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Variations of Planar Domains
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Abstract. A variational formula is derived for Green’s function of multiply
connected planar domains under homotopy of the boundary. The formula
shows that up to first order, a homotopy behaves like the Hadamard variation.
This is applied to show that certain expressions in the derivatives of Green’s
function are monotonic with respect to set inclusion.
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1. Introduction

In this paper we derive inequalities between derivatives of Green’s function, the
Bergman kernel K, and L-kernel for multiply-connected domains. This is ac-
complished with a variational formula for Green’s function under homotopy of
the boundary of the domain. It is similar to the Hadamard variational formula;
however, the method of Hadamard is local in nature, whereas the technique pre-
sented here applies to pairs of domains which are not nearby each other. This
makes it possible to use the method to show that expressions in the derivatives
of Green’s function are monotonic under set theoretic inclusion.

Similar inequalities were derived by the author in [7] using the Dirichlet principle.
However, the methods used there seem to give inequalities only for even orders of
differentiation of K and L. One of the main objectives of this paper is to derive
inequalities for odd orders of differentiation; this is accomplished in Theorems 12
and 14.

Briefly, the Hadamard variation consists of varying the boundary by flowing
along the normal vector; i.e. if γ(τ) parametrizes the boundary, ν(τ) is a smooth
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function, and n(τ) is the unit outward normal, then a family of nearby domains
are obtained with boundary γ(τ) + εν(τ)n(τ). A drawback of this method is
that it requires some order of smoothness (although this requirement can be
weakened [8]). Since an extremal domain is generically not smooth, this is a
serious limitation on the method. This limitation was one of the reasons for the
invention of boundary variation by Schiffer. However, in the situation here, it is
not necessary to anchor the variation at the extremal domain, so the smoothness
requirement does not pose a problem. Also, once the inequalities are established
for pairs of smooth domains, the smoothness requirement can be removed with
an exhaustion argument (see Remark 2).

A more serious drawback of Hadamard variation for the applications in this
paper is that one can only prove that inequalities hold up to first order. Here,
for example, we show that certain quantities increase as the domain increases, up
to first order. Immediately, one is led to try some sort of compactness argument
in order to patch up the small pieces on which the quantity is actually increasing.

This leads naturally to the following approach. One shows that up to first order
a general smooth injective homotopy between the boundaries of two domains be-
haves like a Hadamard variation. This observation was applied in specific cases
by Barnard and Lewis [1]. When this approach is taken, it is possible to pro-
vide rigorous proofs for the inequalities derived here with elementary arguments.
However, a general treatment does not seem to exist in the literature, so the
details are given in Section 2 for the sake of completeness and the conscience of
the author.

In Section 3, we exhibit the monotonicity theorems which can be derived from
this method. Corollaries for univalent functions are given in Section 4.

Two results should be mentioned in this context. Rodin [6] showed that if the
boundary of a simply connected domain depends holomorphically on a complex
parameter, then for small values of the parameter the domain must stay simply
connected. He also showed that the Riemann mapping function depends holo-
morphically on this parameter. Warschawski [9] generalized Hadamard’s first
order variational formula for Green’s function to higher orders of differentiation.

2. The variational formula

We first recall the Hadamard variational formula. Let D be a smoothly bounded
simply connected domain, with the boundary parametrized by γ(τ). We con-
struct a variation of the domain. Let n(τ) be the unit outward normal. Given a
smooth function ν(τ), we vary the curve γ(τ) according to

γ(τ, ε) = γ(τ) + εν(τ)n(τ).

If ε is sufficiently small, then γ(·, ε) is also a smooth simple closed curve, bounding
a domain Dε.
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Under this variation, Green’s function of the domain Dε varies according to the
formula

(1) gε(z, w) = g(z, w) + εδg(z, w) + ε2γε(z, w)

where the function δg is given by

(2) δg(z, w) =
1

2π

∫
∂D

∂g

∂nu
(z, u)

∂g

∂nu
(u,w)ν(u) dsu.

Here, s is arc length (in the variable u), n is understood to be the unit outward
normal as above, ν is a smooth function (not necessarily strictly positive or
negative), and γε is bounded and harmonic in each compact subdomain of D∪Dε.

We will consider here a more general variation of a domain, namely an injective
homotopy of the boundary of a fixed domain. Locally, this is a normal variation,
but it is not a Hadamard variation, since the distance from the fixed boundary
to the boundary of the new domain is not linear in the homotopy variable.
However, we can isolate the first order part of the variation. Green’s function
varies according to the Hadamard formula determined by this first order part.

