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Abstract. We give an explicit formula relating the infinitesimal generators of the
Loewner differential equation and the Hadamard variation. This is applied to estab-
lish an extension of the Hadamard variation to the case of arbitrary simply–connected
domains and to prove the existence of Loewner chains with arbitrary smooth initial
generator starting at an arbitrary univalent function which is sufficiently smooth up
to the boundary. As another application of this method, we show that every subordi-
nation chain ft is differentiable almost everywhere and satisfies a Loewner equation,
without assuming that f ′

t
(0) is continuous.

1. Introduction

The Hadamard (or Julia) variational formula for Green’s function is obtained by
varying the boundary of a sufficiently smooth domain along its normal by an amount
of fixed sign which varies from point to point. One thus obtains a chain of domains
of increasing or decreasing size, and a corresponding variational formula. On the
other hand, in the case of simply connected domains the Loewner differential equation
describes continuously increasing or decreasing families of domains using subordination
chains of the corresponding normalized conformal maps. Since Hadamard variation can
reach essentially arbitrary nearby domains, it is natural to expect a relation between
the two variational methods.

In this paper we relate the Hadamard and Loewner variations in an explicit way in
terms of their infinitesimal generators. For instance, we obtain a connection between
these two variational methods for the case that the Loewner chain is sufficiently smooth,
see Theorem 1 below. For the proof we use a generalization of the Hadamard variational
formula to arbitrary homotopies which was recently derived in [9].

This explicit relation between the two variational methods makes it possible to study
Hadamard variation from the viewpoint of Loewner’s theory and vice versa. In Section
2.2 we focus on one direction of this relation and use the Loewner equation to give
a generalization of the Hadamard formula to the case of arbitrary simply-connected
domains and a wider class of perturbations. In Section 3 and Section 4, we take
the opposite point of view and investigate the Loewner differential equation using
Hadamard variation. In Section 3, we derive in this way an existence theorem for the
Loewner partial differential equation, which says that given sufficiently smooth initial
function f0 and initial generator p of positive real part, there is a Loewner chain ft so
that in the Loewner partial differential equation

∂ft

∂t
(z) = zpt(z)

∂ft

∂z
(z)
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we have that p0 = pt. In other words one can specify not just the initial function
(as is well known) but also the initial direction. In the final Section 4 we prove a
strengthening of Pommerenke’s extension [6, 7] of the Loewner method, where we do
not require continuity of the first derivative of the mappings ft. This is achieved by
applying a variational formula for Green’s function due to Heins [2], which is closely
related to Hadamard variation.

2. Relation between the Hadamard and Loewner variations

2.1. Outward variations: the case of smoothly bounded initial domain. A
conformal map f : D → C defined on the unit disk D := {z ∈ C : |z| < 1|} is called
a normalized Riemann map if f(0) = 0 and f ′(0) > 0. Let ft : D → C, t ∈ [0, T ], be
normalized Riemann maps such that fs ≺ ft for 0 ≤ s ≤ t ≤ T (that is, fs(D) ⊂ ft(D)).
Then

ft(z) = α(t) z + . . . ,

where α : [0, T ] → (0,∞) is a monotonically increasing function. The subordination
chain ft is called a normalized subordination chain [6] or a Loewner chain [7] if

α(t) = et .

Let ft be a Loewner chain defined on the interval [0, T ] for some T .

Definition 1. We say that

(1) F : [a, b] × [0, L] → C

is a “Cm injective homotopy of closed curves” if F is injective on [a, b]×[0, L), F (t, 0) =
F (t, L) for all t ∈ [a, b], and F has a Cm extension to an open set containing [a, b]×R

which is L periodic in the second variable. We say that a subordination chain ft defined
on the interval [a, b] is Cm on [a, b] if ft has a continuous injective extension to D for
each t ∈ [a, b] and the corresponding injective homotopy

F : [a, b] × [0, 2π] → C

(t, τ) 7→ ft(e
iτ )

is Cm.

Remark 1. The “closed curves” in the above terminology are of course the curves
τ 7→ F (t, τ) for fixed t.

Up to first order, any sufficiently smooth homotopy behaves like a Hadamard vari-
ation. To make this precise we need to make some definitions. Consulting Figure 2.1
may be helpful.

Definition 2. Let F : [a, b] × [0, L] be a C2 injective homotopy of closed curves. Let
nt(τ) denote the unit outward normal to F (t, ·) at τ . For sufficiently small t − t0, let
∆nt0(t, τ) be the distance from F (t0, τ) to the curve F (t, ·) along the normal nt0(τ).
Define

νt0(τ) =
d

dt

∣

∣

∣

∣

t=t0

∆nt0(t, τ).

