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Broad
A wide-angle view

Describe the boundary of the class of normalized univalent functions
f:-D—DorC.

boundary points < functionals < quadratic differentials
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Broad
A wide-angle view

Describe the boundary of the class of normalized univalent functions
f:-D—DorC.

boundary points < functionals <« quadratic differentials

Teichmiiller’s principle says that a functional involving derivatives of
order n+ 1 at a point “is associated with” a quadratic differential with a
pole of order n.

Schiffer’s variational method shows that the derivative of a functional of
order n+ 1 involves a quadratic differential of order n.
Jenkins’/Teichmuiiller's extremal metric method produces a functional,
given a quadratic differential.
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Broad
Why hope for anything more specific?

Case S = {f: D — C: f one-to-one, f(0) = f(0) — 1 = 0}.
Pfluger showed that for the third coefficient body
{(85,a3): I(2)=z+ @z +a3z®+--- €S}

the association between boundary points, third-order homogeneous
functionals, and quadratic differentials is one-to-one (up to a rotation).
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Specifc
Purpose of this talk

@ Given a singular test function, Nehari’s method produces a
monotonic, bounded functional on the class of bounded univalent
functions f : D — D, f(0) = 0.
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Specifc
Purpose of this talk

@ Given a singular test function, Nehari’s method produces a
monotonic, bounded functional on the class of bounded univalent
functions f : D — D, f(0) = 0.

@ It can be shown that Nehari’'s method produces a functional, given
a quadratic differential (like the extremal metric method).

@ Schiffer’s insight was: the derivative of a functional is associated
with a quadratic differential.

@ Question: what is the derivative of Nehari’s functional? Is it the
original quadratic differential?

I'll answer this question.

Eric Schippers (Manitoba) Nehari functional Baylor University 2009 4/17



Definition of Nehari’s functional

Extended truncated Dirichlet inner product:

(g:h) = > Kgxhk, for g(2) = > k2", h(z)= D hz".

k=—n k=—n k=—n

Definition (Nehari’s functional)
@ Let x(z) = >_f__, xkz" be a test function on D, satisfying
Re(x’(z)dz) = 0 on 9D.
@ Let f: D — D be one-to-one, and satisfy f(0) = 0.
@ Llety=xof.

n 2

> Wk +7-r)Z"

k=1

Neh(f) = (x,x) — (v, y) +

D
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Some assumptions

Nehari’s method is more general than above.
Assumptions:
@ The test function has a pole only at 0.
@ The outside domain is the disc, and the inside domain is simply
connected.
These choices lead to coefficient estimates for bounded univalent
functions.
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Some assumptions

Nehari’s method is more general than above.
Assumptions:

@ The test function has a pole only at 0.

@ The outside domain is the disc, and the inside domain is simply
connected.

These choices lead to coefficient estimates for bounded univalent
functions.

Crucial point: The condition Re(x’(z)dz) = 0 on 9D holds
& Xy = —X_ < X'(2)?dz? is a quadratic differential on the disc.

This can always be arranged by subtracting the lower bound of the
functional.
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The case of equality

n 2
Neh(f) = (x,x)= (¥, 9) + ||>_(Vk + ¥-k) 2"
k=1 D
o) 2 n 2
= HXHHZJ)\)‘(D)+ Z yiz'|| + Z(}’k-i-ﬁ)zk
k=n+1 p k=1 D
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The case of equality

n 2
Neh(f) = (x,x)—(¥,¥)+ Z(YK + k) 2"
k=1 D
n 2
= ‘XH]DJ\)‘(]D) Z yiz'|| + Z(}’k-i-ﬁ)zk
k=n+1 D k=1 D

@ Inequality Neh(f) > 0 is weaker than the area principal
@ But equality is more difficult to attain.
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Neh(f) = (x,x)—(¥,¥)+ Z(YK + k) 2"
k=1 D
n 2
= ‘XH]D)\)‘(]D) Z yiz'|| + Z(}’k-i-ﬁ)zk
k=n+1 D k=1 D

@ Inequality Neh(f) > 0 is weaker than the area principal
@ But equality is more difficult to attain.

@ Equality holds if and only if f is admissible for the quadratic
differential x’(z)2dz?
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Nehari’s functional

The case of equality

n 2
Neh(f) = (x,x)—(¥,¥)+ Z(YK + k) 2"
k=1 D
n 2
= ‘XH]D)\)‘(]D) Z yiz'|| + Z(}’k-i-ﬁ)zk
k=n+1 D k=1 D

@ Inequality Neh(f) > 0 is weaker than the area principal

@ But equality is more difficult to attain.

@ Equality holds if and only if f is admissible for the quadratic
differential x’(z)2dz?
Proof: f admissible for x'(z)?dz? < (x o f)'(z)?dz? is a quadratic
differential on the disc < yx = —y_ for all k
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Monotonicity and arc truncation

Theorem (Nehari)

fy (D) C fg(D) = Neh(f1) > Neh(fg)

Thus equality must continue to hold under arc truncation.
f
7N
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The power matrix

Let f(z) be univalent in a neighbourhood of 0 and f(0) = 0.

Definition (Power matrix)

The power matrix of f is the matrix [f] defined by
f(2)™ = [AFz™ + [Ap 2™+

Great thing about the power matrix: [f o g] = [f][g]-
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The power matrix

Let f(z) be univalent in a neighbourhood of 0 and f(0) = 0.

