
1
5

)
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Similar tricks allow one to compute the derivatives of K1.

K1ζ(f(z), f(w)) = −αt2

A
t

1

A2

A3
1

(23)

K1ζζ(f(z), f(w)) = − αt2

A
t

1

3

(
A3

A4
1

− 3
2

A2
2

A5
1

)
+

3
2

α2

A
t

1

A2
2

A5
1

(24)

K1ζη(f(z), f(w)) =
α2

A1

A2

A2
1

A2
t

A
t

1

3 + 2
α4

A2
1

1

A
t

1

2(25)

K1ζζη(f(z), f(w)) =
αt2

A
t

1

A2
t

A
t

1

2

(
A3

A4
1

− 3
2

A2
2

A5
1

)
(26)

−3
2

αt2

A
t

1

A2
t

A
t

1

2

A2
2

A5
1

− 6
αt4

A
t

1

2

A2

A4
1

K1ζζηη(f(z), f(w)) = α2

(
A3

A4
1

− 3
A2

2

A5
1

) 
 A3

t

A
t

1

4 − 3
A2

t2

A
t

1

5


(27)

+18α2 A2
t

A
t

1

4

A2

A4
1

+ 12
α6

A3
1A

t

1

3

An attempt to compute these directly will quickly convince one of the utility of
the invariant derivatives. Setting z = w, tedious but straightforward computations
making use of the identities (12), yield

l1(f(z), f(z)) = − 1
6f ′(z)2

σ3(f)(z)(28)

l1ζ(f(z), f(z)) = − 1
12f ′(z)3

σ4(f)(z)(29)

l1ζζ(f(z), f(z)) = − 1
120f ′(z)4

(
6σ5(f)(z) + 4σ3(f)(z)2

)
(30)

l1ζη(f(z), f(z)) =
1

30f ′(z)4
(
σ5(f)(z) + σ3(f)(z)2

)
(31)

l1ζζη(f(z), f(z)) =
1

60f ′(z)5
(σ6(f)(z) + 2σ4(f)(z)σ3(f)(z))(32)

l1ζζηη(f(z), f(z)) =
1

2520f ′(z)6
(18σ7(f)(z) + 36σ5(f)(z)σ3(f)(z)(33)

+81σ4(f)(z)2 + 80σ3(f)(z)3
)
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and, with considerably less work,

K1ζ(f(z), f(z)) = − D2f(z)
D1f(z)2D1f(z)

(34)

K1ζη(f(z), f(z)) =
|D3f(z)|2
|D1f(z)|6 +

2
|D1f(z)|4(35)

K1ζζ(f(z), f(z)) = − σ3f(z)
λ(z)2D1f(z)3D1f(z)

+
3
2

D2f(z)2

D1f(z)5D1f(z)
(36)

K1ζζη(f(z), f(z)) =
D2f(z)σ3(f)(z)
λ(z)2|D1f(z)|3 − 3

2
D2f(z)2D2f(z)

D1f(z)5D1f(z)
3(37)

− 6
D2f(z)

D1f(z)4D1f(z)
2

K1ζζηη(f(z), f(z)) =
∣∣∣∣
σ3(f)
λ(z)2

− 3
2

D2f(z)2

D1f(z)2

∣∣∣∣
2 1
|D1f(z)|6(38)

+ 18
|D2f(z)|2
|D1f(z)|8 +

12
|D1f(z)|6

These identities were also verified with the use of Mathematica.
It is now possible to prove Theorem 2.

Proof. (of Theorem 2) On the unit disc, we have that l ≡ 0 and

(39) K(z, w) =
1

π(1− w̄z)2
.

Also,

Kzw̄(z, z) =
2 + 4|z|2

π(1− |z|2)4(40)

Kzzw̄w̄(z, z) =
12 + 72|z|2 + 36|z|4

π(1− |z|2)6 .(41)

To derive the first inequality, apply Theorem 1 for the case m = 0; choose only one
point ζ = f(z) and choose α = eiθ. By (28), (14), and (39), we get

<
(

1
|D1f(z)|2 −

e2iθσ3(f)(z)
6f ′(z)2

)
≥ 1

(1− |f(z)|2)2 .