It is intuitively clear that for small enough t−t0, ∆nt0(t, τ) is well-defined, and hence
νt0 is well-defined. Proofs can be found in [9].
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Figure 1. Definition 2

not in general = F (t, τ)

F (t0, τ)

∆nt0(t, τ)

nt0(t, τ)

F (t, ·)

F (t0, ·)

Remark 2. It will sometimes be convenient to write νt0(u) for νt0(τ) where u is the
complex variable u = F (t0, τ) parametrizing the boundary of ft0(D). Similarly n(u) or
nu will denote the unit outward normal at u, etc.

Let gt denote Green’s function of the domain ft(D). One would expect that the first-
order variation of gt0 should behave as though the homotopy were in fact a variation
along the normal lines by the amount (t − t0)νt0(τ) at each point F (t0, τ). (This is
because the variation in the direction tangent to the boundary does not change the
domain up to first order). More precisely, we have that [9, Theorem 1]

(2) gt(z, w) − gt0(z, w) =
1

2π
(t − t0)

∫

∂Dt

∂gt0

∂nu

(u, z)
∂gt0

∂nu

(u,w)νt0(u)dsu + O(|t − t0|2)

where for convenience we denote νt0(u) = νt0(τ) for u = F (t0, τ) along the boundary
of Dt0 , su is arc length in the u variable, and nu denotes the unit outward normal at
u. The remainder term is understood to be O(|t − t0|2) uniformly on compact subsets
of Dt0 in both z and w. Furthermore the remainder term is harmonic. Differentiating

(3) ġt(z, w) =
1

2π

∫

∂Dt

∂gt

∂nu

(u, z)
∂gt

∂nu

(u,w)νt(u)dsu.

Let P denote the set of holomorphic functions p defined on D satisfying p(0) = 1
and Re(p) > 0. We now give an expression for νt in terms of the generator pt ∈ P
appearing in the Loewner equation.

Theorem 1. Let ft be a C2 Loewner chain on [a, b], and let pt be the infinitesimal
generator in the Loewner partial equation

ḟt(z) = zpt(z)f ′
t(z).

For t0 ∈ [a, b), if s denotes arc length along the boundary of ft0(D), then for the
homotopy F (t, τ) = ft(e

iτ ) we have

νt0(u) = −Re

(

1

i

f−1
t0

(u)

f−1
t0

′
(u)

pt0 ◦ f−1
t0

(u)
dū

ds

)

.

Proof. Fix u ∈ ∂ft0(D) and let z = f−1
t0

(u). Define x(t) = u + ∆nt0(u, t)nt0(u). We
claim that

lim
t→t0

Re

(

ft(z) − x(t)

t − t0
nt0(u)

)

= 0;
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Figure 2. Proof of Theorem 1

ft(z) = ft(e
iτ0)

x(t) = ft

(

eiτ(t)
)

for some τ(t)

u(t) = ft0(e
iτ0)

ft0

(

eiτ(t)
)

ft (ei ·)

ft0(e
i ·)

that is,

(4) lim
t→t0

ft(z) − x(t)

t − t0

is in the direction of the tangent to ∂Dt0 at u(s). To see this, by Definition 2

lim
t→t0

x(t) − ft0(z)

t − t0
= lim

t→t0
Re

(

∆nt0(z, t)

t − t0
nt0(u)

)

= νt0(u)nt0(u).

Since

lim
t→t0

ft(z) − ft0(z)

t − t0
= ḟt0(z)

it follows that the limit (4) exists. Next, we set z = eiτ0 , and observe that x(t) =
ft(e

iτ(t)) for some τ(t) (see Figure 2.1). Since the homotopy is C2, it follows that

lim
t→t0

ft(e
iτ0) − ft0(e

iτ0)

t − t0
= lim

t→t0

ft(e
iτ(t)) − ft0(e

iτ(t))

t − t0
= ḟt0(e

iτ0).

Thus by the existence of the limit (4) we may rearrange the terms above to get

lim
t→t0

ft(z) − x(t)

t − t0
= lim

t→t0

ft0(e
iτ0) − ft0(e

iτ(t))

t − t0

which is clearly in the direction of the tangent to ∂ft0(D). This proves the claim.
Thus

Re
(

ḟt0(z)nt0(u)
)

= lim
t→t0

Re

(

ft(z) − ft0(z)

t − t0
nt0(u)

)

= Re

((

ft(z) − x(t)

t − t0
+

x(t) − ft0(z)

t − t0

)

nt0(u)

)

= νt0(u).

The lemma now follows from the observation that the outward unit normal is given by

nt0(u) =
1

i

du

ds
.

