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Abstract. For a Riemann surface of genus g with n punctures, consider the class of n-
tuples of conformal mappings (φ1, . . . , φn) each taking 0 to a puncture. Assume further that
the pre-Schwarzians of each φi is in the Bergman space and the extensions to the closure
of the disk do not intersect. We show that the class of such non-overlapping mappings is a
complex Hilbert manifold.

1. Introduction

Let Σ be a Riemann surface of genus g with n ordered punctures pi. We consider the set
of n-tuples of conformal maps (φ1, . . . , φn) from the unit disk D = {z : |z| < 1} into Σ,
such that φi(0) = pi for each i = 1, . . . , n. We assume that these maps have quasiconformal
extensions to an open neighbourhood to the closure of D, and have pre-Schwarzians in the
Bergman space. We furthermore assume that the closures of the images do not overlap. We
will refer to such an n-tuple of as a Weil-Petersson class rigging and denote the set of such
mappings by Oqc

WP(Σ). We show that the set of such mappings is a complex Hilbert manifold.
There are two motivations for this result. The first comes from Teichmüller theory. The

results of this paper can be used to construct a quasiconformal Teichmüller space of genus
g surfaces bordered by n boundary curves, which is a complex Hilbert manifold. This
“Weil-Petersson class Teichmüller space” is holomorphically immersed into the standard
quasiconformal Teichmüller space. It turns out that this result will enable us to show that
the Weil-Petersson class Teichmüller space possesses a convergent Weil-Petersson metric,
although this step requires substantial work and is dealt with in a forthcoming publication.
It is worth mentioning that the construction of a Weil-Petersson metric will be the first
instance of the existence of such metrics in the infinite dimensional setting for bordered
Riemann surfaces of genus g > 0 or n > 1. This construction can not be achieved without
solving the analytic problems settled in this paper. Indeed, one of the main technical diffi-
culties in this paper is to show that the transition functions of the atlas defining the Hilbert
manifold structure on the space of riggings are biholomorphisms. This is a consequence of
some analytic problems that are of independent interest in geometric function theory and
the theory of quasiconformal mappings. To solve these, we require (among other things)
the theory of Carleson measures for analytic Besov spaces and also utilize the relationship
between the Dirichlet space and the little Bloch space.

The second motivation comes from two-dimensional conformal field theory. In [17], two
of the authors showed that a moduli space of so-called “rigged Riemann surfaces” (due to
D. Friedan and S. Shenker [8] G. Segal [21] and C. Vafa [25]) is the quotient of the standard
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quasiconformal Teichmüller space of bordered surfaces by a discrete group. This allowed us
to construct a complex structure on the rigged moduli space, and show that the operation of
sewing is holomorphic, which are necessary steps in the rigorous construction of conformal
field theory. However, it appears that the standard Banach manifold structure of the stan-
dard Teichmüller space is not regular enough for the construction of the determinant line
bundle of Cauchy-Riemann operators with boundary projection factor. The Weil-Petersson
class Teichmüller space mentioned above appears to have sufficient regularity (preliminary
results in this direction can be found in [20]).

In [19], two of the authors demonstrated that the standard Teichmüller space of a genus
g surface with n boundary curves homoeomorphic to S1 is holomorphically fibered over the
Teichmüller space of surfaces of genus g with n punctures. The fibers are exactly the set
of non-overlapping maps into a surface, which we called riggings above. However in that
case a given rigging (φ1, . . . , φn) has weaker regularity; namely log f ′ is in the Bloch space.
By establishing in this paper that the Weil-Petersson class riggings (with pre-Schwarzian in
the Bergman space) is a complex Hilbert manifold, we have thus endowed the fibers of the
Weil-Petersson class Teichmüller space with this complex structure. In order to construct
the complex structure, one would need to combine the results of [19] and those obtained here
regarding Weil-Petersson class Teichmüller space.

