The Weil-Petersson metric on a Teichmüller space of bordered surfaces

Eric Schippers

Department of Mathematics University of Manitoba Winnipeg, Canada

AMS meeting Lubbock 2014

Joint with

Joint with

David Radnell (American University of Sharjah)

Wolfgang Staubach (Uppsala Universitet)

Eric Schippers (Manitoba)

Blanket assumptions

In this talk we consider Riemann surfaces Σ with:

- g handles, $g \ge 0$
- a border (in the sense of e.g. Ahlfors and Sario)
- I boundary components, each homeomorphic to S¹

Call this "type (g, n) bordered Riemann surface".

we also assume

1
$$2g - 2 + n > 0$$

2 Σ has a hyperbolic metric; i.e. covered by the disc.

Notation $\mathbb{D} = \{|z| < 1\}$ and $\mathbb{D}^* = \{|z| > 1\} \cup \{\infty\}$

Definition of Teichmüller space

Definition

Fix a Riemann surface Σ . Its Teichmüller space $T(\Sigma)$ is

 $\{(\Sigma, f, \Sigma_1)\}/\sim$

where $f: \Sigma \to \Sigma_1$ is quasiconformal and

Definition of Teichmüller space

Definition

Fix a Riemann surface Σ . Its Teichmüller space $T(\Sigma)$ is

 $\{(\Sigma, f, \Sigma_1)\}/\sim$

where $f: \Sigma \to \Sigma_1$ is quasiconformal and

$$(\Sigma, \textit{f}_1, \Sigma_1) \sim (\Sigma, \textit{f}_2, \Sigma_2)$$

if there's a biholomorphism $\sigma : \Sigma_1 \to \Sigma_2$ such that $f_2^{-1} \circ \sigma \circ f_1$ is homotopic to the identity rel boundary.

Definition of Teichmüller space

Definition

Fix a Riemann surface Σ . Its Teichmüller space $T(\Sigma)$ is

 $\{(\Sigma, f, \Sigma_1)\}/\sim$

where $f: \Sigma \to \Sigma_1$ is quasiconformal and

$$(\Sigma, \textit{f}_1, \Sigma_1) \sim (\Sigma, \textit{f}_2, \Sigma_2)$$

if there's a biholomorphism $\sigma : \Sigma_1 \to \Sigma_2$ such that $f_2^{-1} \circ \sigma \circ f_1$ is homotopic to the identity rel boundary.

rel boundary means the homotopy is the identity map on the boundary of Σ .

Eric Schippers (Manitoba)

Weil-Petersson metric

Differentials

A (*k*, *I*)-differential given in local coordinates *z* by $\alpha(z)$ transforms under biholomorphic change of parameter z = g(w) according to

$$\alpha(z) = \tilde{\alpha}(g(w))g'(w)^k \overline{g'(w)}'.$$

Often it is written $\alpha(z)dz^kd\bar{z}^l$.

Differentials

A (*k*, *l*)-differential given in local coordinates *z* by $\alpha(z)$ transforms under biholomorphic change of parameter z = g(w) according to

$$\alpha(z) = \tilde{\alpha}(g(w))g'(w)^k \overline{g'(w)}'.$$

Often it is written $\alpha(z)dz^k d\bar{z}^l$.

Useful fact: you may multiply and divide differentials.

$$\alpha(z)dz^kd\bar{z}' \times \beta(z)dz^md\bar{z}' \to \alpha(z)\beta(z)dz^{k+m}d\bar{z}^{l+n}.$$

The right hand side transforms correctly! We will write $\alpha \cdot \beta$ for short.

Eric Schippers (Manitoba)

Example 1 A function on Σ is a (0,0)-differential.

Example 1 A function on Σ is a (0,0)-differential.

Example 2 The hyperbolic metric $\lambda_{\Sigma}^2 = \lambda(z)^2 |dz|^2$ on Σ is a (1, 1)-differential.