�

Thus we have the following extension of the Hadamard variational formula.
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Corollary 1. Let ft, pt, etc. be as in Theorem 1. Let jt(z) = zpt(z). We have

ġt(z, w) = Re

(

2

πi

∫

∂Dt

∂gt

∂u
(u, z)

∂gt

∂u
(u,w)jt ◦ f−1

t (u)f ′
t ◦ f−1

t (u) du

)

Proof. Since g is constant along the boundary,

Im

(

1

i

∂gt

∂u

du

ds

)

= 0

so
∂gt

∂n
=

2

i

∂gt

∂u

du

ds
.

Thus
∂gt

∂nu

(u, z)
∂gt

∂nu

(u,w) = −4
∂gt

∂u
(u, z)

∂gt

∂u
(u,w)

(

du

ds

)2

and this expression is real. The claim follows from (2) and the fact that |du/ds| = 1. �

2.2. Extensions of the Hadamard variational formula. In this Section we clarify
to what extent the Loewner equation for the Riemann map provides an extension of
the Hadamard variational formula for Green’s function.

We first note that one can easily derive a variational formula for Green’s function
from the Loewner partial differential equation.

Theorem 2. Let ft be a Loewner chain on [0, T ], and pt ∈ P be the corresponding gen-

erator (measurable in t) in the Loewner partial differential equation ḟt(z) = zpt(z)f ′
t(z).

If gt is Green’s function of ft(D) then for almost all t ∈ [0, T ]
(5)

ġt(z, w) = −2Re

(

∂gt

∂z
(z, w)jt ◦ f−1

t (z)f ′
t ◦ f−1

t (z) +
∂gt

∂w
(z, w)jt ◦ f−1

t (w)f ′
t ◦ f−1

t (w)

)

.

Proof. Green’s function in terms of ft is

(6) gt(z, w) = − log

∣

∣

∣

∣

∣

f−1
t (z) − f−1

t (w)

1 − f−1
t (w)f−1

t (z)

∣

∣

∣

∣

∣

Differentiate and apply the Loewner equation. �

Evaluating the integral in Corollary 1 results in the formula above. It is natural
to ask whether Theorem 2 can be given in a form closer to the Hadamard variational
formula with a suitable interpretation of the integral. This is easily done as follows.

Theorem 3. If ft, pt and gt satisfy the hypotheses of Theorem 2 then

ġt(z, w) = lim
r→∞

Re

(

2

πi

∫

γr

∂gt

∂u
(u, z)

∂gt

∂u
(u,w)jt ◦ f−1

t (u)f ′
t ◦ f−1

t (u) du

)

where γr is the hyperbolic circle of radius r centred on 0 in ft(D).

Proof. Since ∂g/∂u is holomorphic in u with a simple pole at z (resp. w), for all r
large enough the above integral can be evaluated and equals the expression for ġt in
Theorem 2. �
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It is clear that Theorem 1 also holds for solutions to the inwardly directed Loewner
partial differential equation

(7) ḟt = −zpt(z)f ′
t(z),

so long as F (t, τ) = ft(e
iτ ) is a C2 injective homotopy. One simply changes the sign of

the formula:

νt0(u) = Re

(

1

i

f−1
t0

(u)

f−1
t0

′
(u)

pt0 ◦ f−1
t0

(u)
dū

ds

)

.

Equation (7) was considered by Friedland and Schiffer [3] and is sometimes called the
time-reversed Loewner equation or the Friedland-Schiffer equation. They established
the existence of solutions for any pt ∈ extP measurable in t where

extP =

{

1 + κz

1 − κz

∣

∣

∣

∣

|κ| = 1

}

and for any holomorphic initial function f0(z) on the disc. The solutions are of the
form ft(z) = f0(gt(z)) where gt(z) is a bounded univalent function on D satisfying
g0(z) = z and g′

t(0) = e−t. In particular, if f0 is univalent, then ft can be thought of as
an inwardly directed Loewner chain with initial function f0. However, their existence
proof does not rely in any way on the fact that p is of the above form, and holds for
any pt ∈ P which is measurable in t. A proof can also be found in [8].

Theorems 2 and 3 thus clearly hold with a change of sign. That is, let ft be a solution
to equation (7) on the interval [0, T ]. For almost all t ∈ [0, T ] we have that

ġt(z, w) = − lim
r→∞

Re

(

2

πi

∫

γr

∂gt

∂u
(u, z)

∂gt

∂u
(u,w)jt ◦ f−1

t (u)f ′
t ◦ f−1

t (u) du

)

(8)

= 2Re

(

∂gt

∂z
(z, w)jt ◦ f−1

t (z)f ′
t ◦ f−1

t (z) +
∂gt

∂w
(z, w)jt ◦ f−1

t (w)f ′
t ◦ f−1

t (w)

)

where γr is the hyperbolic circle of radius r centred on 0 in Dt = ft(D) and jt(z) =
zpt(z).

Remark 3. For sufficiently smooth solutions to the time-reversed Loewner equation
Corollary 1 holds with the opposite sign.