More precisely, let F : (a, b)× [0, 2π]→ C be a C2-injective homotopy of curves
Γt(τ) = F (t, τ) with non-vanishing Jacobian determinant. For some t0 ∈ (a, b),
let nt0(τ) be the outward unit normal vector to the curve Γt0 at τ . Let ∆nt0(t, τ)
be the distance from Γt0(τ) to Γt in the direction of the normal nt0(τ). Define

νt0(τ) =
d

dt

∣∣∣∣
t=t0

∆nt0(t, τ).

Thus the distance to Γt along nt0(τ) is (t−t0)νt0(τ)+O(|t−t0|2). The remainder
is uniform in τ (as will be shown in Lemma 4).

It is believable that at least for |t − t0| small, the normal line at F (t0, τ) will
intersect Γt once and only once. However, uniform control on the t for which
this holds is necessary. This will be established in Lemmas 2 and 3. Assuming
this control, we have the following theorem.

Theorem 1. Let Dt, t ∈ (a, b) be a family of domains, each bounded by n
C2-simple closed curves, satisfying the following conditions.

1) There exists a collection of injective C2-homotopies Fi : (a, b)× [0, 2π]→ C,
i = 1, . . . , n with non-vanishing Jacobian determinant between the curves
Γit(τ) = Fi(t, τ), such that ∂Dt =

⋃
i Γ

i
t.

2) Dt′ ⊂ Dt whenever t′ < t.

Let nt0(τ), ∆nt0(t, τ) and νt0(τ) be as above. Then,

gt(z, ζ)− gt0(z, ζ) =
t− t0

2π

∫
∂Dt0

∂gt0
∂nu

(u, z)
∂gt0
∂nu

(u, ζ)νt0(u) dsu +O(|t− t0|2).

Here, O(|t − t0|2) is uniform for ζ in any compact set in Dt ∩ Dt0 and z in a
compact set in Dt ∩Dt0. Furthermore, the remainder term is harmonic.
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The proof depends on some technical lemmas. Their proofs will follow the proof
of the above theorem.

Lemma 2. Let γ be a C2-simple closed curve in the plane, parametrized by arc
length s. Assume that the signed curvature k(s) is uniformly bounded by K.
Then, on any interval [α, β] of arc length less than π/(4K), the mapping

(s, r) 7→ γ(s) + rn(s)

is one-to-one for |r| < 1/(
√

2K).

Lemma 3. Let F be a homotopy as in Theorem 1, and [c, d] be a compact
subinterval of (a, b). There is a fixed ε > 0, such that for every t0 ∈ [c, d]
and t ∈ (t0 − ε, t0 + ε), the curve Γt(τ) = F (t, τ) intersects the normal line
r 7→ F (t0, τ0) + rn(t0, τ0) once and only once for every τ0.

Lemma 4. The quantity ε of Lemma 3 can be chosen so that

∆nt0(t, τ) = (t− t0)νt0(τ) +O(|t− t0|2)

for |t− t0| < ε, where the remainder is uniform for (t0, τ) ∈ [c, d]× [0, 2π].

Proof of Theorem 1. This is a modification of a proof of the Hadamard vari-
ational formula found in [3, pp. 293–294]. We assume first that the variation is
inward directed; i.e. that t < t0.

We will assume, for notational convenience, that the domains Dt are bounded
by only one smooth curve Γt with a single homotopy F (t, τ) between them.
This assumption does not affect in the proof in any way; it only simplifies the
presentation.

Consider the function

σ(z, ζ) = gt0(z, ζ) +
t− t0

2π

∫
∂Dt0

∂gt0
∂nu

(u, z)
∂gt0
∂nu

(u, ζ)νt0(u) dsu.

Fix a τ ∈ [0, 2π], and denote z(t) = F (t0, τ) + ∆nt0(t, τ)nt0(τ) (this point lies on
the boundary of Dt). Also let z = z(t0) = F (t0, τ). We claim that

(3) σ(z(t), ζ) = O(|t− t0|2).

The estimate is uniform for ζ restricted to compact sets in Dt.

To prove this, first note that by Lemma 4 and the fact that gt0(z, ζ) = 0,

gt0(z(t), ζ) = gt0(z(t), ζ)− gt0(z, ζ)

= −∂gt0
∂nz

(z, ζ)|z(t)− z|+O(|z(t)− z|2)

=
∂gt0
∂nz

(z, ζ)(t− t0)νt0(τ) +O(|t− t0|2).
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So

σ(z(t), ζ) =
∂gt0
∂nz

(z, ζ)(t− t0)νt0(τ)

+
t− t0

2π

∫
∂Dt0

∂gt0
∂nu

(u, z)
∂gt0
∂nu

(u, ζ)νt0(u) dsu +O(|t− t0|2).