We now fill out this explanation of the motivation for the results of this paper with a
more detailed discussion of the literature. There have been several refinements of quasicon-
formal Teichmüller space, obtained by considering natural analytic subclasses either of the
quasisymmetries of the circle or of the quasiconformally extendible univalent functions in
the Bers model of universal Teichmüller space. For example, K. Astala and M. Zinsmeister
[2] gave a model of the universal Teichmüller space based on BMO, and G. Cui and M. Zins-
meister [5] studied the Teichmüller spaces compatible with Fuchsian groups in this model.
F. Gardiner and D. Sullivan [10] studied a refined class of quasisymmetric mappings (which
they call symmetric) and the topology of this refined class.

A family of refined models of the universal Teichmüller space was given by G. Hui [14], each
based on an Lp norm. These spaces were completely characterized in three ways: in terms of
a space of quadratic differentials, in terms of univalent functions, and in terms of a space of
Beltrami differentials; all satisfying a weighted Lp-type integrability condition. In this paper,
we are concerned with the L2 case, which G. Hui attributes to Cui [4]. In this case Y. Shen
[22] also gave a fourth characterization by determining the precise analytic class of associated
quasisymmetric mappings of the circle. Independently of Hui and Cui, L. Takhtajan and
L.-P. Teo [23] defined a Hilbert manifold structure on the universal Teichmüller space and
universal Teichmüller curve, equivalent to that of Hui, and obtained further far-reaching
geometric and analytic results; for example they gave explicit forms for the Kähler potential
of the Weil-Petersson metric. Since then there has been growing interest in Weil-Petersson
class mappings and quasisymmetries; for a brief survey see the introduction to Shen [22].

2. WP-class conformal maps

In Section 2 we collect some known results on the refinement of the set of quasisymmetries
and quasiconformal maps, from the work of Takhtajan and Teo [23], Teo [24] and Hui [14].
We also derive two technical lemmas which follow from previous work of two of the authors
[18]. We collect some necessary results on the Weil-Petersson class universal Teichmüller
space of Takhtajan and Teo [23] and Hui [14]. We need to consider a smaller class than the
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class of quasisymmetric mappings of S1; we will refer to elements of this smaller class as
WP-class quasisymmetries.

In [18] we defined the set Oqc of quasiconformally extendible conformal maps of D in the
following way.

Definition 2.1. Let Oqc be the set of maps f : D→ C such that f is one-to-one, holomor-
phic, has quasiconformal extension to C, and f(0) = 0.

A Banach space structure can be introduced on Oqc as follows. Let

(2.1) A∞1 (D) =

{
φ ∈ H(D) : ‖φ‖A∞1 (D) = sup

z∈D
(1− |z|2)|φ(z)| <∞

}
.

This is a Banach space. It follows directly from results of Teo [24] that for

A(f) =
f ′′

f ′

the map

χ : Oqc → A∞1 (D)⊕ C
f 7→ (A(f), f ′(0))(2.2)

takes Oqc onto an open subset of the Banach space A∞1 (D)⊕C (see [18]). Thus Oqc inherits
a complex structure from A∞1 (D) ⊕ C. The space Oqc can be thought of as a two complex
dimensional extension of the universal Teichmüller space.

We will construct a Hilbert structure on a subset of Oqc. To do this, in place of A∞1 (D)
we use the Bergman space

A2
1(D) =

{
φ ∈ H(D) : ‖φ‖22 =

∫∫
D
|φ|2 dA <∞

}
which is a Hilbert space and a vector subspace of the Banach space A∞1 (D). Furthermore,
the inclusion map from A2

1(D) to A∞1 (D) is bounded [23, Chapter II Lemma 1.3].
Here and in the rest of the paper we shall denote the Bergman space norm ‖ · ‖A2

1
by ‖ · ‖.

We define the class of WP-class quasiconformally extendible maps of the D as follows.

Definition 2.2. Let
Oqc

WP =
{
f ∈ Oqc : A(f) ∈ A2

1(D)
}
.

We will embed Oqc
WP in the Hilbert space direct sum W = A2

1(D) ⊕ C. Since χ(Oqc) is
open, χ(Oqc

WP) = χ(Oqc) ∩ A2
1(D) is also open, and thus Oqc

WP trivially inherits a Hilbert
manifold structure from W . We summarize this with the following theorem.