However, given the existence of solutions to the time-reversed Loewner equation (7)
for arbitrary measurable pt ∈ P, equation (8) can be stated in a stronger form using
the Herglotz representation of pt. Furthermore the quantity ∂g/∂n can be defined in a
natural way for any simply-connected domain by making use of the conformal invari-
ance of Green’s function. The idea is to “parametrize” the boundary by hyperbolic
angle, and write ∂g/∂n in terms of the Poisson kernel on D.

Let f : D → D be a normalized Riemann map. Then the hyperbolic circle γr of
radius r centred at 0 is given by θ 7→ f(Reiθ) for some R > 0, and θ can be interpreted
as the hyperbolic angle between the geodesics f(s), s ∈ [0, 1) and f(seiθ), s ∈ [0, 1).
Green’s function is constant on γr so for u = f(Reiθ) and any z ∈ D

Im

(

1

i

∂g

∂u
(u, z)

du

dθ

)

= 0
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so setting ζ = Reiθ

∂g

∂n
(ζ, z)

ds

dθ
=

2

i

∂g

∂u
(ζ, z)

du

dθ
= 2ζ

∂g

∂u
(ζ, f−1(z))f ′(ζ)(9)

= 2ζ
∂gD

∂ζ
(ζ, f−1(z))

where gD is Green’s function of D. A computation shows that

(10) lim
Rր1

2ζ
∂gD

∂ζ
(Reiθ, f−1(z)) = −Re

(

eiθ + f−1(z)

eiθ − f−1(z)

)

.

Theorem 4. Let D0 be a simply connected domain containing 0, and let µt be an
increasing function of bounded variation on [0, 2π) measurable in t on [0, T ], such that
dµt has total measure one. Then there exists a family of simply connected domains Dt

such that Dt ⊂ Ds for all s < t whose Green’s functions gt satisfy

ġt(z, w) = − 1

2π

2π
∫

0

Re

[

eiθ + f−1
t (z)

eiθ − f−1
t (z)

]

Re

[

eiθ + f−1
t (w)

eiθ − f−1
t (w)

]

dµt(θ)

for almost all t in [0, T ].

Proof. Let pt be the normalized function of positive real part associated with the mea-
sure dµt, let ft be the corresponding solution of the Friedland-Schiffer equation (7) and
let Dt = ft(D). Let γr be the hyperbolic circle of radius r centred at 0 in Dt; so γr is
the image of the Euclidean circle of radius R under ft for some R. By equation (8) for
all r large enough we have for u = ft(ζ)

ġt(z, w) = −Re

(

2

πi

∫

γr

∂gt

∂u
(u, z)

∂gt

∂u
(u,w)jt ◦ f−1

t (u)f ′
t ◦ f−1

t (u) du

)

= −Re

(

1

2πi

∫

f−1

t
◦γr

(

ζ
∂g

∂u
(ft(ζ), z)f ′

t(ζ)

)(

ζ
∂g

∂u
(ft(ζ), w)f ′

t(ζ)

)

pt(ζ)
dζ

ζ

)

.

By equation (9) the quantities in brackets are real and

ġt(z, w) = − 1

2π

∫ 2π

0

(

Reiθ ∂g

∂u
(ft(Reiθ), z)f ′

t(Reiθ)

)

·
(

Reiθ ∂g

∂u
(ft(Reiθ), w)f ′

t(Reiθ)

)

Re pt(Reiθ)dθ.

Now we can choose a sequence Rn ր 1 for which the measures Re pt(Rne
i ·) converge

in the weak∗–topology to the probability measure µt on [0, 2π] associated with pt via
Herglotz formula, and the claim follows from equation (10). �

Theorem 4 is a natural extension of the Hadamard formula (3). In the case that Dt

is smoothly bounded and pt is smooth up to the boundary, it follows from Theorem 1
that if ds denotes infinitesimal arc length then (with ζ, u, etc. as above)

ν(u)
dθ

ds
= −Re pt(ζ).
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Thus by equation (10)

ġt(z, w) = − 1

2π

2π
∫

0

Re

[

eiθ + f−1
t (z)

eiθ − f−1
t (z)

]

Re

[

eiθ + f−1
t (w)

eiθ − f−1
t (w)

]

dµt(θ)

=
1

2π

∫

∂Dt

(

∂g

∂nu

(u, z)
ds

dθ

)(

∂g

∂nu

(u,w)
ds

dθ

)

ν(u)
dθ

ds
dθ

which agrees with equation (2).

Remark 4. Theorem 3 can also be written in terms of the Herglotz representation
of pt. However, given an arbitrary increasing µt of bounded variation and unit total
measure there need not be a solution to the Loewner equation (see Example 3 ahead).