By the reproducing property of ∂g/∂n

∂gt0
∂nz

(z, ζ)νt0(τ) = − 1

2π

∫
∂Dt0

∂gt0
∂nu

(u, z)
∂gt0
∂nu

(u, ζ)νt0(u) dsu,

which proves (3).

The variational formula now follows easily. Since gt vanishes on ∂Dt, we have
that

gt(z, ζ)− σ(z, ζ) = O(|t− t0|2)

for z ∈ ∂Dt. Further, the left hand side is harmonic in z, so this estimate extends
to all z ∈ Dt. This proves the theorem in the special case that the variation is
inward directed.

In the case that the variation is outwardly directed, i.e. that t > t0, we enclose
both domains in a larger domain DT . Some care is needed in choosing this
domain. Enclose t0 in a compact interval [c, d] and let ε be as in Lemmas 3
and 4. Choose T so that |T − t0| < ε, and consider t ∈ (t0, T ). We then have
that

gt(z, ζ)− gT (z, ζ) =
t− T

2π

∫
∂DT

∂gT
∂nu

(u, z)
∂gT
∂nu

(u, ζ)νT (u) dsu +O(|t− T |2),

and also a similar formula for gt0 − gT . Subtracting these two, and noting that
|t0 − T | < C|t− t0| and |t− T | < C|t− t0|,

gt0(z, ζ)− gT (z, ζ) =
t− t0

2π

∫
∂DT

∂gT
∂nu

(u, z)
∂gT
∂nu

(u, ζ)νT (u) dsu +O(|t− t0|2).

By the assumptions on F , νT (τ) must be C1 in both T and τ . Also, ∂gT/∂nu is
C∞ away from ζ, so∫

∂DT

∂gT
∂nu

(u, z)
∂gT
∂nu

(u, ζ)νT (u) dsu

=

∫
∂Dt0

∂gT
∂nu

(u, z)
∂gT
∂nu

(u, ζ)νT (u) dsu +O(|t− t0|).

Also
∂gT
∂nu

(u, z) =
∂gt0
∂nu

(u, z) +O(|T − t0|)
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uniformly on compact sets in u away from z, so we get that∫
∂Dt0

∂gT
∂nu

(u, z)
∂gT
∂nu

(u, ζ)νT (u) dsu

=

∫
∂Dt0

∂gt0
∂nu

(u, z)
∂gt0
∂nu

(u, ζ)νt0(u) dsu +O(|t− t0|),

completing the proof.

Proof of Lemma 2. Let s1 and s2 be such that α ≤ s1 < s2 ≤ β. We will show
that the normal lines r 7→ γ(si) + rn(si) do not intersect for r < 1/(

√
2K).

By reparametrizing, we can assume that s1 = 0, and by applying a Euclidean
motion we can further place γ so that γ(0) = (0, 0) and γ′(0) is parallel to the
y-axis. Denote γ(s) = (x(s), y(s)), and the angle between γ′(s) and the vertical
by θ(s). For small s this will be close to zero.

Since dθ/ds = k(s), we have |θ(s2)| ≤ Ks2. Thus |θ(s)| ≤ π/4, which implies
cos θ(s) ≥ 1/

√
2 and y(s2) ≥ s2/

√
2. We also have | sin θ(s2)| ≤ |θ(s2)| ≤ Ks2.

The r for which the line r 7→ γ(s2) + rn(s2) intersects the real axis (that is,
the normal line at s1) must be at least y(s2)/| sin θ(s2)| ≥ 1/(

√
2K). Since

this argument is independent of the direction of the parametrization, the line
r 7→ γ(s1) + rn(s1) cannot intersect the normal line at s2 for r < 1/(

√
2K)

either.

Proof of Lemma 3. To reduce notation in the proof, we assume that there is
only one curve in the homotopy F . The proof carries over into the case of several
curves without any difficulties, and we will not comment on it further.

First we fix some notation. Let F = (F1, F2), and G = F−1 = (G1, G2); that is,
t = G1(x, y) and τ = G2(x, y). It is understood that G is defined only on the
image of F .