Example 1 A function on Σ is a (0,0)-differential.

Example 2 The hyperbolic metric $\lambda_{\Sigma}^2 = \lambda(z)^2 |dz|^2$ on Σ is a (1, 1)-differential.

Example 3 A quadratic differential is a holomorphic/meromorphic (2,0) differential.

Example 1 A function on Σ is a (0,0)-differential.

Example 2 The hyperbolic metric $\lambda_{\Sigma}^2 = \lambda(z)^2 |dz|^2$ on Σ is a (1, 1)-differential.

Example 3 A quadratic differential is a holomorphic/meromorphic (2,0) differential.

Example 4 A Beltrami differential is a (-1, 1)-differential.

Example 1 A function on Σ is a (0,0)-differential.

Example 2 The hyperbolic metric $\lambda_{\Sigma}^2 = \lambda(z)^2 |dz|^2$ on Σ is a (1, 1)-differential.

Example 3 A quadratic differential is a holomorphic/meromorphic (2,0) differential.

Example 4 A Beltrami differential is a (-1, 1)-differential.

Example 5

 $\Omega_{-1,1}(\Sigma) = \{\lambda_{\Sigma}^{-2}\overline{\alpha} \, : \, \alpha \text{ holo } (2,0) - \text{diff and } \|\lambda_{\Sigma}^{-2}\overline{\alpha}\|_{\infty} < \infty\}$

Tangent space to Teichmüller space

Let Φ be the map into the solution to the Beltrami equation:

$$\begin{split} \Phi : L^{\infty}_{-1,1}(\Sigma)_1 &\to T(\Sigma) \\ \mu &\mapsto [\Sigma, f, \Sigma_1] \qquad \text{where } \overline{\partial} f = \mu \partial f. \end{split}$$

 $L^{p}_{-1,1}(\Sigma)$ is the space of L^{p} Beltrami differentials (with respect to hyperbolic area measure). $L^{p}_{-1,1}(\Sigma)_{1}$ is the unit ball.

Tangent space to Teichmüller space

Let Φ be the map into the solution to the Beltrami equation:

$$\begin{split} \Phi &: L^{\infty}_{-1,1}(\Sigma)_1 \to \mathcal{T}(\Sigma) \\ \mu &\mapsto [\Sigma, f, \Sigma_1] \qquad \text{where } \overline{\partial} f = \mu \partial f. \end{split}$$

 $L^{p}_{-1,1}(\Sigma)$ is the space of L^{p} Beltrami differentials (with respect to hyperbolic area measure).

 $L^{p}_{-1,1}(\Sigma)_1$ is the unit ball. **Classical facts**:

•
$$L_{-1,1}(\Sigma) = \operatorname{ker} D\Phi_{id} \oplus \Omega_{-1,1}(\Sigma).$$

Φ is holomorphic.

 $\ \ \, \bullet|_{\Omega_{-1,1}(\Sigma)} \text{ is biholomorphic on a small enough ball.}$

Tangent space to Teichmüller space

Let Φ be the map into the solution to the Beltrami equation:

$$\begin{split} \Phi &: L^{\infty}_{-1,1}(\Sigma)_1 \to \mathcal{T}(\Sigma) \\ \mu &\mapsto [\Sigma, f, \Sigma_1] \qquad \text{where } \overline{\partial} f = \mu \partial f. \end{split}$$

 $L^{p}_{-1,1}(\Sigma)$ is the space of L^{p} Beltrami differentials (with respect to hyperbolic area measure).

 $L^{p}_{-1,1}(\Sigma)_1$ is the unit ball. **Classical facts**:

•
$$L_{-1,1}(\Sigma) = \operatorname{ker} D\Phi_{id} \oplus \Omega_{-1,1}(\Sigma).$$

Φ is holomorphic.

 $\ \ \, \bullet|_{\Omega_{-1,1}(\Sigma)} \text{ is biholomorphic on a small enough ball.}$

So $\Omega_{-1,1}(\Sigma)$ is the tangent space at $id = [\Sigma, id, \Sigma]$.