3. An Application

3.1. Existence of solutions to the Loewner partial differential equation with

prescribed initial generator. As an application of Theorem 1, we establish the exis-
tence of solutions to the Loewner equation with sufficiently smooth initial infinitesimal
generators p0 ∈ P.

Theorem 5. Let f0 : D → D0 be a one-to-one and onto holomorphic mapping such
that f0(0) = 0 ∈ D0. Assume that f0 ∈ C3(D), and that the boundary of D0 is a simple
curve. For any p ∈ P ∩ C2(D), there exists a Loewner chain ft defined on an interval
[0, T ] satisfying the Loewner partial differential equation

ḟt = zpt(z)f ′
t(z)

such that p0 = p.

The proof requires the intuitive geometric fact that for any smooth simple closed
curve there exists an interval on which a normal variation is injective.

Lemma 1. Let γ : [0, L] → C be a C2 simple closed curve with outward normal n(t).
Let K be the maximum of the curvature of γ. Let d(t1, t2) = |γ(t1)− γ(t2)|, and let M
be the minimum of d on

{ (t1, t2) |π/(5K) ≤ |t1 − t2| ≤ L/2 }.
Finally let R = min{(

√
2K)−1,M/2}. Then, the map (t, r) 7→ γ(t) + rn(t) is injective

on [0, L] × (−R,R).

Proof. (of Lemma). By [9, Lemma 2], (t, r) 7→ γ(t) + rn(t) is one-to-one on [α, β] ×
(−1/(

√
2K), 1/(

√
2K)) whenever |β − α| < π/(4K). Now assume that there exist t1

and t2 such that |t1 − t2| ≤ L/2 and γ(t1) + r1n(t1) = γ(t2) + r2n(t2) = w for |ri| < R,
i = 1, 2. It follows that |t1 − t2| > π/(5K). On the other hand, we must also have that

|γ(t1) − γ(t2)| ≤ |γ(t1) − w| + |γ(t2) − w|
= |r1| + |r2| < 2R < M

which is a contradiction. �
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Proof. (of Theorem). Let u(s) parametrize ∂D0 by arc length. Let ν(u(s)) be defined
by

ν(u(s)) = −Re

(

f−1(u(s))p ◦ f−1(u(s))f ′ ◦ f−1(u(s))
1

i

dū

ds

)

.

By setting u(s(t)) = f(eit) it is easily computed that ν(u(s)) > 0 for all s.
Consider the curve s 7→ u(s)+ν(u(s))r. Since p is in C2(D) and f ′ ∈ C2(D), ν(u(s))

is C2 and in particular uniformly bounded on [0, L]. Thus since ∂D0 is C2, by Lemma
1 the homotopy (s, r) 7→ u(s) + ν(u(s))r is injective on [0, L]× [0, T ′] for some T ′, and
furthermore since ν(u(s)) is C2 the homotopy is C2. In particular for each fixed r the
resulting curve bounds a simply connected domain Dr. Let νr(s) be as in Definition
2. It follows from Theorem 1 that ν0(s) = ν(u(s)). Note that this is not true for other
values of r.

Let f̂r : D → Dr be the conformal mapping such that f̂r(0) = 0 and f̂ ′
r(0) > 0.

We claim that the conformal radius log |f̂ ′
r(0)| is a C1 function of r. To see this, by

equation (2) we have

d

dr
gr(z, w) =

1

2π

∫

∂Dr

∂gr

∂nu

(u, z)
∂gr

∂nu

(u,w)νr(u)dsu

where νr is C1 in r and ∂gr/∂nu is C2 in r on ∂Dr. Thus

d

dr
log |f̂ ′

r(0)| =
d

dr
lim
z→0

(gr(z, 0) + log |z|) = lim
z→0

d

dr
(gr(z, 0) + log |z|)

is C1. Furthermore, since ν0(s) = ν(u(s)) one has that the derivative of the conformal
radius is 1 at r = 0. To see this we proceed as in the proof of Corollary 1:

d

dr

∣

∣

∣

∣

r=0

log |f̂ ′
r(0)| = lim

z→0

d

dr

∣

∣

∣

∣

r=0

gr(z, 0)

= lim
z→0

Re

(

2

πi

∫

∂D0

∂g0

∂u
(u, 0)

∂g0

∂u
(u, z)f−1(u)p ◦ f−1(u)f ′ ◦ f−1(u)du

)

= lim
z→0

Re
(

p ◦ f−1(z)
)

= 1.

Now choose a reparametrization of the subordination chain ft = f̂r(t) so that f ′
t(0) =

et. By the above computation dr/dt = 1. Thus

d

dt
gr(t)(z, 0)

∣

∣

∣

∣

t=0

=
d

dr

∣

∣

∣

∣

r=0

gr(z, 0)

= Re

(

2

πi

∫

∂D0

∂g0

∂u
(u, 0)

∂g0

∂u
(u, z)f−1(u)p ◦ f−1(u)f ′ ◦ f−1(u)du

)

= Re p ◦ f−1(z).

