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Teichmüller space

Blanket assumptions

In this talk we consider Riemann surfaces Σ with:
1 g handles, g ≥ 0
2 a border (in the sense of e.g. Ahlfors and Sario)
3 n boundary components, each homeomorphic to S1

Call this “type (g,n) bordered Riemann surface”.

we also assume
1 2g − 2 + n > 0
2 Σ has a hyperbolic metric; i.e. covered by the disc.

Notation D = {|z| < 1} and D∗ = {|z| > 1} ∪ {∞}
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Teichmüller space

Definition of Teichmüller space

Definition
Fix a Riemann surface Σ. Its Teichmüller space T (Σ) is

{(Σ, f ,Σ1)}/ ∼

where f : Σ→ Σ1 is quasiconformal and

(Σ, f1,Σ1) ∼ (Σ, f2,Σ2)

if there’s a biholomorphism σ : Σ1 → Σ2 such that f−1
2 ◦ σ ◦ f1 is

homotopic to the identity rel boundary.

rel boundary means the homotopy is the identity map on the
boundary of Σ.
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Teichmüller space

Differentials

A (k , l)-differential given in local coordinates z by α(z) transforms
under biholomorphic change of parameter z = g(w) according to

α(z) = α̃(g(w))g′(w)kg′(w)
l
.

Often it is written α(z)dzkdz̄ l .

Useful fact: you may multiply and divide differentials.

α(z)dzkdz̄ l × β(z)dzmdz̄ l → α(z)β(z)dzk+mdz̄ l+n.

The right hand side transforms correctly!
We will write α · β for short.
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Teichmüller space

Examples

Example 1 A function on Σ is a (0,0)-differential.

Example 2 The hyperbolic metric λ2
Σ = λ(z)2|dz|2 on Σ is a

(1,1)-differential.

Example 3 A quadratic differential is a holomorphic/meromorphic
(2,0) differential.

Example 4 A Beltrami differential is a (−1,1)-differential.

Example 5

Ω−1,1(Σ) = {λ−2
Σ α : α holo (2,0)− diff and ‖λ−2

Σ α‖∞ <∞}
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Weil-Petersson metric

Tangent space to Teichmüller space

Let Φ be the map into the solution to the Beltrami equation:

Φ : L∞−1,1(Σ)
1
→ T (Σ)

µ 7→ [Σ, f ,Σ1] where ∂f = µ∂f .

Lp
−1,1(Σ) is the space of Lp Beltrami differentials (with respect to

hyperbolic area measure).
Lp
−1,1(Σ)1 is the unit ball.

Classical facts:
1 L−1,1(Σ) = kerDΦid ⊕ Ω−1,1(Σ).
2 Φ is holomorphic.
3 Φ|Ω−1,1(Σ) is biholomorphic on a small enough ball.

So Ω−1,1(Σ) is the tangent space at id = [Σ, id,Σ].
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Weil-Petersson metric

Weil-Petersson

For φ, ψ ∈ Ω−1,1(Σ) we define the Weil-Petersson pairing

〈φ, ψ〉 =

∫∫
Σ
φψdAΣ

where dAΣ is hyperbolic area measure.

But why should it converge? It converges in the compact case... what
else?

Example: T (D) is the universal Teichmüller space; can be modelled
by QS(S1)/Möb(S1) (QS(S1) = quasisymmetries of circle).
Nag and Verjovsky showed that for T (D) (the universal Teichmüller
space), the Weil-Petersson metric does not converge; only for smooth
quasisymmetries.
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Weil-Petersson metric

Who cares about the Weil-Petersson metric?

Why is it interesting?

1 geometry of Teichmüller space described by this metric (e.g.
Wolpert, relation to geodesic length functions; Masur and Wolf,
isometries of WP metric are the mapping class group)

2 relates to spectral theory of the Laplacian (e.g. Wolpert, Takhtajan
and Zograf, Takhtajan and Teo)

3 and index theorems for families of ∂̄ operators and Quillen
determinant line bundle (e.g. Wolpert, Biswas and Schumacher,
Takhtajan and Zograf)

Key point: does not converge on general Teichmüller spaces.

Our interest: determinant line bundle of certain elliptic operators and
CFT, index theorems in the 2D conformal setting.
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Weil-Petersson metric

Some literature

Recall: every element γ ∈ QS(S1) can be represented as g−1 ◦ f for
univalent quasiconformally extendible maps f : D→ C and g : D∗ → C.

Definition

TWP(D) =

{
[γ] :

∫∫
D

∣∣∣∣ f ′′f ′
∣∣∣∣2 <∞

}
.

Call such a quasisymmetric map a “Weil-Petersson class”
quasisymmetry.

Guizhen Cui showed that every quasisymmetry has a
quasiconformal extension to D such that Beltrami differential is in
L2. Defined “Weil-Petersson class” Teichmüller space above (w
different terminology). Weil-Petersson metric converges.
Guo Hui extended some of these results to Lp.
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Weil-Petersson metric

Literature continued

Leon Takhtajan and Lee-Peng Teo independently gave the same
definition and also showed that

TWP(D) is a topological group (a Hilbert manifold)
gave potentials for WP-metric in terms of Grunsky operator
sewing formulas for Laplacian, etc. etc.