Weil-Petersson

For $\phi, \psi \in \Omega_{-1,1}(\Sigma)$ we define the Weil-Petersson pairing

$$\langle \phi, \psi
angle = \iint_{\Sigma} \phi \overline{\psi} d {\sf A}_{\Sigma}$$

where dA_{Σ} is hyperbolic area measure.

Weil-Petersson

For $\phi, \psi \in \Omega_{-1,1}(\Sigma)$ we define the Weil-Petersson pairing

$$\langle \phi, \psi
angle = \iint_{\Sigma} \phi \overline{\psi} dA_{\Sigma}$$

where dA_{Σ} is hyperbolic area measure.

But why should it converge? It converges in the compact case... what else?

Weil-Petersson

For $\phi, \psi \in \Omega_{-1,1}(\Sigma)$ we define the Weil-Petersson pairing

$$\langle \phi, \psi
angle = \iint_{\Sigma} \phi \overline{\psi} dA_{\Sigma}$$

where dA_{Σ} is hyperbolic area measure.

But why should it converge? It converges in the compact case... what else?

Example: $T(\mathbb{D})$ is the universal Teichmüller space; can be modelled by $QS(\mathbb{S}^1)/M\"ob(\mathbb{S}^1)$ ($QS(\mathbb{S}^1)$ = quasisymmetries of circle). Nag and Verjovsky showed that for $T(\mathbb{D})$ (the universal Teichmüller space), the Weil-Petersson metric does not converge; only for smooth quasisymmetries.

Eric Schippers (Manitoba)

Who cares about the Weil-Petersson metric?

Why is it interesting?

- geometry of Teichmüller space described by this metric (e.g. Wolpert, relation to geodesic length functions; Masur and Wolf, isometries of WP metric are the mapping class group)
- relates to spectral theory of the Laplacian (e.g. Wolpert, Takhtajan and Zograf, Takhtajan and Teo)
- and index theorems for families of $\bar{\partial}$ operators and Quillen determinant line bundle (e.g. Wolpert, Biswas and Schumacher, Takhtajan and Zograf)

Key point: does not converge on general Teichmüller spaces.

Who cares about the Weil-Petersson metric?

Why is it interesting?

- geometry of Teichmüller space described by this metric (e.g. Wolpert, relation to geodesic length functions; Masur and Wolf, isometries of WP metric are the mapping class group)
- relates to spectral theory of the Laplacian (e.g. Wolpert, Takhtajan and Zograf, Takhtajan and Teo)
- and index theorems for families of $\bar{\partial}$ operators and Quillen determinant line bundle (e.g. Wolpert, Biswas and Schumacher, Takhtajan and Zograf)

Key point: does not converge on general Teichmüller spaces. Our interest: determinant line bundle of certain elliptic operators and CFT, index theorems in the 2D conformal setting.

Some literature

Recall: every element $\gamma \in QS(\mathbb{S}^1)$ can be represented as $g^{-1} \circ f$ for univalent quasiconformally extendible maps $f : \mathbb{D} \to \mathbb{C}$ and $g : \mathbb{D}^* \to \mathbb{C}$.

Definition

$$T_{WP}(\mathbb{D}) = \left\{ [\gamma] : \iint_{\mathbb{D}} \left| \frac{f''}{f'} \right|^2 < \infty
ight\}.$$

Call such a quasisymmetric map a "Weil-Petersson class" quasisymmetry.

Some literature

Recall: every element $\gamma \in QS(\mathbb{S}^1)$ can be represented as $g^{-1} \circ f$ for univalent quasiconformally extendible maps $f : \mathbb{D} \to \mathbb{C}$ and $g : \mathbb{D}^* \to \mathbb{C}$.