Since F is C2, the curvature of each curve Γt(τ) is bounded above by a uniform
constantK on [c, d]×[0, 2π]. Let ε0 be small enough so that [c− ε0, d+ ε0] ⊂ (a, b).
Then |∂F/∂t| is bounded above by some constant C1 on the interval [c−ε0, d+ε0].
Set ε1 = min{ε0, (

√
2KC1)−1}. We then have that for any t0 ∈ [c, d] and t such

that |t−t0| < ε1, the curve Γt is contained in the region of injectivity of the normal
lines given by Lemma 2 (we will refer to this as the ‘band of injectivity at t0’). To
see this, just note that for any τ , the disc of radius 1/(

√
2K) centered at F (t0, τ)

is in the band of injectivity, and |F (t, τ)− F (t0, τ)| ≤ C1|t− t0| < 1/(
√

2K).

In order to show that a normal line to a curve intersects nearby curves once and
only once, we will use the assumptions on F in order to control the angle of the
tangent vector to Γt, thus preventing the curve Γt from ‘looping back’.

Construct the normal line at F (t0, τ0). This normal line intersects the curve Γt
at a closest point F (t, τ(t)). We claim that on some uniform interval in t,
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|F (t, τ(t)) − F (t, τ0)| ≤ C|t − t0| for a uniform constant C. To prove this,
consider the function t(r, t0, τ0) = G1(F (t0, τ0) + rn(t0, τ0)). We then have that

(4)
dt

dr
= ∇G1 · n

where ∇G1 depends on r. Now |∇G1| 6= 0 since F has non-vanishing Jacobian
determinant, and in fact on F ([c−ε1, d+ε1]×[0, 2π]) we have that |∇G1| ≥ m1 for
some uniform constant m1. Now ∇G1(F (t0, τ0)) is parallel to n(t0, τ0). Since F
is C2 and has non-vanishing Jacobian determinant, ∇G1 is C1, so in particu-
lar the argument of ∇G1/n (treating them as complex numbers) is bounded in
(−π/4, π/4) for some interval −ε2 < r < ε2. (Since the argument must stay
small for r close to zero, there are no worries about choosing a branch of the
argument.) We can choose this constant uniformly for (t0, τ0) ∈ [c, d] × [0, 2π]
(ε2 must be chosen at least smaller than 1/(

√
2K)). In particular, we have that

(5)

∣∣∣∣ dtdr
∣∣∣∣ = |∇G1| cos

(
arg
∇G1

n

)
≥ m1√

2
.

Thus for any fixed point (t0, τ0) the function t(r) is invertible on the interval
(t0 −m1ε2/

√
2, t0 + m1ε2/

√
2), and the inverse r is the first point at which the

normal intersects the curve Γt. On this interval,∣∣∣∣drdt
∣∣∣∣ ≤ √2

m1

so

(6) |r| = |F (t, τ(t))− F (t0, τ0)| ≤
√

2

m1

|t− t0|,

thus proving the claim.

Next we need an estimate on |τ(t) − τ0| (recall that τ(t) is the value of τ at
which the normal line at F (t0, τ0) intersects the curve Γt). Choose a uniform
lower bound m2 such that m2 ≤ |∇G2| on F ([c − ε1, d + ε1] × [0, 2π]). Let
ε3 = min{ε1, ε2}. For t ∈ (t0 − ε3, t0 + ε3), using (6), we have that

|F (t0, τ(t))− F (t0, τ0)| ≤ |F (t, τ(t))− F (t0, τ0)|+ |F (t0, τ(t))− F (t, τ(t))|

≤

(√
2

m1

+ C1

)
|t− t0|.

Thus

(7) |τ(t)− τ0| ≤ m2|F (t0, τ0)− F (t0, τ(t))| ≤ C|t− t0|

on (t0 − ε3, t0 + ε3) where C =
√

2m1 + C1 is independent of (t0, τ0).

We can now put a uniform bound on the change in the argument of ∂F/∂τ to
complete the proof. Let K ′ be a uniform lower bound for ∂F/∂τ on the rectangle
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[c− ε3, d+ ε3]× [0, 2π], and M1 and M2 be the bounds∣∣∣∣ ∂2F

∂τ∂t

∣∣∣∣ ≤M1,

∣∣∣∣∂2F

∂τ 2

∣∣∣∣ ≤M2

on the same region. We then have∣∣∣∣arg

(
∂F

∂τ
(t, τ(t))

)
− arg

(
∂F

∂τ
(t0, τ0)

)∣∣∣∣
≤
∣∣∣∣log

(
∂F

∂τ
(t, τ(t))

)
− log

(
∂F

∂τ
(t0, τ(t))

)∣∣∣∣
+

∣∣∣∣log

(
∂F

∂τ
(t0, τ(t))

)
− log

(
∂F

∂τ
(t0, τ0)

)∣∣∣∣
≤ M1

K ′
|t− t0|+

M2

K ′
|τ(t)− τ0|

≤
(
M1

K ′
+
M2C

K ′

)
|t− t0|

by equation (7). Thus, by choosing a small enough positive ε < ε3, we can
guarantee that the argument of the tangent to Γt does not deviate more than, say,
π/4 from the argument of the tangent to Γt0 . This implies that the normal lines
to Γt0 cannot intersect Γt more than once for any t0 ∈ [c, d] and t ∈ [t0− ε, t0 + ε],
where ε is independent of t0.