Theorem 2.3. The inclusion map from A2
1(D) → A∞1 (D) is continuous. Furthermore

χ(Oqc
WP) is an open subset of the vector subspace W = A2

1(D)⊕C of A∞1 (D)⊕C, and the in-
clusion map from χ(Oqc

WP) to χ(Oqc) is holomorphic. Thus the inclusion map ι : Oqc
WP → Oqc

is holomorphic.

Remark 2.4. Although the inclusion map is continuous, the topology of Oqc
WP is not the

relative topology inherited from Oqc. It’s enough to show that A2
1(D) does not have the

relative topology from A∞1 (D). To see this observe that if

ft =
1√

| log (1− t)|(1− t2z2)
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for t < 1, then as t→ 1 ‖ft‖ → 0 in A2
1(D) whereas ‖ft‖A∞1 (D) → π/2.

Lemma 2.5. Let f ∈ Oqc
WP. Let h be a one-to-one holomorphic map defined on an open set

W containing f(D). Then h ◦ f ∈ Oqc
WP. Furthermore, there is an open neighborhood U of f

in Oqc
WP and a constant C such that ‖A(h ◦ g)‖ ≤ C for all g ∈ U .

Proof. The map h◦f has a quasiconformal extension to C if and only if it has a quasiconformal
extension to an open neighborhood of D (although not necessarily with the same dilatation
constant). Clearly h ◦ f has a quasiconformal extension to W , namely h composed with the
extension of f . Thus h ◦ f has an extension to the plane, and so h ◦ f ∈ Oqc.

We need only show that A(h ◦ f) ∈ A2
1(D). This follows from Minkowski’s inequality:(∫∫

D
|A(h ◦ f)|2dA

)1/2

≤
(∫∫

D
|A(h) ◦ f · f ′|2dA

)1/2

+

(∫∫
D
|A(f)|2dA

)1/2

(2.3)

=

(∫∫
f(D)

|A(h)|2dA
)1/2

+

(∫∫
D
|A(f)|2dA

)1/2

The first term on the right hand side is finite because h is holomorphic and h′ 6= 0 on an
open set containing f(D) so A(h) is bounded on f(D). The second term is bounded because
f ∈ Oqc

WP. This proves the first claim.
To prove the second claim, observe that there is a compact set K contained in W which

contains f(D) in its interior. By [18, Corollary 3.5] there is an open set Û in Oqc such that

g(D) is contained in the interior of K for all g ∈ Û . Since the inclusion ι : Oqc
WP → Oqc is

continuous, we obtain an open set ι−1(Û) ⊂ Oqc
WP with the same property. Let U be an open

ball in ι−1(Û) containing f . There is a constant C1 such that for any g ∈ U∫∫
D
|A(g)|2 dA ≤ C1

and a constant C2 such that∫∫
g(D)

|A(h)|2 dA ≤
∫∫

K

|A(h)|2 dA ≤ C2.

Applying (2.3) completes the proof. �

We will also need a technical lemma on a certain kind of holomorphicity of left composition
in Oqc

WP.

Lemma 2.6. Let E be an open subset of C containing 0 and ∆ an open subset of C. Let
H : ∆ × E → C be a map which is holomorphic in both variables and injective in the
second variable and let hε(z) = H(ε, z). Let ψ ∈ Oqc

WP satisfy ψ(D) ⊆ E. Then the map
Q : ∆ 7→ Oqc

WP defined by Q(ε) = hε ◦ ψ is holomorphic in ε.

Proof. We need to show that for fixed ψ, A(hε ◦ ψ) and (hε ◦ ψ)′(0) are holomorphic in ε.
First observe that all the z-derivatives of hε are holomorphic in ε for fixed z. Thus the second
claim is immediate.

To prove holomorphicity of ε 7→ A(hε ◦ ψ), it is enough to show weak holomorphicity and
local boundedness [12]; that is, to show local boundedness and that for some set of separating
continuous functionals {α} in the dual of the Bergman space, α ◦ A(hε ◦ ψ) is holomorphic
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for all α. Let Ez be the point evaluation function Ezψ = ψ(z). These are continuous on the
Bergman space and obviously separating on any open set. Since

A(hε ◦ ψ) = A(hε) ◦ ψ · ψ′ +A(ψ)

clearly Ez(A(hε ◦ f)) is holomorphic in ε.
So we only need to prove that A(hε ◦ψ) and (hε ◦ψ)′(0) are locally bounded. The second

claim is obvious. As above, by Minkowski’s inequality (2.3) and a change of variables(∫∫
D
|A(hε ◦ ψ)|2dA

)1/2

≤
(∫∫

ψ(D)

|A(hε)|2dA
)1/2

+

(∫∫
D
|A(ψ)|2dA

)1/2

.