Definition

$$T_{WP}(\mathbb{D}) = \left\{ [\gamma] : \iint_{\mathbb{D}} \left| \frac{f''}{f'} \right|^2 < \infty
ight\}.$$

Call such a quasisymmetric map a "Weil-Petersson class" quasisymmetry.

- Guizhen Cui showed that every quasisymmetry has a quasiconformal extension to D such that Beltrami differential is in L². Defined "Weil-Petersson class" Teichmüller space above (w different terminology). Weil-Petersson metric converges.
- Guo Hui extended some of these results to L^p.

Literature continued

- Leon Takhtajan and Lee-Peng Teo independently gave the same definition and also showed that
 - $T_{WP}(\mathbb{D})$ is a topological group (a Hilbert manifold)
 - gave potentials for WP-metric in terms of Grunsky operator
 - sewing formulas for Laplacian, etc. etc.
- Yuliang Shen showed that these quasisymmetries are precisely those such that γ is absolutely continuous and log γ' ∈ H^{1/2}.

Literature continued

- Leon Takhtajan and Lee-Peng Teo independently gave the same definition and also showed that
 - $T_{WP}(\mathbb{D})$ is a topological group (a Hilbert manifold)
 - gave potentials for WP-metric in terms of Grunsky operator
 - sewing formulas for Laplacian, etc. etc.
- Yuliang Shen showed that these quasisymmetries are precisely those such that γ is absolutely continuous and log γ' ∈ H^{1/2}.

Advice to young function theorists: read Takhtajan and Teo.

Weil-Petersson class quasisymmetries

Boundary curves: $\partial_i \Sigma \ i = 1, ..., n$. A **collar chart** is a biholomorphism $H : A_i \rightarrow \{1 < |z| < r\}$ where A_i is a doubly-connected neighbourhood of $\partial_i \Sigma$.

Definition

Let Σ and Σ_1 of type (g, n) be Riemann surfaces, and γ and γ_1 boundary curves. $\phi : \gamma \to \gamma_1$ is a **Weil-Petersson class quasisymmetry** if $H \circ \phi \circ H_1^{-1}$ is a WP-class quasisymmetry for collar charts H and H_1 of γ and γ_1 .

Weil-Petersson class Teichmüller space

Definition

Let Σ be a Riemann surface of type (g, n). The Weil-Petersson class Teichmüller space is

 $T_{WP}(\Sigma) = \{(\Sigma, f, \Sigma_1) : f|_{\partial_i \Sigma} \text{ WP-class quasisymmetry for all } i\}/ \sim .$

Weil-Petersson class Teichmüller space

Definition

Let Σ be a Riemann surface of type (g, n). The Weil-Petersson class Teichmüller space is

 $T_{WP}(\Sigma) = \{(\Sigma, f, \Sigma_1) : f|_{\partial_i \Sigma} \text{ WP-class quasisymmetry for all } i\}/ \sim .$

Theorem (Radnell, S, Staubach 1 (submitted))

 $T_{WP}(\Sigma)$ is a second countable, Hausdorff topological space, with an atlas of charts making it a Hilbert manifold.

Theorem (Radnell, S, Staubach 1 (submitted)) The inclusion map $T_{WP}(\Sigma) \hookrightarrow T(\Sigma)$ is holomorphic.

Long painful story for another day.

Eric Schippers (Manitoba)

Weil-Petersson metric

Representatives

Theorem (Radnell, S, Staubach 2 (submitted))

Let Σ and Σ_1 be bordered Riemann surfaces of type (g, n). Let $f : \Sigma \to \Sigma_1$ be such that the boundary values are WP-class quasisymmetries. There exists a quasiconformal $\hat{f} : \Sigma \to \Sigma_1$ such that **1** \hat{f} is homotopic to f rel boundary (so $[\Sigma, f, \Sigma_1] = [\Sigma, \hat{f}, \Sigma_1]$)

2) \hat{f} has L^2 Beltrami differential.

This generalizes the theorem of Guo Hui and Guizhen Cui.