Proof of Lemma 4. Let t(r) be as in the proof of Lemma 3. From (4) and the
assumptions on F it follows that d2t/dr2 exists and is bounded uniformly in τ
and t, if t is chosen so that |t− t0| < ε. Because of the uniform lower bound (5),
we then have that |d2r/dt2| is bounded above uniformly for (t0, τ) ∈ [c, d]×[0, 2π]
as long as |t − t0| < ε. The function r(t) is just the function ∆nt0(t, τ) so the
lemma follows.

3. Main theorems

We will now prove inequalities for the derivatives of Green’s function, the Bergman
kernel, and L-kernel. The Bergman kernel and L-kernel are defined by

K(ζ, η) = − 2

π

∂2g

∂ζ∂η̄
(ζ, η)

and

L(ζ, η) = − 2

π

∂2g

∂ζ∂η
(ζ, η).

Theorem 5. Let D1 and D2 be multiply connected domains, each bounded by n
C2-simple closed curves γij(s), j = 1, . . . , n, i = 1, 2, respectively. Assume that

there exists a collection Fj(t, τ) of C2-injective homotopies between the curves
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γ1
j and γ2

j with non-vanishing Jacobian, such that if Dt denotes the n-connected
domain bounded by the curves Fj(t, ·), then Dt ⊂ Dt′ whenever t < t′.

Then, for every value of λ, and all complex parameters αµ, βµ and points ζµ ∈ D1,
µ = 1, . . . , n, the following quantity is an increasing function of t:

∑
µ,ν

αµαν
1

2π
gt(ζµ, ζν)− 2λRe

(∑
µ,ν

ανβµ
1

π

∂gt
∂ζ

(ζµ, ζν)

)
− λ2

∑
µ,ν

βµβνKt(ζµ, ζν).

Here gt and Kt denote Green’s function and the Bergman kernel respectively
of Dt. In particular the corresponding quantity for D2 is larger than that for D1.

Remark 1. The condition that the two domains be homotopic in the sense
of Theorem 5 is not very restrictive. Consider two simply connected domains
D1 ⊂ D2, each bounded by a C2-curve, with positive minimum distance be-
tween ∂D1 and ∂D2. There exists a biholomorphic map g taking D2\D1 to an
annulus. On the annulus, one easily constructs a radial homotopy F̃ . The map
g−1 ◦ F̃ then provides a homotopy satisfying the conditions of Theorem 5. One
can extend this procedure to multiply connected domains.

Remark 2. Once inequalities such as the above are established for C2-bounded
domains with positive distance between the boundary curves, they can be ex-
tended to a wide class of domains. The smoothness hypothesis can be weakened
considerably. We need only assume that D1 can be exhausted by a sequence
of smooth domains Ui, i.e. Ui ⊂ Ui+1 and

⋃
i∈N U = D1, such that each Ui is

bounded by n curves which are homotopic to the boundary curves of D2 in the
sense above. In order to see this, just note that the sequence of Green’s functions
will converge uniformly on compact sets to Green’s function of D1 ([5, p. 108]).
Hence, its derivatives will also converge uniformly on compact sets, and the ex-
pression above for D1 will be approximated by the corresponding expression for
the domain Ui. One can then perform a similar process to weaken the conditions
on the boundary of D2. The same process can be used to remove the hypothesis
that the boundaries are a finite distance apart.

A sufficient condition can be expressed in terms of the level curves of Green’s
functions g1 and g2 of D1 and D2. It is enough to assume that there is some ε0
such that for all 0 < ε < ε0 and fixed ζ ∈ D1, the level sets g1(z, ζ) = ε and
g2(z, ζ) = ε each consist of n simple smooth closed curves γij(ε, ·), j = 1, . . . n
and i = 1, 2, which are homotopic in the sense above.