Letting 2θ = −arg(f ′(z)−2σ3(f)(z)) and rearranging results in the first inequality.
The second and third inequalities are derived in exactly the same way: for the

second, use the case m = 1 of Theorem 1, (35), (31), and (40); for the third, use
the case m = 2, (38), (33), and (41).

These inequalities are sharp for the functions φt = k−1
t ◦ k where k is the Koebe

function and kt = etk. A (lengthy) computation shows that

σ3(φt)(0) = −6 + 6e−t

σ4(φt)(0) = 48− 48e−t

30−1(σ5(φt)(0) + σ3(φt)(0)2) = −18 + 8e−4t − 16e−2t + 32e−t
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and

2520−1(18σ7(φt)(0) + 36σ5(φt)(0)σ3(φt)(0) + 81σ4(φt)(0)2 + 80σ3(φt)(0)3)
= −12(−e−6t + 27e−4t − 144e−3t + 306e−2t − 288e−t + 100).

We then use

|Dh
1φt(0)| = e−t

∣∣∣∣
Dh

2φt(0)
Dh

1φt(0)

∣∣∣∣ = 4− 4e−t

to compare with the upper bounds. ¤

This method does not produce estimates for even orders of differentiation. We
include two such even-order estimates derived from other methods. The first is
simply the Schiffer-Tammi inequality [7]:

Theorem 5. If f ∈ B, then

|Dh
2 f |

|Dh
1 f | ≤ 4(1− |Dh

1f |).

Proof. Apply the estimate ∣∣∣∣
a2

a1

∣∣∣∣ ≤ 2(1− |a1|)
to the transformed function T−f(a) ◦ f ◦ Ta. ¤

The second is Theorem 3. As previously mentioned, it is probably not sharp.
On the other hand, letting f be φt, the proof of sharpness in Theorem 2 shows that
the right-hand side in Theorem 3 approaches the sharp bound as t →∞.

Proof. Let k be the Koebe function; we have the sharp estimate [18]

|σ4(k ◦ f)|
λ3

≤ 48.

It follows from the composition law for the Schwarzian

σ3(k ◦ f) = σ3(k) ◦ ff ′2 + σ3(f)

that

σ4(k ◦ f) = σ4(k) ◦ ff ′3 − 2
k′′ ◦ f

k′ ◦ f
f ′σ3(f) + σ4(f).

Assume for the moment that f is normalized so that f(0) = 0. Using the facts that
σ4(k)(0) = 48 and k′′(0)/k′(0) = 4,

|σ4(f)(0)− 8σ3(f)f ′(0)| ≤ 48(1 + |Dh
1 f |3).

If f is an arbitrary element of B, we can apply the previous inequality to the
normalized function f̃ = T−f(a) ◦ f ◦ Ta, yielding

(42)
∣∣∣∣
σh

4 (f)(a)
λ3(a)

− 8Dh
1 f(a)

σh
3 (f)(a)
λ2(a)

∣∣∣∣ ≤ 48(1 + |Dh
1 f(a)|3).

Now applying the Schiffer-Tammi inequality,

|σh
4 (f)|
λ3

+ 2
|Dh

2 f |
|Dh

1 f |
|σh

3 (f)|
λ2

≤ |σh
4 (f)|
λ3

− 8|Dh
1 f | |σ

h
3 (f)|
λ2

+ 8
|σh

3 (f)|
λ2

.
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The desired inequality now follows from Theorem 2 part 1, and the triangle in-
equality. ¤

5. Higher-order Schwarz lemmas

In this section it will be shown how the distortion theorems are much like the
Schwarz lemma, but rather than bounding the distortion of distance, they bound
the distortion of higher-order geometric quantities such as geodesic curvature. (Of
course, unlike the Schwarz lemma, in this case the hypothesis of univalence is
necessary).

In the first subsection, the distortion theorems are written in terms of conformal
invariants. These conformal invariants depend on derivatives of the hyperbolic
metric. In the second subsection, we derive estimates on the distortion of curves
under a bounded univalent map (Corollary 1). More precisely, bounds are given on
the change in geodesic curvature and its derivatives under the map.

