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Introduction

Our work in general

We began by working on resolving some analytic issues arising in the
programme of constructing CFT from VOAs (grew out of David
Radnell’s PhD thesis under Yi-Zhi Huang)

David and I discovered that a moduli space in CFT is the
quasiconformal Teichmüller space of Ahlfors Bers (Radnell and S,
2005).

A lot of geometric, algebraic and analytic insight can be gained from
seeing what the two fields say to each other. This talk is one example.
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Conformal welding

Conformal welding

Conformal welding in quasiconformal Teichmüller theory
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Conformal welding

Quasiconformal maps

Definition
A quasiconformal map f : Σ→ Σ1 of Riemann surfaces is a
homeomorphism such that

1 f is absolutely continuous on horizontal and vertical lines
2 There is a fixed constant k < 1 such that∣∣∣∣ ∂f

∂z̄

∣∣∣∣ ≤ k
∣∣∣∣ ∂f
∂z

∣∣∣∣

Quasiconformal maps have a weaker local condition but a stronger
global condition than a C∞ homeomorphism.

Idea: Quasiconformal maps are distortions of the complex structure.
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Conformal welding

The Beltrami equation

Theorem (Ahlfors)

Let µdz̄/dz be a measurable (−1,1) differential on a Riemann surface
Σ. There is a quasiconformal map f : Σ→ Σ1 such that

∂f = µ∂f .

This map is unique up to composition f 7→ σ ◦ f by a biholomoprhism
σ : Σ1 → Σ2.

With stronger analytic conditions, this is equivalent to the classical
existence of isothermal coordinates.
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Conformal welding

Quasisymmetries

Definition

A quasisymmetry φ : S1 → S1 is a map which is the boundary values of
a quasiconformal map of D (or D∗).

Diff(S1) ( QS(S1) ( Homeo(S1).

Aside: Using quasisymmetries instead of diffeomorphisms is crucial to
connections with Teichmüller theory.

Getting the right analytic condition can simplify algebra and geometry...
(imagine Fourier series without L2!)

Deep question for another talk: what are the correct analytic
conditions for parametrizations of boundary curves in CFT?
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Conformal welding

Conformal welding theorem

Let D = {z : |z| < 1} and D∗ = {z : |z| > 1} ∪ {∞}

Theorem (conformal welding theorem)

Let φ ∈ QS(S1). There are one-to-one holomorphic maps f : D→ C
and g : D∗ → C with quasiconformal extensions to C such that

φ = g−1 ◦ f

and f (0) = 0, g(∞) =∞, g′(∞) = α

α 6= 0 can be chosen however you like.
Note: it implies conformal welding for analytic or diffeomorphic
parametrizations of S1.
Standard proof: uses existence and uniqueness of solutions to the
Beltrami equation.
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Conformal welding

History of conformal welding

History:
1 First proven by Pfluger (1961).
2 Later (1973) Lehto and Virtanen gave an argument using

approximation arguments.
3 Sometimes mistakenly attributed to Kirillov, who gave a proof in

1987 in the diffeomorphism case using the uniformization
theorem. Investigating coadjoint orbits of Diff (S1).

4 Other proofs in the smooth case exist using approximation
arguments (Ebenfeldt and Khavison 2011) or singular integral
operators (Gakhov 1966).

Important point: conformal welding plays a central role in
quasiconformal Teichmüller theory.

Eric Schippers (Manitoba) Conformal welding Rutgers 9 / 41



Conformal welding

The standard proof

1 Given φ, find a quasiconformal map wµ : D∗ → D∗ (∂wµ = µ∂wµ)
such that wµ|S1 .

2 Now solve the Beltrami equation on C with µ̂ = µ on D, µ̂ = 0 on
D. Call solution wµ.

3 Let f = wµ|D and g = wµ ◦ w−1
µ

∣∣
D∗ .

4 Can arrange normalizations...

We then have that
g−1 ◦ f

∣∣∣
S1

= wµ|S1 = φ.

Actually the solution (f ,g) is unique (even though there are many
possible wµ).
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The sewing equation in conformal field theory

The sewing equation

Sewing in conformal field theory
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The sewing equation in conformal field theory

Moduli space of Friedan/Shenker/Vafa

Another kind of moduli space appears in CFT.

Let ΣP be a compact Riemann surface of genus g with n (ordered)
punctures.