To prove Theorem 5 we will need to determine the first order variation of the
first few derivatives of Green’s function.
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Lemma 6. Let g be Green’s function of D and K the Bergman kernel. Then

δg(ζ, η) =
2

π

∫
∂D

∂g

∂u
(ζ, u)

∂g

∂ū
(u, η)ν(u) dsu =

2

π

∫
∂D

∂g

∂ū
(ζ, u)

∂g

∂u
(u, η)ν(u) dsu,

δ
∂g

∂ζ
(ζ, η) = −

∫
∂D

L(ζ, u)
∂g

∂ū
(u, η)ν(u) dsu = −

∫
∂D

K(ζ, u)
∂g

∂u
(u, η)ν(u) dsu,

δK(ζ, η) = −
∫
∂D

L(ζ, u)L(u, η)ν(u) dsu = −
∫
∂D

K(ζ, u)K(u, η)ν(u) dsu.

Proof of Lemma 6. We will make repeated use of the following identities,
which hold along the boundary of D:

(8)
∂g

∂nu
(ζ, u) dsu =

2

i

∂g

∂u
(ζ, u) du = −2

i

∂g

∂ū
(ζ, u) dū.

The symmetry of Green’s function gives the same identities in the first variable.
Applying this to the integrand of equation (2), and using the fact that ds2 =
|du|2, we get that

(9) δg(ζ, η) =
2

π

∫
∂D

∂g

∂u
(ζ, u)

∂g

∂ū
(u, η)ν(u) dsu.

The other two formulas follow by differentiating under the integral sign. (Strictly
speaking, one differentiates the variational formula in Theorem 1, and uses the
harmonicity of the remainder to conclude that the remainder term of the de-
rivative is also harmonic and O(|t − t0|2). This can be done as many times as
desired.)

Proof of Theorem 5. It is only necessary to show that the first variation is
positive, using the variational formula of Theorem 1. Indeed, if the first variation
is positive, then there is an open interval around every t in the homotopy, on
which the quantity is actually increasing. Since t varies over a compact interval
the theorem follows.

We now turn to the problem of showing that the first variation is positive. By
Lemma 6 we have that

δ

(∑
µ,ν

αµανg(ζµ, ζν)

)
=

2

π

∫
∂D

∑
µ,ν

αµαν
∂g

∂u
(ζµ, u)

∂g

∂ū
(ζν , u)ν(u) dsu(10)

=
2

π

∫
∂D

∣∣∣∣∣∑
µ

αµ
∂g

∂u
(ζµ, u)

∣∣∣∣∣
2

ν(u) dsu,

δ

(∑
µ,ν

ανβµ
∂g

∂z
(ζµ, ζν)

)
= −

∫
∂D

∑
µ,ν

ανβµK(ζµ, u)
∂g

∂u
(u, ζν)ν(u) dsu,(11)

δ

(∑
µ,ν

βµβνK(ζµ, ζν)

)
= −

∫
∂D

∣∣∣∣∣∑
µ

βµK(ζµ, u)

∣∣∣∣∣
2

ν(u) dsu.(12)
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So, combining equations (10), (11), and (12) we get

δ

(∑
µ,ν

αµαν
1

2π
g(ζµ, ζν)− 2λRe

(∑
µ,ν

ανβµ
1

π

∂g

∂ζ
(ζµ, ζν)

)

−λ2
∑
µ,ν

βµβνK(ζµ, ζν)

)

=

∫
∂D

∣∣∣∣∣∑
µ

αµ
1

π

∂g

∂u
(ζµ, u) + λβµK(ζµ, u)

∣∣∣∣∣
2

ν(u) dsu.

Since this inequality holds for every choice of λ, we must have that the discrim-
inant is less than or equal to zero. So we have the following theorem.

Theorem 7. Let D1 and D2 be domains satisfying the conditions of Theorem 5.
Let gi denote their Green’s functions and Ki denote their Bergman kernels, for
i = 1, 2. Let ζµ ∈ D1, µ = 1, . . . n, and let αµ, βµ ∈ C. Then the following
inequality holds: (

Re
∑
µ,ν

ανβµ

(
∂g1

∂ζ
(ζµ, ζν)−

∂g2

∂ζ
(ζµ, ζν)

))2

≤ π

2

(∑
µ,ν

βµβν (K1(ζµ, ζν)−K2(ζµ, ζν))

)

×

(∑
µ,ν

αµαν (g2(ζµ, ζν)− g1(ζµ, ζν))

)
.

It is easy to generalize the variational formulas for derivatives of Green’s function
to all orders of differentiation, and with these, derive many inequalities.