For simplicity we will denote gt = gr(t); thus ġ0(z, 0) = Re p ◦ f−1(z).
To complete the proof, let pt be the infinitesimal generator in the Loewner equation

for ft. We want to show that p0 = p. Let

ht(z) = − log
f−1

t (z)

z
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denote the unique choice of analytic completion of gt(z, 0)+log |z| satisfying Im ht(0) =
0. By the Loewner equation

ḣ0 = − 1

f−1
0

d

dt

∣

∣

∣

∣

t=0

f−1
0 = p0 ◦ f−1

0

is a holomorphic function, whose real part is

Re(ḣ0) = ġ0 = Re(p ◦ f−1
0 ).

Since p(0) = p0(0) = 1 it follows that p0 = p. �

Theorem 5 also shows that one can arbitrarily prescribe the endpoint and initial
generator in the ordinary Loewner equation, so long as these are sufficiently smooth.

Corollary 2. Let f be any univalent function on D satisfying f(0) = 0 and f ′(0) = 1
such that the boundary of f(D) is C3. Let p ∈ P ∩ C2(D). There exists a solution to
the Loewner ordinary differential equation

ẇt = −wt · pt ◦ wt

with w0(0) = 0, w′
t(0) = e−t, and p0 = p, such that

lim
t→∞

etwt(z) = f(z).

Proof. By Theorem 5 there exists a Loewner chain f̃t defined on [0, T ] with initial
generator p0 = p. By reparametrizing (and thus possibly changing T ) one can ensure

that f̃ ′
t(0) = et. Let f̂ be any normalized Loewner chain on [T,∞) starting at f̃T .

Defining ft = f̃t for t ∈ [0, T ] and ft = f̂t for t ∈ (T,∞), we have constructed
a normalized Loewner chain on [0,∞) satisfying the Loewner equation with initial
generator p0 = p. Thus wt = f−1

t ◦ f has the desired properties. �

3.2. Some examples. It is unclear to what extent the assumptions of Theorem 5 can
be weakened. The following examples put some limits on this.

For some choices of initial functions f0, there are p ∈ P for which there does not
exist a subordination chain on any interval [0, T ] so that the initial generator p0 in the
Loewner equation is equal to p.

Example 1. Let k(z) = z/(1 − z)2, kt(z) = etz/(1 − z)2 for some b > 1 and f0(z) =
k−1

t ◦ k(z). For some interval I = (−1, x0] on the real axis, f0 maps D onto D\I.
Furthermore f0 extends continuously to D, and maps some point z0 ∈ ∂D onto x0.
Assume that p ∈ P ∩C2(D), and p 6= 0 on f−1

0 (J) for some open interval J ⊂ (−1, x0).
It is clear that there is no subordination chain starting at f0 with initial generator p.

It is easy to see that one could find a similar example for which f0(∂D) is smooth.
If the boundary of f0(D) is not smooth, f−1 ·p◦f−1 ·f ′ ◦f−1 need not be continuous

even if p ∈ P ∩ C2(D).

Example 2. Set w0 = −(1 + i)/2 and let f(z) =
√

z + i + w0 where the branch of
square root is chosen so that D is contained in its domain and

√
i = (1 + i)/

√
2. Thus

f has a continuous extension mapping −i to a corner of interior angle π/2 located at
w0.
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It is easily computed that

f−1(w) = (w − w0)
2 − i and f ′ ◦ f−1(w) =

1

2(w − w0)
.

Setting p(z) = 1 + z we have

f−1(w) · p ◦ f−1(w) · f ′ ◦ f−1(w) = − 1 + i

2(w − w0)
+

1 − 2i

2
(w − w0) +

1

2
(w − w0)

3.

One would expect that for p ∈ ext(P) and f0(z) = z, the singularity of p on the
boundary would always prevent the existence a subordination chain such that ft is
differentiable in t at t = 0 and p0 = p. We have been unable to demonstrate this.
However, the following example shows that there is a choice of pt for t ∈ [0, T ] with
pt in C2(D) on (0, T ] and p0 ∈ extP, for which there is no solution to the Loewner
partial differential equation on any interval [0, T ′] with generator pt and initial point
f0(z) = z.

Example 3. Let

pt(z) =
1 + e−3tz

1 − e−3tz
.

Then the (normalized) solution ft to the Loewner equation

∂ft

∂t
= z

∂ft

∂z
pt

with f0(z) = z is

ft(z) = 1 −
√

1 − 2etz + e−2tz2 .

This function is not analytic in D for any t > 0.