5.1. Conformal Invariants. In this subsection, we show how Theorem 2 can be
written entirely in terms of conformal invariants. These conformal invariants are
natural geometric quantities which compare the hyperbolic geometry of f(D) and
D.

In order to do this, we show how the higher-order Schwarzians are special cases
of a series of ‘Schwarzian tensors’, generalizing that of Osgood and Stowe [13].
This requires only slightly more development, and has two advantages. First, it
will allow us to clearly illustrate how the Schwarzian derivatives relate to change
of curvature under a conformal change of metric. This is the subject of the next
subsection. Secondly, it allows one to deal with more than one case simulateously.

First, we illustrate the conformal invariance of the simplest inequality, namely
the Schiffer-Tammi inequality. Denote by λE the hyperbolic line element on a
domain E. Denote the pullback of a line element ρ by f∗(ρ) = ρ ◦ f |f ′|. We have
that f∗(λf(D)) = λD. We can then write the Schwarz-Pick inequality as

(43) 1− λD

λf(D)
≥ 0.

Using similar notation, if g is any conformal map then

(44) Γg(E) ◦ g · g′ = ΓE − g′′

g′

It follows directly from the definition of Dh
nf (5) and (44) that

(45) λD
Dh

2 f

Dh
1 f

= −Γf(D) ◦ f · f ′ + ΓD ◦ f · f ′.

Thus the Schiffer-Tammi inequality (Theorem 5) can be immediately rewritten as

Theorem 6.

(46) λ−1
f(D)|Γf(D) − ΓD| ≤ 4

(
1− λD

λf(D)

)
.

The quantities on both sides of the equation are conformal invariants:

(47) λ−1
g(f(D)) ◦ g |Γg(f(D)) ◦ g − Γg(D) ◦ g| = λ−1

f(D)|Γf(D) − ΓD|.
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More precisely, let E and F be hyperbolic domains, with F ⊂ E. The triple
(E, F, z) is said to be conformally equivalent to (E′, F ′, z′) if there is a conformal
map g of E onto E′ such that g(F ) = F ′ and g(z) = z′. Then defining

I0(E, F, z) =
λE(z)
λF (z)

and
I1(E, F, z) = λ−1

F (ΓE(z)− ΓF (z)),
we have that whenever (E, F, z) is conformally equivalent to (E′, F ′, z′)

Ij(E,F, z) = Ij(E′, F ′, z′) j = 1, 2.

These quantities are conformally invariant in much the same way that curvature
is ([2] p 12); however here, a pair of metrics is involved, rather than just one.

Theorems 2 and 3 can also be written completely in terms of conformal invariants.
We do this now.

First it is necessary to define the higher-order Schwarzian tensors. Let ρ be a
conformal line element, and eψρ another line element conformal to ρ. Then

Definition 5. The Schwarzian tensors are defined inductively by

Bρ
2(ψ) = (2ψzz − 2ψ2

z − 2Γρψz)dz2

Bρ
n+1(ψ) = ∇ρeψBρ

n(ψ)

Note that <(Bρ
2(ψ)) is the Schwarzian tensor of Osgood and Stowe.

These behave nicely under pull-back.

Proposition 4. If g is locally univalent, then

g∗(Bρ
n(ψ)) = Bg∗(ρ)

n (ψ ◦ g).

Proof. Let ρ 7→ g∗(ρ) and ψ 7→ ψ ◦ g. Then it can be directly computed that

2(ψ ◦ g)ww − 2(ψ ◦ g)wΓg∗(ρ) − 2(ψ ◦ g)2w
= [2ψzz ◦ g − 2ψz ◦ g Γρ ◦ g − 2ψz ◦ g2]g′2,

proving the claim for n = 2. Now apply induction. We have that

Γg∗(eψρ) = Γeψρ ◦ g g′ +
g′′

g′
,

so, abusing notation somewhat and letting Bn denote the coefficient of the differ-
ential,