Representatives

Theorem (Radnell, S, Staubach 2 (submitted))

Let Σ and Σ_1 be bordered Riemann surfaces of type (g, n). Let $f : \Sigma \to \Sigma_1$ be such that the boundary values are WP-class quasisymmetries. There exists a quasiconformal $\hat{f} : \Sigma \to \Sigma_1$ such that **1** \hat{f} is homotopic to f rel boundary (so $[\Sigma, f, \Sigma_1] = [\Sigma, \hat{f}, \Sigma_1]$)

I f has L² Beltrami differential.

This generalizes the theorem of Guo Hui and Guizhen Cui. In fact

Theorem (Radnell, S, Staubach 3 (submitted))

Let $[\Sigma, f_t, \Sigma_t]$ be a holomorphic curve through Id in $T_{WP}(\Sigma)$. For small t representatives can be chosen so that f_t has Beltrami differential in $L^2(\Sigma)$ and $t \mapsto \mu(f_t)$ is holomorphic both in $L^2_{-1,1}(\Sigma)$ and $L^{\infty}_{-1,1}(\Sigma)$.

Hey wait a minute...

Why isn't all this easy? Σ is covered by \mathbb{D} . Just lift everything to the cover, and use the results of Hui, Cui, Takhtajan and Teo etc...

Hey wait a minute...

Why isn't all this easy? Σ is covered by \mathbb{D} . Just lift everything to the cover, and use the results of Hui, Cui, Takhtajan and Teo etc...

Nope! For a fundamental domain $F \subset \mathbb{D}$, if a Beltrami differential has non-zero L^2 norm on $F \cong \Sigma$, then it has infinite L^2 norm on \mathbb{D} .

... unlike the L^{∞} norm.

Hey wait a minute...

Why isn't all this easy? Σ is covered by \mathbb{D} . Just lift everything to the cover, and use the results of Hui, Cui, Takhtajan and Teo etc...

Nope! For a fundamental domain $F \subset \mathbb{D}$, if a Beltrami differential has non-zero L^2 norm on $F \cong \Sigma$, then it has infinite L^2 norm on \mathbb{D} .

... unlike the L^{∞} norm.

So there is quite a bit of work involved. Involves our CFT/Teichmüller space correspondence in an essential way.

Tangent space

Now $L^2(\Sigma) \cap L^{\infty}_{-1,1}(\Sigma)_1$ is not a particularly nice space (this problem already exists for $T_{WP}(\mathbb{D})$ - i.e. we didn't create it).

Definition

$$H_{-1,1}(\Sigma) = \left\{ \beta = \lambda_{\Sigma}^{-2} \overline{\alpha} : \alpha \text{ holo } (2,0) - \text{diff and } \iint_{\Sigma} |\beta|^2 \, dA_{\Sigma} < \infty \right\}$$

Tangent space

Now $L^2(\Sigma) \cap L^{\infty}_{-1,1}(\Sigma)_1$ is not a particularly nice space (this problem already exists for $T_{WP}(\mathbb{D})$ - i.e. we didn't create it).

Definition

$$H_{-1,1}(\Sigma) = \left\{ \beta = \lambda_{\Sigma}^{-2} \overline{\alpha} : \alpha \text{ holo } (2,0) - \text{diff and } \iint_{\Sigma} |\beta|^2 \, dA_{\Sigma} < \infty \right\}$$

Theorem (Radnell, S, Staubach 3 (submitted))

Let **v** be a tangent vector at the identity $[\Sigma, id, \Sigma]$ of $T_{WP}(\Sigma)$. There is a holomorphic curve $[\Sigma, f_t, \Sigma_t]$ in $T_{WP}(\Sigma)$ tangent to **v** at t = 0.

Model of tangent space

Recall Φ takes a Beltrami differential μ to the Teichmüller space element [Σ , f, Σ_1] (where $\bar{\partial}f = \mu \partial f$).