Lemma 8. For a domain D bounded by n smooth curves, the first order variation
in the kernel functions K and L are given by

δ
∂m+nK

∂ζm∂η̄n
(ζ, η) = −

∫
∂D

∂mK

∂ζm
(ζ, u)

∂nK

∂η̄n
(u, η)ν(u) dsu

= −
∫
∂D

∂mL

∂ζm
(ζ, u)

∂nL

∂ηn
(u, η)ν(u) dsu

and

δ
∂m+nL

∂ζm∂ηn
(ζ, η) = −

∫
∂D

∂mL

∂ζm
(ζ, u)

∂nK

∂η̄n
(u, η)ν(u) dsu

= −
∫
∂D

∂mK

∂ζm
(ζ, u)

∂nL

∂ηn
(u, η)ν(u) dsu.
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Proof. As in Lemma 6, one simply differentiates the variational formula of The-
orem 1.

With the help of Lemma 6 and Lemma 8, it is easy to derive many inequalities
for derivatives of K and L.

Theorem 9. Let D1 and D2 be two domains satisfying the conditions of Theo-
rem 5, with Bergman kernels K1 and K2 respectively. Then∑

µ,ν

βµβν

(
∂2mK1

∂ζm∂η̄m
(ζµ, ζν)−

∂2mK2

∂ζm∂η̄m
(ζµ, ζν)

)
≥ 0.

Remark 3. It is possible to derive this from [7, Theorem 1], but only in the case
that the domains are simply connected. The proof given here is also much more
direct.

Proof. By Lemma 8,

δ

(∑
µ,ν

βµβν
∂2mK

∂ζm∂η̄m
(ζµ, ζν)

)
= −

∫
∂D

∣∣∣∣∣∑
µ

βµ
∂mK

∂ζm
(ζµ, u)

∣∣∣∣∣
2

ν(u) dsu.

Corollary 10. Let D1 be a simply-connected planar domain. Then,∑
µ,ν

βµβν
∂2mK1

∂ζm∂η̄m
(ζµ, ζν) ≥ 0.

Proof. First assume that D1 is bounded by a C∞-simple closed curve. By
letting D2 be a disc of radius r, and letting r →∞, this follows from Theorem 9.
One then applies the argument of Remark 2.

Theorem 11. Let D1 and D2 satisfy the conditions of Theorem 5. Then, the
following quantity is a decreasing function of t:

∑
µ,ν

ᾱµαν
∂2mKt

∂ζm∂η̄m
(ζµ, ζν) + 2λRe

(∑
µ,ν

ανβµ
∂2m+1Kt

∂ζm+1∂η̄m
(ζµ, ζν)

)

+λ2
∑
µ,ν

βµβν
∂2m+2Kt

∂ζm+1∂η̄m+1
(ζµ, ζν).

In particular, it is larger for D1 than for D2.
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Proof. By Lemma 8,

δ

(∑
µ,ν

αµαν
∂2mK

∂ζm∂η̄m
(ζµ, ζν) + 2λRe

(∑
µ,ν

ανβµ
∂2m+1K

∂ζm+1∂η̄m
(ζµ, ζν)

)

+λ2
∑
µ,ν

βµβν
∂2m+2K

∂ζm+1∂ηm+1 (ζµ, ζν)

)

= −
∫
∂D

∣∣∣∣∣∑
µ

αµ
∂mK

∂ζm
(ζµ, u) + λβµ

∂m+1K

∂ζm+1
(ζµ, u)

∣∣∣∣∣
2

ν(u) dsu

By taking the discriminant, we have the following corollary.

Corollary 12. Denoting ∆K(ζ, η) = K1(ζ, η)−K2(ζ, η), we have(
Re
∑
µ,ν

ανβµ∆
∂2m+1K

∂ζm+1∂ηm
(ζµ, ζν)

)2

≤

(∑
µ,ν

αµαν∆
∂2mK

∂ζm∂η̄m
(ζµ, ζν)

)(∑
µ,ν

βµβν∆
∂2m+2K

∂ζm+1∂η̄m+1
(ζµ, ζν)

)
.

Theorem 13. Under the conditions of Theorem 5, the following quantity is
larger for D1 than for D2:∑

µ,ν

αµαν
∂2mK

∂ζm∂η̄m
(ζµ, ζν) + 2λRe

(∑
µ,ν

βµαν
∂2m+1L

∂ζm+1∂ηm
(ζµ, ζν)

)

+λ2
∑
µ,ν

βµβν
∂2m+2K

∂ζm+1∂η̄m+1
(ζµ, ζν).