Since A(hε) is jointly holomorphic in ε and z and ψ(D) ⊆ E for any fixed ε0, there is a
compact set D containing ε0 such that |A(hε)| is bounded on ψ(D) by a constant independent
of ε ∈ D. Since A(ψ) is in the Bergman space this proves the claim. �

3. Function-theoretic results on non-overlapping mappings

Let Σ be a genus g Riemann surface with n punctures. In this section we define the class
of non-overlapping mappings Oqc

WP(Σ). We also establish some technical theorems which are
central to the proof that it is a Hilbert manifold in Section 4.

Let D0 denote the punctured disc D\{0}. Let Σ be a compact Riemann surface of genus
g with punctures p1, . . . , pn.

Definition 3.1. The class of non-overlapping quasiconformally extendible maps Oqc(Σ) into
Σ is the set of n-tuples (φ1, . . . , φn) where

(1) For all i ∈ {1, . . . , n}, φi : D0 → Σ is holomorphic, and has a quasiconformal extension
to a neighborhood of D.

(2) The continuous extension of φi takes 0 to pi
(3) For any i 6= j, φi(D) ∩ φj(D) is empty.

It was shown in [18] that Oqc(Σ) is a complex Banach manifold.
As in the previous section, we need to refine the class of non-overlapping mappings. We

first introduce some terminology. Denote the compactification of a punctured surface Σ by
Σ.

Definition 3.2. An n-chart on Σ is a collection of open sets E1, . . . , En contained in the
compactification of Σ such that Ei ∩ Ej is empty whenever i 6= j, together with local
biholomorphic parameters ζi : Ei → C such that ζi(pi) = 0.

In the following, we will refer to the charts (ζi, Ei) as being on Σ, with the understand-
ing that they are in fact defined on the compactification. Similarly, non-overlapping maps
(f1, . . . , fn) will be extended by the removable singularities theorem to the compactification,
without further comment.

Definition 3.3. Let Oqc
WP(Σ) be the set of n-tuples of maps (f1, . . . , fn) ∈ Oqc(Σ) such that

for any choice of n-chart ζi : Ei → C, i = 1, . . . , n satisfying fi(D) ⊂ Ei for all i = 1, . . . , n,
it holds that ζi ◦ fi ∈ Oqc

WP.

The space Oqc
WP(Σ) is well-defined. To see this let (ζi, Ei) and (ηi, Fi), i = 1, . . . , n, be n-

charts satisfying fi(D) ⊂ Ei∩Fi and assume that ζi ◦fi ∈ Oqc
WP. Since ηi ◦ζ−1

i is holomorphic
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on an open set containing ζi ◦ fi(D), it follows from Lemma 2.5 that ηi◦fi = ηi◦ζ−1
i ◦ζi◦fi ∈

Oqc
WP.
In order to construct a Hilbert manifold structure on Oqc

WP(Σ) we will need some technical
theorems.

Theorem 3.4. Let E be an open neighborhood of 0 in C. Then the set{
f ∈ Oqc : f(D) ⊂ E

}
is open in Oqc and the set {

f ∈ Oqc
WP : f(D) ⊂ E

}
is open in Oqc

WP.

Proof. Let f0 ∈ Oqc satisfy f0(D) ⊂ E. By [18, Corollary 3.5], there exists an open subset

W of Oqc such that f(D) ⊂ E for all f ∈ W . Since f0 was arbitrary, this proves the first
claim.