Theorem (Radnell, S, Staubach 3 (submitted))

$$L^{\infty}_{-1,1}(\Sigma) \cap L^{2}_{-1,1}(\Sigma) = ker D\Phi_{id}|_{L^{2}_{-1,1}(\Sigma)} \oplus H_{-1,1}(\Sigma).$$

Model of tangent space

Recall Φ takes a Beltrami differential μ to the Teichmüller space element [Σ , f, Σ_1] (where $\bar{\partial}f = \mu \partial f$).

Theorem (Radnell, S, Staubach 3 (submitted))

$$L^{\infty}_{-1,1}(\Sigma) \cap L^{2}_{-1,1}(\Sigma) = ker D\Phi_{id}|_{L^{2}_{-1,1}(\Sigma)} \oplus H_{-1,1}(\Sigma).$$

Theorem (Radnell, S, Staubach 3 (submitted))

For a small enough ball $0 \in B \subset H_{-1,1}(\Sigma)$, $\Phi : B \to T_{WP}(\Sigma)$ is a biholomorphism onto its image.

In fact, you can get an atlas of charts this way using the change of base point map.

Eric Schippers (Manitoba)

Convergence of Weil-Petersson metric

In summary: $H_{-1,1}(\Sigma)$ is the tangent space at *id* of $T_{WP}(\Sigma)$.

In the case of $\Sigma = \mathbb{D}$ this is due to Takhtajan and Teo.

Convergence of Weil-Petersson metric

In summary: $H_{-1,1}(\Sigma)$ is the tangent space at *id* of $T_{WP}(\Sigma)$.

In the case of $\Sigma = \mathbb{D}$ this is due to Takhtajan and Teo.

Corollary (Radnell, S, Staubach 3 (submitted)) The Weil-Petersson metric converges on $T_{WP}(\Sigma)$.

Remark: away from the identity you can describe the tangent space using the change of base point map. Left this out to simplify the talk.

The end!!

Thanks!

Eric Schippers (Manitoba)

Weil-Petersson metric

AMS meeting Lubbock 2014 19 / 21

References one

- Biswas, I. and Schumacher, G. Determinant bundle, Quillen metric, and Petersson-Weil form on moduli spaces. Geom. Fun. Analy. 9 (1999) 226–255.
- G. Cui, Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces, Sci. China Ser. A 43 (2000), no. 3, 267–279.
- Hui, G. Integrable Teichmüller spaces, Sci. China Ser. A **43** (2000), no 1, 47–58.
- Nag, S. and Verjovsky, A. Diff(S¹) and the Teichmüller spaces, Comm. Math. Phys. **130** (1990), no. 1, 123–138.
- Masur, H. and Wolf, M. The WeilŰPetersson Isometry Group. Geometriae Dedicata 93 no 1. (2002) 177–190.
- Radnell, D., Schippers, E., and Staubach, W. (1) A Hilbert manifold structure on the Weil-Petersson class Teichmüller space of bordered Riemann surfaces, Preprint (2014).

Eric Schippers (Manitoba)

Weil-Petersson metric

References two

- Radnell, D., Schippers, E., and Staubach, W. (2) Quasiconformal maps of bordered Riemann surfaces with L² Beltrami differentials, Preprint (2014).
- Radnell, D., Schippers, E., and Staubach, W. (3) Convergence of the Weil-Petersson metric on the Teichmüller space of bordered Riemann surfaces, Preprint (2014).
- Takhtajan, L. and Teo, L.-P. *Weil-Petersson metric on the universal Teichmüller space*, Mem. Amer. Math. Soc. **183** (2006), no. 861.
- Takhtajan, L. and Zograf, P. A local index theorem for families of dbar operators on punctured Riemann surfaces and a new Kahler metric on their moduli spaces. Commun. Math. Phys. 137 (1991) 399–426.
- Wolpert, S. *Chern forms and the Riemann tensor for the moduli space of curves.* Invent. Math. **85** (1986) 119–145.