∇g∗(eψρ)B
g∗(ρ)
n (ψ ◦ g) = (Bg∗(ρ)

n (ψ ◦ g))w − nΓg∗(eψρ)B
g∗(ρ)
n (ψ ◦ g)

= (Bρ
n(ψ))z ◦ g g′n+1 − nΓρeψ ◦ g Bρ

n(ψ) ◦ g g′n+1

¤
This invariance under pull-back means that the Schwarzian tensors are confor-

mally invariant in precisely the same sense as above. Letting ρ = λF and eψρ = λE ,
Proposition 4 implies that

λ−n
g(F )|B

λg(F )
n (log

λg(E)

λg(F )
)| = λ−n

F |BλF
n (log

λE

λF
)|.

We now show the relation between the Schwarzian tensors and higher-order
Schwarzian derivatives. If, for f ∈ B, one chooses ρ = λf(D) and eψλf(D) = 1, then
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the Schwarzian tensors compare the hyperbolic geometry of f(D) to Euclidean
geometry. Then we have

(48) B
λf(D)
n (− log λf(D)) =

σn+1(f) ◦ f−1

f ′n ◦ f−1
.

To see this, we have by 4 that

f∗(Bλf(D)
n (− log λf(D))) = BλD

n

(
log

|f ′|
λD

)
.

It can be computed directly that BλD
2

(
log |f ′|

λD

)
= σ3(f)dz2. Equation (48) follows

using induction and the fact that

2
(

log
|f ′|
λD

)

z

=
f ′′

f ′
− ΓD.

If on the other hand one chooses ρ = λf(D) and ψ such that eψλf(D) = λD, then

(49) B
λf(D)
n

(
log

λD

λf(D)

)
=

σh
n+1(f) ◦ f−1

f ′n ◦ f−1

This is proved in a similar way to (48). We show that BλD
2

(
log |f ′|λD◦f

λD

)
=

σh
3 (f)dz2. By (9),

2
(

log
|f ′|λD ◦ f

λD

)

z

(a) + ΓD(a) =
(T−f(a) ◦ f)′′(a)
(T−f(a) ◦ f)′(a)

;

using this it follows by induction that

BλD
n

(
log

|f ′|λD ◦ f

λD

)
= σh

n+1(f)dzn.

Equation 49 now follows from the fact that

f∗
(

B
λf(D)
n

(
log

λD

λf(D)

))
= BλD

n

(
log

|f ′|λD ◦ f

λD

)
.

It is now a simple matter to write Theorems 2 and 3 in terms of the conformal
invariants. (They then become valid on any domain). For simplicity we denote

I0 =
λE(z)
λF (z)

I1 = λ−1
F (z)(ΓF (z)− ΓE(z))

In = λ−n
F (z)BλF

n

(
− log

λE

λF

)
(z)

for E, F , and z as above.

Corollary 2. Let F ⊂ E be two hyperbolic simply connected domains, and let
z ∈ F . Let In be the conformal invariants associated to this configuration. Then

|I2| ≤ 6
(
1− I2

0

)
,

|I3|+ 2|I1I2| ≤ 48
(
1 + I3

0

)
+ 48

(
1− I2

0

)
,

|I4 + I2
2 | ≤ I2

1 + 2
(
1− I4

0

)
,

|18I6 + 36I4I2 + 81I2
3 + 80I3

2 | ≤ |I2
2 −

3
2
I2
1 |+ 18I2

1 + 12
(
1− I6

0

)
.
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All but the second inequality are sharp.

5.2. Distortion of curves. It is natural to try to relate distortion of geodesic
curvature to univalence; demanding that the image of a geodesic curve not bend
too much might guarantee univalence, and vice versa. Before proving the necessary
conditions, we give a simple illustration of this idea in the form of a geometric proof
of a distortion theorem of Pommerenke.

Let ρ|dz| and ρeψ|dz| be line elements conformal to the Euclidean. Let γ(t) be
a curve in the plane. Denote arc length in the ρ and ρeψ metrics by ds and ds̄
respectively, and in the euclidean metric by dse. Then

ds̄ = eψds = ρeψdse = ρeψ|γ̇|dt.