Now let f0 ∈ Oqc
WP satisfy f0(D) ⊂ E. As above, there exists an open subset W of Oqc

such that f(D) ⊂ E for all f ∈ W . But by Theorem 2.3 W ∩ Oqc
WP = ι−1(W ) is open in

Oqc
WP. Thus f(D) ⊂ E for all f in the open set W ∩ Oqc

WP containing f0. This proves the
second claim. �

Composition on the left by h is holomorphic operation in both Oqc and Oqc
WP. This

was proven in [18] in the case of Oqc. The corresponding theorem in the WP-class case is
considerably more delicate, and is one of the key theorems necessary to demonstrate the
existence of a Hilbert manifold structure on Oqc

WP(ΣP ). Before we state and prove it we need
to investigate some purely analytic issues in the underlying function theory, which will be
utilized later.

We start first with the following lemma.

Lemma 3.5. Let ft(z) be a holomorphic curve in Oqc
WP for t ∈ N where N ⊂ C is an open

set containing 0. Then there is a domain N ′ ⊆ N containing 0 and a K which is independent
of t ∈ N ′ such that

(3.1)

∫∫
D
|f ′t(z)|p(1− |z|2)αdA ≤ K,

for all p > 0 and α > −1. The constant K will depend on p and α.

Proof. To establish the estimate (3.1) we observe that since A(ft) ∈ A2
1(D), log f ′t is in the

little Bloch space; that is
lim
|z|→1−

(1− |z|2)|g′t(z)| = 0,

see [23, Corollary 1.4, Chapter 2]. By [11, Theorem 1 (1)], the integral in (3.1) is finite for
each t. However, we need a uniform estimate in t. Although this does not follow from the
theorem as stated in [11, Theorem 1 (1)], the proof of that theorem can be modified to get
the uniform estimate. We proceed by providing the details of this argument. The claim of
[11, Theorem 1 (1)] is that

(3.2) g = log f ′ ∈ B0 =⇒
∫∫

D
|f ′|p(1− |z|2)α dA <∞

for all p > 0 and α > −1 where B0 is the little Bloch space.
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Let hs(z) = g(sz). This function is continuous on D for 0 < s < 1. Hence for each fixed s
the integral in question converges by an elementary estimate. Therefore (3.2) will follow if
we can show that the integral is uniformly bounded for s in some interval [s0, 1).

We have that hs ∈ B0, that is,

lim
|z|→1−

(1− |z|2)|h′s(z)| = 0

for all 0 < s ≤ 1. Since h1(z) = g(z) is in the little Bloch space, and S1y is compact, given
any ε > 0 there is an R > 0 such that (1−|z|2)|h′1(z)| < ε for all |z| > R. Fix any 0 < s0 < 1
and let r = R/s0. Therefore, if |z| > r and s0 < s ≤ 1 then |sz| > s0r = R and so for all
|z| > r and s0 < s ≤ 1 we have (1− |z|2)|h′s(z)| = (1− |z|2)s|h′1(sz)| < sε ≤ ε.

Thus for any ε > 0 there are fixed 0 < r < 1 and 0 < s0 < 1 such that

(3.3) (1− |z|2)|h′s(z)| < ε

for all (s, z) ∈ [s0, 1]× D\Dr where Dr = {z : |z| < r}. Now set

I =

∫∫
D
|ehs(z)|p(1− |z|2)α dA,

I1 =

∫∫
Dr

|ehs(z)|p(1− |z|2)α dA,

I2 =

∫∫
D\Dr
|ehs(z)|p(1− |z|2)α dA.

Our goal is to show that there is a constant C which is independent of s ∈ [s0, 1) such
that I is bounded by C. It is obvious that this will follow by establishing the aforementioned
type of bounds for I1 and I2. The estimate for I1 follows from∫∫

Dr

|ehs(z)|p(1− |z|2)α dA ≤ (1− r2)min(α,0)

s2

∫∫
Drs

|eh1(z)|p dA(3.4)

≤ (1− r2)min(α,0)

s2
0

∫∫
Dr

|eh1(z)|p dA

≤ C.