It should be noted that by result of Becker [1] every solution ft to the Loewner partial
differential equation which is analytic in the disk |z| < r(t) such that etr(t) → +∞ as
t → +∞ is actually analytic in the whole unit disk (see [1, Satz 2]). Thus, if a solution
ft to the Loewner equation does not live on all of D, its domain of definition has to
shrink sufficiently fast. This makes it difficult to construct such solutions. Example 3
also shows that the assumption etr(t) → ∞ in Becker’s result is sharp in a sense.

4. A Loewner equation for general subordination chains

In [2] Heins gave an interesting derivation of the Loewner equation. His approach was
to first prove that Green’s function satisfies a kind of Loewner equation directly, and
then use this to derive the Loewner equation for the mapping function. He considered
only the special case of Loewner chains of maps onto the disc minus an arc joining the
boundary.

In this section, we will show that his approach extends to arbitrary Loewner chains.
In fact, this allows the removal of any assumption on the continuity of f ′

t(0). We will
also show that Heins’ formula agrees with Theorem 2 and thus with the Hadamard
variational formula.

Recall that a subordination chain is called normalized if ft(0) = 0 and f ′
t(0) = et.

It is shown in [6, 7] that a normalized subordination chain ft is differentiable (a.e.)
w.r.t. t and that the evolution of ft can be described with the help of a differential
equation (the Loewner equation). The differentiability is based on the fact that every
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normalized subordination chain satisfies a Lipschitz condition w.r.t. t locally uniformly
in D.

Remark 5. If ft(z) = α(t)z+· · · is a subordination chain such that α : [0, T ] → (0,∞)
is continuous, then the substitution t∗ = log α(t) introduces a new parameter and
(w.r.t. to the new parameter) yields a normalized subordination chain ft∗, see [6, 7].
Thus, if α(t) is continuous, one can select a parametrization which ensures differen-
tiability (a.e.). This is akin to Hilbert’s fifth problem, concerning the introduction of
differentiable coordinates in continuous groups.

The following theorem shows that in fact every subordination chain is differentiable
(a.e.). The proof is based on an idea of Heins [2]. The differentiability and the as-
sociated Loewner–type equation come ultimately from the monotonicity of Green’s
function gt of ft(D).

Theorem 6. Let ft : D → C, t ∈ [0, T ], be normalized Riemann maps such that
fs ≺ ft for 0 ≤ s ≤ t ≤ T . Then there exists a function pt(z) analytic in |z| < 1 and
measurable in t ∈ [0, T ] satisfying

Re pt(z) ≥ 0 , z ∈ D, t ∈ [0, T ]

and a set N ⊂ [0, T ] of measure zero such that

ḟt(z) = zpt(z) f ′
t(z) , t ∈ [0, T ]\N , z ∈ D .

The map t 7→ ft(D) is continuous on [0, T ]\N in the sense of kernel convergence.

Proof. (a) Let At := ft(D) and let gt(w) denote Green’s function of At with pole at
w = 0. Note that there exists an open disk K around w = 0, which is compactly
contained in A0 and thus in every At. By subordination, As ⊂ At for 0 ≤ s ≤ t ≤ T , so
t 7→ gt(w) is monotonically increasing for every fixed w ∈ K. If E := {wm}, w1 := 0,
is a dense countable subset of K, then there exists for every nonnegative integer m a
nullset Nm ⊆ [0, 1] such that t 7→ gt(wm) is differentiable on [0, T ]\Nm with derivative
≥ 0. Thus, for N := ∪m≥1Nm, the derivative of gt(w) w.r.t. t exists on [0, T ]\N for
every w ∈ E.

Then for each t0 ∈ [0, T ]\N the limit

(11) ht0(w) := lim
t→t0

gt(w) − gt0(w)

t − t0
exists locally uniformly in K and ht0 is a nonnegative and harmonic function in K. This
follows from the facts that the difference quotients on the right side are nonnegative
harmonic functions in K and thus form a normal family, and the limit (11) exists on a
dense subset of K.

In particular, gt(w) + log |w| → gt0(w) + log |w| locally uniformly in K as t → t0 for
every t0 6∈ N .

(b) We now show At → At0 as t → t0 for any t0 6∈ N in the sense of kernel
convergence.

The idea is simply this. We know that t 7→ gt(w) is continuous at every t0 6∈ N locally
uniformly w.r.t. w ∈ K. Using the relation of Green’s function gt to the conformal
map ft, this implies ft → ft0 locally uniformly first in a neighborhood of z = 0 and
then, by normality, in the whole of D, so At → At0 as t → t0 6∈ N .
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Fix t0 6∈ N and let Gt denote the holomorphic function in At with Re Gt(w) =
gt(w)+log |w| and Im Gt(0) = 0, that is, by the Schwarz integral formula and shrinking
K a little,

(12) Gt(w) =
1

2πi

∫

∂K

ζ + w

ζ − w

(

gt(ζ) + log |ζ|
) dζ

ζ
, w ∈ K .