We denote the geodesic curvatures of γ in the Euclidean, ρ, and ρeψ metrics as ke,
k, and k̄. The Euclidean geodesic curvature is defined by

ike
γ̇

|γ̇| =
d

dse

γ̇

|γ̇|
(note that this implies that ke is real, since the derivative of the unit tangent must
be perpendicular to the curve). We can then compute that

(50) ke = =
(

γ̈

|γ̇|γ̇
)

,

(51) ρk = ke + =
(

Γρ
γ̇

|γ̇|
)

,

and

(52) ρeψk̄ = ρk + =
(

2ψz
γ̇

|γ̇|
)

Given a simple smooth curve γ enclosing a domain G, the rotation index r(γ),
which is the winding number of γ̇

|γ̇| must be 1. By the local Gauss-Bonnet theorem,
for any conformal line element ρ,

1 =
1
2π

∫

γ

kρ dsρ +
∫∫

G

KρdAρ,

where Kρ is the Gaussian curvature. If f is a map from the disc into the complex
plane, we can compare the rotation index of γ and f ◦ γ by

(53) r(f ◦ γ)− r(γ) =
1
2π

∫

γ

[keuc(f ◦ γ)dseuc − kλ(γ)dsλ]− 1
2π

∫∫

G

KλdAλ.

Thus the change in rotation index under the map f is related to the distortion of
geodesic and Gaussian curvature. Since keuc(f ◦ γ)dseuc = k|f ′|(γ)ds|f ′|, applying
(52) with ρ = λ and eψ = |f ′|λ−1, and the fact that Kλ = −4,

r(f ◦ γ)− r(γ) =
1
2π

∫
=

(
D2f

D1f
λdz

)
+

2
π

∫∫
dAλ

=
1

2πi

∫
D2f

D1f
λdz +

2
π

∫∫

G

dAλ(54)

The second equality follows from the fact that

<
(

D2f

D1f
λdz

)
= d log |D1f |
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which has zero periods when D1f 6= 0. Equation (54) could also be derived directly
from the argument principle.

If f is locally univalent, it’s easy to see geometrically that r(f ◦ γ) = r(γ). This
leads to a simple geometric proof of

Theorem 7. (Pommerenke) If f is a locally univalent map from the disc into the
complex plane, then

sup
z∈D

∣∣∣∣
D2f

D1f

∣∣∣∣ ≥ 2.

Proof. Let γ be the circle of radius s about the origin; then the hyperbolic area of
G is πs2(1− s2)−1, and the hyperbolic length of γ is 2πs(1− s2)−1. If there were
a c < 2 such that ∣∣∣∣

D2f

D1f

∣∣∣∣ ≤ c

in D, then by (54),

0 =
∣∣∣∣

1
2πi

∫
D2f

D1f
λdz +

2
π

∫∫

G

dAλ

∣∣∣∣

≥ 1
2π

(
4πs2

1− s2
− 2πc s

1− s2

)
.

For 1 > s > c/2, the right-hand side is positive, a contradiction. ¤
To prove Corollary 1 we require formulas for the change of derivatives of geodesic

curvature under conformal change of metric.
The following lemma, which is a kind of product rule, will be useful in the

computations.

Lemma 3. With notation as above, we have that
1

ρeψ

d

dse

[
ρ−(n+m)e−(n+m)ψg

γ̇n ¯̇γm

|γ̇|n+m

]
= ρ−(n+m+1)e−(n+m+1)ψ ×

[
∇ρeψg

γ̇n+1 ¯̇γm

|γ̇|n+m+1
+ ∇̄ρeψg

γ̇n ¯̇γm+1

|γ̇|n+m+1
+ i(n−m)ρeψg k̄

γ̇n ¯̇γm

|γ̇|n+m

]

Proof.
1

ρeψ

d

dse

[
g

ρn+me(n+m)ψ

γ̇n ¯̇γm

|γ̇|n+m

]