Yuliang Shen showed that these quasisymmetries are precisely
those such that γ is absolutely continuous and log γ′ ∈ H1/2.

Advice to young function theorists: read Takhtajan and Teo.
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Results

Weil-Petersson class quasisymmetries

Boundary curves: ∂iΣ i = 1, . . . ,n.
A collar chart is a biholomorphism H : Ai → {1 < |z| < r} where Ai is
a doubly-connected neighbourhood of ∂iΣ.

Definition
Let Σ and Σ1 of type (g,n) be Riemann surfaces, and γ and γ1
boundary curves. φ : γ → γ1 is a Weil-Petersson class
quasisymmetry if H ◦ φ ◦ H−1

1 is a WP-class quasisymmetry for collar
charts H and H1 of γ and γ1.

Eric Schippers (Manitoba) Weil-Petersson metric AMS meeting Lubbock 2014 12 / 21



Results

Weil-Petersson class Teichmüller space

Definition
Let Σ be a Riemann surface of type (g,n). The Weil-Petersson class
Teichmüller space is

TWP(Σ) = {(Σ, f ,Σ1) : f |∂i Σ
WP-class quasisymmetry for all i}/ ∼ .

Theorem (Radnell, S, Staubach 1 (submitted))

TWP(Σ) is a second countable, Hausdorff topological space, with an
atlas of charts making it a Hilbert manifold.

Theorem (Radnell, S, Staubach 1 (submitted))

The inclusion map TWP(Σ) ↪→ T (Σ) is holomorphic.

Long painful story for another day.
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Results

Representatives

Theorem (Radnell, S, Staubach 2 (submitted))

Let Σ and Σ1 be bordered Riemann surfaces of type (g,n). Let
f : Σ→ Σ1 be such that the boundary values are WP-class
quasisymmetries. There exists a quasiconformal f̂ : Σ→ Σ1 such that

1 f̂ is homotopic to f rel boundary (so [Σ, f ,Σ1] = [Σ, f̂ ,Σ1])
2 f̂ has L2 Beltrami differential.

This generalizes the theorem of Guo Hui and Guizhen Cui.

In fact

Theorem (Radnell, S, Staubach 3 (submitted))

Let [Σ, ft ,Σt ] be a holomorphic curve through Id in TWP(Σ). For small t
representatives can be chosen so that ft has Beltrami differential in
L2(Σ) and t 7→ µ(ft ) is holomorphic both in L2

−1,1(Σ) and L∞−1,1(Σ).
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Results

Hey wait a minute...

Why isn’t all this easy? Σ is covered by D. Just lift everything to the
cover, and use the results of Hui, Cui, Takhtajan and Teo etc...

Nope! For a fundamental domain F ⊂ D, if a Beltrami differential has
non-zero L2 norm on F ∼= Σ, then it has infinite L2 norm on D.

... unlike the L∞ norm.

So there is quite a bit of work involved. Involves our CFT/Teichmüller
space correspondence in an essential way.
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Results

Tangent space

Now L2(Σ) ∩ L∞−1,1(Σ)1 is not a particularly nice space (this problem
already exists for TWP(D) - i.e. we didn’t create it).

Definition

H−1,1(Σ) =

{
β = λ−2

Σ α : α holo (2,0)− diff and
∫∫

Σ
|β|2 dAΣ <∞

}
}

Theorem (Radnell, S, Staubach 3 (submitted))

Let v be a tangent vector at the identity [Σ, id ,Σ] of TWP(Σ). There is a
holomorphic curve [Σ, ft ,Σt ] in TWP(Σ) tangent to v at t = 0.
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Results

Model of tangent space

Recall Φ takes a Beltrami differential µ to the Teichmüller space
element [Σ, f ,Σ1] (where ∂̄f = µ∂f ).

Theorem (Radnell, S, Staubach 3 (submitted))

L∞−1,1(Σ) ∩ L2
−1,1(Σ) = ker DΦid |L2

−1,1(Σ) ⊕ H−1,1(Σ).

Theorem (Radnell, S, Staubach 3 (submitted))

For a small enough ball 0 ∈ B ⊂ H−1,1(Σ), Φ : B → TWP(Σ) is a
biholomorphism onto its image.

In fact, you can get an atlas of charts this way using the change of
base point map.
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Results

Convergence of Weil-Petersson metric

In summary: H−1,1(Σ) is the tangent space at id of TWP(Σ).

In the case of Σ = D this is due to Takhtajan and Teo.

Corollary (Radnell, S, Staubach 3 (submitted))

The Weil-Petersson metric converges on TWP(Σ).

Remark: away from the identity you can describe the tangent space
using the change of base point map. Left this out to simplify the talk.
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Results

The end!!

Thanks!
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Results
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