Definition (Riggings)

A “rigging” is an n-tuple of maps φ = (φ1, . . . , φn) where φi : D→ ΣP is
a one-to-one, holomorphic map of the unit disc D, taking 0 to the
puncture, satisfying

φi(D) ∩ φj(D) = ∅

whenever i 6= j .

Technical but important point: David and I assume that each map φi
has a quasiconformal extension to a neighbourhood of D.
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The sewing equation in conformal field theory

Rigged moduli space of Friedan and Shenker

Definition (Rigged moduli space)

The “rigged Riemann moduli space” of type (g,n) is

M̃(g,n) = {(Σ, φ)}/ ∼

where
Σ is a compact genus g Riemann surface, with n punctures
φ is a rigging
(Σ1, φ1) ∼ (Σ2, φ2) if there is a biholomorphism σ : Σ1 → Σ2 such
that φ2 = σ ◦ φ1.
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The sewing equation in conformal field theory

Explanation of sewing equation

Sew with blue riggings:

g∞1

Id

g∞2

f 0
2f 0

1
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The sewing equation in conformal field theory

Explanation of sewing equation

Sew with blue riggings:

f 0
2

g∞1 g∞2 ◦ f 0
1
−1
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The sewing equation in conformal field theory

Explanation of sewing equation: uniformize

H(z)

g∞2 ◦ f 0
1
−1

H(z) =

{
G(z) z ∈ top
F (z) z ∈ bottom

Sewing equation F ◦ g∞2 ◦ f1
0−1

= G.
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The sewing equation in conformal field theory

Statement of sewing equation

Sewing equation: given one-to-one holomorphic maps f1 and g2 on D
and D∗ find F and G such that

F ◦ g2 ◦ f1
−1 = G.

The proof of the existence of a solution to the sewing equation is due
to Y.-Z Huang, [97], for analytic parametrizations.

Quasisymmetric case by Radnell & S (2012) using conformal welding.
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The sewing equation in conformal field theory

Aside on the Teichmüller space/Friedan-Shenker/Vafa
moduli space correspondence

The bigger picture for a moment:
Classical fact: the Teichmüller space of D can be identified with either
QS(S1)/Mb(S1) or Friedan-Shenker/Vafa moduli space of spheres with
one rigging (though it was not called that!)

1 The sewing operation on Friedan-Shenker/Vafa moduli space is
essential to modularity in CFT.

2 Conformal welding plays a central role in the construction of a
complex structure on general quasiconformal Teichmüller spaces.

3 Not a coincidence! since by our work Friedan/Shenker/Vafa =
Teichmüller space (up to a discrete group) for general genus and
# of boundary curves.
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New approach to welding

New proof of welding

New approach to conformal welding
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New approach to welding

Algebraic approach to conformal welding?

Important clue: Huang’s approach is initially algebraic. So there
should be an algebraic proof of the conformal welding theorem.

First Huang solves the sewing equation formally; convergence is
(initially) not an issue. The formal solution involves fairly complicated
rings (well, to me anyway...)

Perhaps by adding a little bit of analytic structure first, the algebra
simplifies (Teichmüller theory→ CFT). What algebraic insight do we
get regarding conformal welding? (CFT→ Teichmüller theory)
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New approach to welding

The function spaces H and H∗
Add analytic structure: need a Hilbert space “arena”.
Let H denote the space of L2 functions h =

∑
hneinθ on S1 such that

∞∑
n=−∞

|n||hn|2 <∞.

Define

‖h‖2 = |ĥ(0)|2 +
∞∑

n=−∞
|n||hn|2.

We will also consider

H∗ = {h ∈ H : h0 = 0}

with norm

‖h‖2∗ =
∞∑

n=−∞
|n||hn|2.
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New approach to welding

Decomposition of H∗

H+ = {h ∈ H∗ : h =
∞∑

n=1

hneinθ}

H− = {h ∈ H∗ : h =
−1∑

n=−∞
hneinθ}.

It is well-known that we have the following isometries

H+
∼= D(D) = {h : D→ C hol :

∫∫
D
|h′|2 dA <∞ h(0) = 0}

H− ∼= D(D∗) = {h : D∗ → C hol :

∫∫
D∗
|h′|2 dA <∞ h(∞) = 0}

Summarized in Nag and Sullivan.
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New approach to welding

Composition operators on H and H∗

We consider two composition operators

Cφ : H → H Cφh = h ◦ φ

Ĉφ : H∗ → H∗ Cφh = h ◦ φ− 1
2π

∫
S1

h ◦ φ(eiθ) dθ.