=
1

ρn+m+1e(n+m+1)ψ

[(
gz

γ̇

|γ̇| − n<
(

(Γρ + 2ψz)
γ̇

|γ̇|
)

g

)
γ̇n+m

|γ̇|n+m

+
(

gz̄

¯̇γ
|γ̇| − n<

((
Γ̄ρ + 2ψz̄

) ¯̇γ
|γ̇|

)
g

)
γ̇n+m

|γ̇|n+m
+ i(n−m)gke

γ̇n ¯̇γm

|γ̇|n+m

]

where in the last term we have used (50). Applying

ρeψk̄ = ρk + =
[
(Γρ + 2ψz)

γ̇

|γ̇|
]

completes the proof. ¤
Proposition 5. With notation as above,

ρ2e2ψ dk̄

ds̄
= ρ2 dk

ds
+ =

(
Bρ

2(ψ)
γ̇2

|γ̇|2
)
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Proof. Differentiating (52), and applying Lemma 3,

dk̄

ds̄
=

1
e2ψ

dk

ds
−<

[
2ψz

ρe2ψ

γ̇

|γ̇|
]

k +
1

ρ2e2ψ
=

[(∇ρeψ (2ψz)− 2ψ2
z

) γ̇2

|γ̇|2
]

+
1

ρ2e2ψ
=

[
i 2ψz ρeψk̄

γ̇

|γ̇|
]

+
1

ρ2e2ψ
=

[
(2ψzz̄ − 4ψzψz̄)

¯̇γγ̇

|γ̇|2
]

The last term is zero because the argument is real. Applying (52) results in the
desired expression. ¤

We continue differentiating.

Proposition 6.

ρ3e3ψ d2k̄

ds̄2
= ρ3 d2k

ds2
+ =

[
Bρ

3(ψ)
γ̇3

|γ̇|3
]

+ =
[
Bρ

2 (ψ)z̄

¯̇γγ̇2

|γ̇|3
]

−2ρ2<
[
2ψz

γ̇

|γ̇|
]

dk

ds
+ 2ρ<

[
Bρ

2(ψ)
γ̇

|γ̇|2
]

k

+2<
[
Bρ

2(ψ)
γ̇2

|γ̇|2
]
=

[
2ψz

γ̇

|γ̇|
]

Proof. Differentiating the expression from Proposition 5, we get

d2k̄

ds̄2
= −4<

[
ψz

ρe3ψ

γ̇

|γ̇|
]

dk

ds
+

1
e3φ

d2k

ds2
+ =

[
d

ds̄

(
Bρ

2(ψ)
ρ2e2ψ

γ̇

|γ̇|
)]

Applying Lemma 3,

d2k̄

ds̄2
=

1
e3ψ

d2k

ds2
− 2<

[
2ψz

ρe3ψ

γ̇

|γ̇|
]

dk

ds
+

1
ρ3e3ψ

=
[
Bρ

3(ψ)
γ̇3

|γ̇|3
]

+
1

ρ3e3ψ
=

[
Bρ

2(ψ)z̄

¯̇γγ̇2

|γ̇|3
]

+
1

ρ2e2ψ
=

[
2iBρ

2(ψ)k̄
γ̇2

|γ̇|2
]

Applying (52) finishes the proof. ¤

We can now prove Corollary 1.

Proof. (of Corollary 1) First note that choosing ρ = λ and eψ = |f ′|λ ◦ fλ−1, we
have that

(55) ψz = λ
Dh

2 f

Dh
1 f

and

(56) Bλ
n(ψ) = σh

n+1(f).

The first inequality now follows from Theorem 5, (52), and (55): we have that

|k(f ◦ γ)dsf◦γ − k(γ)dsγ | = ||f ′ ◦ γ| k(f ◦ γ)λ(f ◦ γ)− λ(γ)k(γ)|

≤ 4λ(γ)
(

1− λ(f ◦ γ)|f ′ ◦ γ|
λ(γ)

)

= 4|dsγ − dsf◦γ |.
One proves the second inequality similarly, using Theorem 2, Proposition 5, and
(56). To prove the last one, we apply Proposition 6, with ρ and ψ as above, noting
that Bλ

2 (ψ)z̄ = 0, k = 0, and dk
ds = 0. ¤
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