Now we turn to the estimate for I2. It follows from a theorem of Hardy and Littlewood
(see for example [7, Theorem 6] for a proof in the most general case) that there is a C
depending only on p and α, such that

(3.5)

∫∫
D
|F (z)|p(1− |z|2)αdA ≤ C

(∫∫
D
|F ′(z)|p(1− |z|2)p+αdA+ |F (0)|p

)
for p > 0 and α > −1, whenever at least one of the integrals converges (in fact the two
norms represented by each side are equivalent). Now for s ∈ [s0, 1) we may apply (3.5) and
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(3.3) to ehs(z) which yield

I2 ≤
∫∫

D
|ehs(z)|p(1− |z|2)α dA

≤ C

(∫∫
D
|ehs(z)|p|h′s(z)|p(1− |z|2)p+αdA+ |ehs(0)|p

)
≤ C

∫∫
D\Dr
|ehs(z)|p|h′s(z)|p(1− |z|2)p+α dA+ C

∫∫
Dr

|ehs(z)|p|h′s(z)|p(1− |z|2)p+α dA

+ C|ehs(0)|p

≤ CεI2 + C

∫∫
Dr

|ehs(z)|p|h′s(z)|p(1− |z|2)p+α dA+ C|ehs(0)|p

≤ 1

2
I2 + C

∫∫
Dr

|ehs(z)|p|h′s(z)|p(1− |z|2)p+α dA+ C|ehs(0)|p,

by choosing ε ≤ 1
2C

. Summarizing, we have

(3.6) I2 ≤ 2C

(∫∫
Dr

|ehs(z)|p|h′s(z)|p(1− |z|2)p+αdA+ |ehs(0)|p
)
,

where r and C are independent of s. Since hs and h′s are continuous on Dr for s ∈ [s0, 1) the
integral on the right hand side is bounded by a constant which is independent of s ∈ [s0, 1).
Therefore the estimates for I1 and I2 yield the desired uniform estimate for I. Since the
estimate on I is uniform it extends to s = 1.

Setting gt = log f ′t , an argument identical to the above (substituting hs with gt) gives
the desired uniform bound (3.1) in t, provided that the function (1 − |z|2)|g′t(z)| is jointly
continuous in (t, z). Thus it remains to demonstrate the joint continuity. To this end fix
z0 ∈ D, t0 ∈ N and ε > 0. There is a δ such that for any z ∈ B(z0, δ) ∩ D where B(z0, r) is
the ball of radius δ centered on z0,

‖(1− |z|2)g′t0(z)− (1− |z|2)g′t0(z0)‖∞ <
ε

2
.

Since ft is a holomorphic curve, there is an interval (t0 − δ1, t0 + δ1) such that

‖A(ft)−A(ft0)‖ < ε/2.

By [23, Lemma 1.3, Chapter II] for g = log f ′

‖(1− |z|2)g′(z)‖∞ ≤
1√
π
‖A(f)‖

(note that in their notation the left hand side is ‖g′(z)‖∞). So for all z ∈ D and t ∈
(t0 − δ1, t0 + δ1),

(3.7) ‖(1− |z|2)g′t(z)− (1− |z|2)g′t0(z)‖∞ <
ε

2
.

Combining this with the fact that (1 − |z|2)g′t(z) → 0 as |z| → 1 shows that equation (3.7)
holds on D. Thus, by the triangle inequality

‖(1− |z|2)g′t(z)− (1− |z|2)g′t0(z0)‖∞ < ε

on (t0 − δ1, t0 + δ1) × (D(z0, r) ∩ D). This proves joint continuity and thus completes the
proof. �
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Before we state our next lemma we would needs some tools from the theory of Besov
spaces which we recall bellow.

Definition 3.6. For p ∈ (1,∞), one defines the Besov space Bp as the space of holomorphic
functions f on D for which

‖f‖Bp = |f(0)|+
{∫∫

D
|f ′(z)|p (1− |z|2)p−2 dA

} 1
p

<∞.

From this definition it follows at once that B2 is the usual Dirichlet space. One also defines
for z ∈ D, the set S(z) by

(3.8) S(z) =

{
ζ ∈ D : 1− |ζ| ≤ 1− |z|,

∣∣∣∣arg(z ζ)

2π

∣∣∣∣ ≤ 1− |z|
2

}
,

which is obviously a subset of the annulus |z| ≤ |ζ| < 1.
In our study we shall use the following result, concerning Carleson measures for Besov spaces,
due to N. Arcozzi, R. Rochberg and E. Saywer [1].