Theorem (Nag and Sullivan 1993, quoting notes of Zinsmeister)

Ĉφ is bounded if φ is a quasisymmetry.

Theorem (S and Staubach, 2013)
If φ is a quasisymmetry then Cφ is bounded.
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New approach to welding

Sketch of a new proof

Treat φ as a composition operator Cφ on H: we want to solve for
unknown functions f and g in equation f ◦ φ−1 = g, g−1 = α.

Using the decomposition H = [H+]⊕ [C⊕H−], the welding equation
can be written

Cφf =

(
A Bext

Bext Aext

)(
f
0

)
=

(
g+

g−

)
so

Af = g+ and Bext f = g−.

where g+ = g−1z = αz and g− = g0 + g1/z + g2/z2 + · · · .

which leads to the solution

f = A−1g+ g− = Bext f .
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New approach to welding

What are the gaps?

We need to show that
there is a Hilbert space setting and operators are bounded. Done!
A is invertible: will use symplectic geometry and results of Nag
and Sullivan, Takhtajan and Teo.
The solutions in H so obtained have the desired properties:
conformal with quasiconformal extensions: will use Grunsky
inequalities.

Here we go!
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Symplectic geometry ofH∗

Symplectic structure on H∗
For x , y ∈ H∗ let

ω(x , y) = −i
∞∑

n=−∞
xny−n.

If one restricts to the real subspace (such that x−n = xn) this is a
non-degenerate anti-symmetric form 2Im (

∑∞
n=1 xnyn).

Theorem (Nag and Sullivan 1993)

If φ : S1 → S1 is quasisymmetric then Ĉφ is a symplectomorphism
(that is, ω(Ĉφx , Ĉφy) = ω(x , y)).

Note that Ĉφ has the form (
A B
B A

)
.
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Note that Ĉφ has the form (
A B
B A

)
.

Eric Schippers (Manitoba) Conformal welding Rutgers 26 / 41



Symplectic geometry ofH∗

The infinite Siegel disc (Nag and Sullivan)

Definition
The infinite Siegel disc S is the set of maps Z : H− → H+ such that
Z T = Z and I − ZZ is positive definite.

Context:
• the graph of each Z is a Lagrangian subspace of H∗
• symplectomorphisms Ĉφ act on them.

Definition
Let L be the set of bounded linear maps of the form

(P,Q) : H− → H∗

where P : H− → H+ and Q : H− → H− are bounded operators
satisfying P

T
P −Q

T
Q > 0 and QT P = PT Q.
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Symplectic geometry ofH∗

Two facts

• Q invertible⇒ PQ−1 ∈ S⇔ (P,Q) ∈ L.

• (P,Q)Q−1 = (PQ−1, I) has the same image as (P,Q)
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Symplectic geometry ofH∗

Invariance of L

L is invariant under bounded symplectomorphisms.

Proposition

If Ψ is a bounded symplectomorphism which preserves HR ∗ then

Ψ

(
P
Q

)
∈ L.
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Symplectic geometry ofH∗

Invertibility

Proposition

If (P,Q) ∈ L then Q has a left inverse.

Proof.
If Qv = 0 then

0 ≤ vT
(

Q
T

Q − P
T

P
)

v = −vT P
T

Pv = −‖Pv‖2.

Thus Pv = 0. This implies that vT
(

Q
T

Q − P
T

P
)

v = 0 so by the

positive-definiteness of Q
T

Q − P
T

P, v = 0. Thus Q is injective, or
equivalently Q has a left inverse.
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Symplectic geometry ofH∗

Invertibility of A

Theorem (Takhtajan and Teo 2006; S, Staubach, 2013)

Let φ : S1 → S1 be a quasisymmetry, with

Ĉφ−1 =

(
A B
B A

)
.

Then A is invertible and Z = BA
−1 ∈ S.

Note: This theorem was proven originally by Takhtajan and Teo.
However their proof uses the conformal welding theorem, so we must
provide a new one.
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Symplectic geometry ofH∗

Proof

Proof: Invertibility of A:(
A B
B A

)
·
(

0
I

)
=

(
B
A

)
∈ L.

So A has a left inverse.

Apply to φ−1 (also a quasisymmetry)

Ĉφ =

(
A

T −BT

−B
T

AT

)
.

So A
T

has a left inverse; thus A is a bounded bijection so it is invertible.
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Symplectic geometry ofH∗

Back to proof of conformal welding theorem

So now we have our f and g.
Problem: They’re holomorphic, but how do we know that they’re
one-to-one (and have quasisymmetric extensions)?