In particular, Gt → Gt0 uniformly in K as t → t0 and Ġt0(w) exists uniformly in
w ∈ K. Using the relation between Green’s function gt and the conformal map ft,

f−1
t (w) = we−Gt(w) ,

we see that f−1
t → f−1

t0
uniformly in K as t → t0. By the Koebe one–quarter theorem,

there is a disk D ⊆ D such that D ⊂ f−1
t (K) for all t ∈ [0, T ]. It follows that ft → ft0

locally uniformly in D as t → t0. Since {ft : t ∈ [0, T ]} is a normal family, we deduce
that ft → ft0 locally uniformly in D as t → t0, so ft(D) → ft0(D) as t → t0 in the sense
of kernel convergence.

(c) From (a) and (b) we deduce that for any t0 ∈ [0, T ]\N the limit (11) exists locally
uniformly in At0 and ht0 is harmonic and nonnegative in At0 . Hence the function Gt0

is analytic in At0 , Ġt0(w) exists locally uniformly for w ∈ At0 and

Re Ġt0(w) = ht0(w) , w ∈ At0 .

If Ht0 denotes the analytic function in At0 with Ht0(0) = Ġt0(0) and Re Ht0(w) =
ht0(w) ≥ 0, we therefore get

Ġt0(w) = Ht0(w) , w ∈ At0 .

Since f−1
t (w) = we−Gt(w), we arrive at

d

dt

(

f−1
t

)

∣

∣

∣

∣

t=t0

(w) = −Ht0(w) f−1
t0

(w) , w ∈ At0 .

Again, the derivative w.r.t. t at t = t0 on the left side exists locally uniformly for
w ∈ At0 . This also implies that (f−1

t )′(w) is differentiable w.r.t. t at t = t0 locally
uniformly for w ∈ At0 . By the Bürmann–Lagrange formula,

(13) ft(z) =
1

2πi

∫

γ

ζ
(

f−1
t

)′
(ζ)

f−1
t (ζ) − z

dζ , |z| < r, 0 < r < 1 ,

where γ is a smooth Jordan curve in At which contains ft(|η| = r) in its interior. Thus
for fixed 0 < r < 1, since ft(D) → ft0(D) as t → t0, there is a smooth Jordan curve
γ ⊂ At0 which contains ft(|η| = r) in its interior for all t sufficiently close to t0. Hence
(13) implies that the limit

ḟt0(z) = lim
t→t0

ft(z) − ft0(z)

t − t0

exists locally uniformly in D. From f−1
t (ft(z)) = z we therefore get

ḟt0(z) = zf ′
t0
(z) Ht0(ft0(z)) , z ∈ D .

If we define
pt(z) := Ht(ft(z)) ,
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then pt(z) is analytic in |z| < 1 with nonnegative real part and measurable in [0, T ],
and we arrive at the Loewner differential equation for ft. �

Remark 6. This proof does not rely on the second coefficient estimate, distortion
theorem or growth theorem for univalent functions. It only relies on the Koebe 1/4
theorem, whose proof also does not require them (see for example [4]).

We conclude with a few observations. First, Theorem 6 generalizes Theorem 2 to
the case of an arbitrary subordination chain:

Remark 7. Let Dt be any sequence of domains parametrized by t ∈ [0, T ] such that
Dt ⊂ Ds whenever t < s. Let gt(z, w) be Green’s function for Dt. There exists a
function pt ∈ P which is measurable in t and a set N of measure zero such that

ġt(z, w) = −2Re

(

∂gt

∂z
(z, w)jt ◦ f−1

t (z)f ′
t ◦ f−1

t (z) +
∂gt

∂w
(z, w)jt ◦ f−1

t (w)f ′
t ◦ f−1

t (w)

)

,

where jt(z) = zpt(z), for any t ∈ [0, T ]\N . Furthermore gt(z, w) + log |z − w| →
gt0(z, w) + log |z − w| locally uniformly for all t0 ∈ [0, T ]\N .

Proof. Differentiate equation (6) using Theorem 6. �

Remark 8. Remark 7 (and thus Theorem 2) agree with Heins’ Loewner equation for
Green’s function. To see this, set w = 0 in the above formula. In that case, by equation
(6)

∂g

∂z
(z, 0) = − f−1

t

′
(z)

2f−1
t (z)

.

Thus since jt(0) = 0 and ft(0) = 0 we have

ġt(z, 0) = −Re
(

pt ◦ f−1
t (z)

)

.

This is Heins’ formula (see equations (2) and (3) in [2]).

Remark 9. Theorem 6 shows that the assumption that dµt have unit total measure
can be removed from Theorem 4.
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