Theorem 3.7. Given real numbers p and q with 1 < p < q < ∞ and a positive Borel
measure µ on D, the following two statements are equivalent:

(1) There is a constant C(µ) > 0 such that

‖f‖Lq(µ) ≤ C(µ)‖f‖Bp .
(2) For S(z) defined above, one has

µ(S(z))
1
q ≤ C

{
log

1 + |z|
1− |z|

}− 1
p′

,

where p′ is the Hölder dual of p.

Using Lemma 3.5 and Theorem 3.7 we can prove the following result:

Lemma 3.8. Let ft(z) be a holomorphic curve in Oqc
WP for t ∈ N where N ⊂ C is an open

set containing 0. For any holomorphic function ψ : D → C such that
∫∫

D |ψ
′|2 < ∞ and

ψ(0) = 0, and any β > 1, there is a constant C and an open set N ′ ⊆ N containing 0 such
that for all t ∈ N ′ ∫∫

D
|f ′t |2|ψ|βdA ≤ C.

Proof. The Cauchy-Schwarz inequality and Lemma 3.5 with p = 4 and α = −1
2

yield∫∫
D
|f ′t(z)|2|ψ(z)|βdA ≤

{∫∫
D
|f ′t(z)|4 (1− |z|2)

−1
2 dA

} 1
2

×
{∫∫

D
|ψ(z)|2β (1− |z|2)

1
2 dA

} 1
2

≤
√
K

{∫∫
D
|ψ(z)|2β (1− |z|2)

1
2 dA

} 1
2

.

Therefore, since ψ is in the Dirichlet space, to prove that
∫∫

D |f
′
t(z)|2|ψ(z)|βdA ≤ C, it

would be enough to show that

(3.9)

{∫∫
D
|ψ(z)|2β (1− |z|2)

1
2 dA

} 1
2β

≤ C ′
{∫∫

D
|ψ′(z)|2 dA

} 1
2

.
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Now, since ψ(0) = 0, Theorem 3.7 with q = 2β, p = 2 and dµ = (1−|ζ|2) 1
2 dA, yields that

(3.9) holds if and only if for all z ∈ D

(3.10)

{∫∫
S(z)

(1− |ζ|2)
1
2 dA

} 1
2β

≤ C ′
{

log
1 + |z|
1− |z|

}− 1
2

.

Moreover ∫∫
S(z)

(1− |ζ|2)
1
2 dA ≤

∫∫
|z|≤|ζ|<1

(1− |ζ|2)
1
2 dA = 4π

(1− |z|2) 3
2

3
.

Therefore an elementary calculation yields that (3.10) follows from an estimate of the form

(3.11) (1− |z|2)
3
2β log

1 + |z|
1− |z|

≤ C,

for all |z| < 1. Now if we set f(r) = (1− r2)
3
2β log 1+r

1−r then for all ε > 0, f(r) is continuous
on the compact interval [0, 1− ε]. Indeed the continuity of f(r) is obvious on [0, 1− ε) and
moreover

lim
r→1−

(1− r2)
3
2β log

1 + r

1− r
= 0.

From this, (3.11) follows and the proof of the lemma is now complete. �

Now we will state and prove the holomorphicity of the operation of left composition in Oqc
0

which will play a crucial role in the establishment of the existence of the Hilbert manifold
structure on Oqc

0 (ΣP ).

Theorem 3.9. Let K ⊂ C be a compact set which is the closure of an open neighborhood
Kint of 0 and let A be an open set in C containing K. If U is the open set

U = {g ∈ Oqc
WP : g(D) ⊂ Kint},

and h : A→ C is a one-to-one holomorphic map such that h(0) = 0, then the map f 7→ h◦f
from U to Oqc

WP is holomorphic.

Remark 3.10. The fact that U is open follows from Theorem 3.4.

Proof. It was shown in [18, Lemma 3.10] that composition on the left is holomorphic in the
above sense on Oqc. However, this does not immediately lead to the desired result, since the
norm has changed. Nevertheless some of the computations in [18, Lemma 3.10] can be used
here.