Classical function theory to the rescue: use Grunsky inequalities.

Let Z = BA
−1

.
Recall:

(B,A) ∈ L ⇒ BA
−1 ∈ S.
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Grunsky matrices and proof

Definition of Grunsky matrix

Let
g(z) = g−1z + g0 + g1z + g2z2 + · · · .

The Grunsky matrix bmn of g is defined by

log
g(z)− g(w)

z − w
=

∞∑
m,n=1

bmnzmwn.
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Grunsky matrices and proof

Grunsky matrix and welding maps

Theorem (Takhtajan and Teo, 2006)

Let f (z) = f1z + f2z2 + · · · ∈ D(D) and g = g−1z + g− where
g− ∈ D(D∗), and let φ : S1 → S1 be a quasisymmetry. Assume that
g ◦ φ = f on S1. Let

Ĉφ =

(
A B

B A

)
and Ĉφ−1 =

(
A B
B A

)
(1)

1 If g−1 6= 0, then the Grunsky matrix of g is BA−1.
2 If f1 6= 0, then the Grunsky matrix of f is BA−1.

Note: Their statement assumes that f and g are the maps in the
conformal welding theorem. However their proof only uses the
assumptions above and invertibility of g.

Eric Schippers (Manitoba) Conformal welding Rutgers 35 / 41



Grunsky matrices and proof

Grunsky matrix and welding maps

Theorem (Takhtajan and Teo, 2006)

Let f (z) = f1z + f2z2 + · · · ∈ D(D) and g = g−1z + g− where
g− ∈ D(D∗), and let φ : S1 → S1 be a quasisymmetry. Assume that
g ◦ φ = f on S1. Let
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Grunsky matrices and proof

What Grunsky inequalities do

We have that the Grunsky matrix is

Z = BA−1.

where I − ZZ is positive definite since Z ∈ S. Thus ‖Z‖ ≤ k < 1 some
k .

By a classical theorem of Pommerenke if ‖Z‖ ≤ k < 1 then g is
one-to-one and quasiconformally extendible. A bit of work shows the
same for f .
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Grunsky matrices and proof

Recap: proof of conformal welding theorem

Proof:
(1) For a quasisymmetry φ.

Ĉφ−1 =

(
A B
B A

)
is a symplectomorphism. A is invertible by symplectic linear algebra.

(2) We may find f ,g ∈ H such that f ◦ φ−1 = g using

Cφ−1 f =

(
A Bext

Bext Aext

)(
f
0

)
=

(
g+

g−

)
which has the solution

f = A−1g+ g− = Bext f .
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Grunsky matrices and proof

Proof continued

(3) Z = BA−1 is the Grunsky matrix of g under these assumptions, by
the theorem of Takhtajan and Teo.

(4) I − ZZ is positive definite since Z ∈ S. Thus ‖Z‖ ≤ k < 1 some k ,
by symplectic linear algebra.

(5) By classical function theory if ‖Z‖ ≤ k < 1 then g and f is
one-to-one and quasiconformally extendible.
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Insight and future work

Insight

What might be useful...

for CFT? Given a power series f (z) = f1z + f2z2 + · · · , there is a
matrix Z = Grunsky matrix so that ‖Z‖ < 1 implies f is one-to-one and
holomorphic on D.

for Teichmüller theory? Teichmüller space of D can be embedded in
a Siegel disk (Nag Sullivan, later Takhtajan and Teo). Can this be done
for general genus and number of boundary curves?

Takhtajan and Teo (2006) observed that the Grunsky matrices are in
the infinite Siegel disk (=space of polarizations), and that this
holomorphically embeds the Teichmüller space of D in the infinite
Siegel disk.
This is a Friedan-Shenker moduli space of rigged disks. By David’s
and my work, this means the Friedan-Shenker moduli space can be
represented this way for higher genus/ n boundary curves.
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Insight and future work

Work in progress

1 Teichmüller space of genus g with n boundary curves embeds in a
Siegel-type space (we’re done genus zero case with n
boundaries).

2 Determinant line bundle relates to graphs of these operators in a
natural way. How do properties of determinant line bundle relate
to Grunsky matrices (e.g. sewing, Kähler potential for
Weil-Petersson metric)?

3 Construct modular invariants for infinite dimensional Teichmüller
spaces.
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The end

The end

Thanks!
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