Proof. By Lemma 8,

δ

(∑
µ,ν

αµαν
∂2mK

∂ζm∂η̄m
(ζµ, ζν) + 2λRe

(∑
µ,ν

βµαν
∂2m+1L

∂ζm+1∂η̄m
(ζµ, ζν)

)

+λ2
∑
µ,ν

βµβν
∂2m+2K

∂ζm+1∂ηm+1 (ζµ, ζν)

)

= −
∫
∂D

∣∣∣∣∣∑
µ

αµ
∂mK

∂ζm
(ζµ, u) + λβµ

∂m+1L

∂ζm+1
(ζµ, u)

∣∣∣∣∣
2

ν(u) dsu.

Again taking the discriminant, we get the following corollary.
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Corollary 14. With D1 and D2 as in Theorem 5,(
Re
∑
µ,ν

ανβµ∆
∂2m+1L

∂ζm+1∂ηm
(ζµ, ζν)

)2

≤

(∑
µ,ν

αµαν∆
∂2mK

∂ζm∂η̄m
(ζµ, ζν)

)(∑
µ,ν

βµβν∆
∂2m+2K

∂ζm+1∂η̄m+1
(ζµ, ζν)

)
.

Finally, we would like to observe that Theorem 1 in [7] can be extended to the
multiply connected case: i.e. for D1, D2, satisfying the conditions of Theorem 5,
and notation as above, we have

(13) Re ∆

(∑
µ,ν

αµαν
∂2mL

∂ζm∂ηn
(ζµ, ζν)

)
−∆

(∑
µ,ν

αµαν
∂2mK

∂ζm∂η̄m
(ζµ, ζν)

)
≤ 0.

To prove this, just note that

δ

(∑
µ,ν

αµαν
∂2mK

∂ζm∂ηm
(ζµ, ζν)

)
= −

∫
∂D

∣∣∣∣∣∑
ν

αν
∂mK

∂ηm
(u, ζν)

∣∣∣∣∣
2

ν(u) dsu

and

δ

(∑
µ,ν

αµαν
∂2mL

∂ζm∂ηm
(ζµ, ζν)

)
= −

∫
∂D

(∑
µ,ν

αµ
∂mK

∂ζm
(ζµ, u)

)2(
du

dsu

)2

ν(u) dsu,

using the identity L(ζ, η)dζ = −K(ζ, η)dζ (see [2, p. 208] or (8)), and the fact
that when integrating with respect to arc length, |du/dsu| = 1. The case m = 0
of this theorem was proved by Bergman and Schiffer [2] using other techniques.
They also establish that this quantity increases when the domain decreases under
a Hadamard variation, in the same way that we do here in the general case.

4. Estimates for univalent functions

Let f : D → D be a bounded univalent function. By letting the outside domain
be the unit disc, and expressing the kernel functions of the inside domain in
terms of the map f , we can derive estimates for bounded univalent functions.
Although there is much room for experimentation, we limit ourselves here to two
such inequalities.

We define the hyperbolic derivatives invented by Minda [4]:

Dh
i (f)(a) =

∂i

∂zi

∣∣∣∣
z=0

(S ◦ f ◦ T )(z)

where

S(z) =
z − f(a)

1− f(a)z
, T (z) =

z + a

1 + āz
.
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Also, let σ3(f) denote the Schwarzian derivative, and

σ4(f) = σ3(f)z − 2
f ′′

f ′
σ3(f),

and define
σh4 (f)(a) = σ4(S ◦ f)(a).

The hyperbolic line element on the disc is given by

λ(z) =
1

1− |z|2
.

Then we have the following distortion theorem.

Corollary 15. Let f be a univalent map from the unit disc into itself. Then,

(14)

∣∣∣∣σh4 (f)(z)

12λ(z)3

∣∣∣∣2 ≤ (1− |Dh
1f(z)|2

)(∣∣∣∣Dh
2f(z)

Dh
1f(z)

∣∣∣∣2 + 2

)
.

Proof. This follows from Corollary 14, by choosing n = 1 and α = β = 1. The
computation of the diagonal terms appears in [7].

Also, we have the following estimate for a univalent function f from the unit disc
into itself.

Corollary 16.

1

2

(
Re
∑
µ,ν

αµβν
1− |zν |2

f ′(zµ)(zµ − zν)(1− z̄νzµ)
− 1− |f(zν)|2

(f(zµ)− f(zν))(1− f(zν)f(zµ))

)2

≤

(∑
µ,ν

αµαν log

∣∣∣∣∣f(zµ)− f(zν)

zµ − zν
1− z̄νzµ

1− f(zν)f(zµ)

∣∣∣∣∣
)

×

(∑
µ,ν

βµβν
1

(1− f(zν)f(zµ))2
− 1

f ′(zµ)f ′(zν)(1− zνzµ)2

)
.

Proof. Apply Theorem 5.
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