Definition (Power matrix)

The power matrix of f is the matrix [f] defined by
f(2)™ = [AFz™ + [Ap 2™+

Great thing about the power matrix: [f o g] = [f][g]-
Used by

@ Jabotinsky

@ Schiffer and Tammi

@ Friedland and Schiffer
It simplifies many function theoretic computations.
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Infinitesimal power matrices (Lie algebra)

Leth(z):h1z+h222+---.

Definition
The infinitesimal power matrix of h is

—hy —ho _h3 —hy —hs

0 0 0O 0 O

(hy = 0 0 h h h
0 0 0 2h 2h
0 0

0 0 3m
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- 000000 epsera |
Friedland-Schiffer equation

Let Repi(z) > 0, p1(0) =1, > 0.
The solution of the Friedland-Schiffer differential equation

M2 = —2p(2)2(2) 1(2) = 2

satisfies f : D — D and (D) C fs(D) whenever t > s.
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- 000000 epsera |
Friedland-Schiffer equation

Let Repi(z) > 0, p1(0) =1, > 0.
The solution of the Friedland-Schiffer differential equation

ofy, . oft B
(@) =—2p(2)51(2) h(z)=2z
satisfies f : D — D and (D) C fs(D) whenever t > s.

In the power matrix notation, the coefficients of f; satisfy:

1 = 11 (20
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An example computation

For a test function x(z) denote x = (x_p, ..., Xp) and y; = x o f;. Then
(suitably truncating the power matrices)

Slvy) = S0 xif)

= —2Re (X[f], X[f] (zpr))
= —2Re(y,y(zpt))

Note: all vectors are row vectors and operators appear on their right.
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Differentiating the functional

Differentiating Nehari’s functional

Nehari’s functional in power matrix notation.

Reflection: (y—n,....¥n)B= ¥n,---,¥=n)

Projection: (y_n,...,¥n)P = (¥-n,...,¥-1,0,...,0).

With this notation, for f : D — D, f one-to-one, f(0) =0,y = xo f

Neh(f) = (x,x) — Re(y(/+ R),yP).
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Differentiating Nehari’s functional

Nehari’s functional in power matrix notation.

Reflection: (y—n,....¥n)B= ¥n,---,¥=n)
Projection: (y_n,...,¥n)P = (¥-n,...,¥-1,0,...,0).
With this notation, for f : D — D, f one-to-one, f(0) =0,y = xo f

Neh(f) = (x,x) — Re(y(/+ R),yP).

Theorem (Functional derivative of Neh, S 2009)
Let f; be a solution of the Friedland-Schiffer equation with infinitesimal
generator p;. Then

gtNeh(f,) = —Re(y:(I+ R),y: [P, (zpy)])+Re (Y, Y: ((2pr) + (Zpt)*) P).

v
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Derivative at an extremal

At an extremal fs, y4(z)?dz? is a quadratic differential for which oD is a
trajectory. So yx = —y_k SO YysR = —ys. So

d
ZiNen(f) -

—Re (ys(/+ R),ys [P, (zps)]

)
+Re (Ys, ¥s ((zps) + (2ps)*) P)
Re (¥s. ¥s ((2ps) + (zps)”) P)
2Re (Ys,Ys (2ps)) -

Note: This is true whether or not f; continues to be extremal for t > s.
i.e. This is the derivative in any direction ps.

Eric Schippers (Manitoba)

Nehari functional Baylor University 2009 14 /17



Where’s the quadratic differential ?

In this case,
d
gt Neh(f;) = 2Re(Ys,Ys(Zps))
t=s

= 2Re lim = [ (z7))"(2)- Zvi(2) - ps(2) 2
B r—1- 2mi " Vs Vs Ps V4
_ ; l 2.,/ 2 %
= lim Re . /wzys(z) ps(2)Z.
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Where’s the quadratic differential ?

In this case,
d
gt Neh(f;) = 2Re(Ys,Ys(Zps))
t=s

= 2Re lim = [ (z7))"(2)- Zvi(2) - ps(2) 2
B r—1- 2mi " Vs Vs Ps V4
_ ; l 2.,/ 2 %
= lim Re . /wzys(z> ps(2)Z.

Recall that Qs(z)dz?/z? = yl(z)?dz? is a quadratic differential. So

J i 1 dz
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Action of quadratic differential is natural

Quadratic differentials act naturally on infinitesimal generators:

Q(2)

Aoz ((2)7 ) - (2)-p2)E

z

Now integrate:
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Action of quadratic differential is natural

Quadratic differentials act naturally on infinitesimal generators:

dz
z

QZ(Z) dz? (zp(z) é?z) — Q(2) - p(2)

- “
Now integrate:
r—1 V4

lim / Q)P %.

Nice formula in terms of coefficients: If
Q(2)=qnz "+ qpp1z " -
and p(z) =1+ pyz+ --- then the integral is

n
Z q—kPxk-
k=1
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Summary

@ Schiffer: functional — quadratic differential.
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Summary

@ Schiffer: functional — quadratic differential.

@ Nehari or Jenkins/Teichmiiller: quadratic differential —
functional.

@ but a quadratic differential is supposed to be a derivative.

Punch line: The derivative of the Nehari functional at an extremal is
the pull-back of the original “input” quadratic differential under the
extremal map.
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