As in [18, Lemma 3.10], by Hartogs’ theorem [16] it suffices to show that the maps
(A(f), f ′(0)) 7→ A(h ◦ f) and f ′(0) 7→ h′(0)f ′(0) are separately holomorphic. The sec-
ond map is clearly holomorphic. By a theorem in [3, p 198], it suffices to show that
(A(f), f ′(0)) 7→ A(h◦f) is Gâteaux holomorphic and locally bounded. It is locally bounded
by Lemma 2.5.

To show that this map is Gâteaux holomorphic, consider the curve (A(f0) + tφ, q(t))
where φ ∈ A2

1(D) and q is holomorphic in t with q(0) = f ′0(0). It can be easily computed
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that (A(ft), f
′
t(0)) = (A(f0) + tφ, q(t)) if and only if ft is the curve

ft(z) =
q(t)

f ′0(0)

∫ z

0

f ′0(u) exp

(
t

∫ u

0

φ(w)dw

)
du.

Note that ft(z) is holomorphic in t for fixed z. Since χ(Oqc) is open and ι : Oqc
0 → Oqc is

continuous, there is an open neighborhood N of 0 in C such that ft ∈ Oqc
0 for all t ∈ N . The

neighborhood N can also be chosen small enough that ft(D) ⊂ Kint for all t ∈ N , since we
assumed that t 7→ ft is a holomorphic curve and the set of f ∈ Oqc

WP mapping into Kint is
open by Theorem 3.4.

Defining α(t) = A(h) ◦ ft · f ′t and denoting t-differentiation with a dot we then have that

lim
t→0

1

t
(A(h ◦ ft)−A(h ◦ f0)) = α̇(t) + φ.

So it is enough to show that

(3.12)

∥∥∥∥1

t
(A(h ◦ ft)−A(h ◦ f0))− (α̇(t) + φ)

∥∥∥∥ =

∥∥∥∥1

t
(α(t)− α(0)− tα̇(0))

∥∥∥∥→ 0

as t→ 0. For any fixed z (recall that α(t) is also a function of z) we have

α(t)− α(0)− tα̇(0) =

∫ t

0

α̈(s)(t− s)ds.

We claim that there is a constant C0 such that ‖α̈‖ < C0 for all t in some neighborhood of
0. Assuming for the moment that this is true, for |s| < |t| < C we set t = eiθu and s = eiθv,
and integrating along a ray, we have

‖α(t)− α(0)− tα̇(0)‖2 =

∥∥∥∥∫ t

0

α̈(s)(t− s)ds
∥∥∥∥2

=

∫∫
D

∣∣∣∣∫ t

0

α̈(s)(t− s) ds
∣∣∣∣2 dA

≤
∫∫

D

(∫ u

0

|α̈(eiθv)|(u− v)dv

)2

dA

≤
∫∫

D

∫ u

0

u|α̈(eiθv)|2(u− v)2dv dA

≤ C

∫∫
D

∫ u

0

|α̈(eiθv)|2(u− v)2dv dA

where we have used Jensen’s inequality and the assumption that u < C. Therefore Fubini’s
theorem and the assumption that v < u < |t| yield

‖α(t)− α(0)− tα̇(0)‖2 ≤ 4C|t|2
∫ |t|

0

(∫∫
D
|α̈(s)|2dA

)
d|s|

≤ C1|t|3.

Fubini’s theorem can be applied since the second to last integral converges by the final
inequality. This would prove (3.12). Thus the proof reduces to establishing a bound on ‖α̈‖
which is uniform in t in some neighborhood of 0.
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By [18, equation 3.2],

α̈(t) = A(h)′′ ◦ ft · f ′t · ḟ 2
t +A(h)′ ◦ ft · f ′t · f̈t(3.13)

+2A(h)′ ◦ ft · ḟt · ḟ ′t +A(h) ◦ ft · f̈ ′t
= I + II + III + IV

where

A(h)′ =
h′′′

h′
− h′′2

h′2

and

A(h)′′ =
h′′′′

h′
− 3

h′′′h′′

h′2
− h′′3

h′3
.

We will uniformly bound all the terms on the right side of (3.13) in the A2
1(D) norm. For

all t ∈ N we have ft(D) ⊂ K and h is holomorphic on an open set containing the compact
set K, and h′ 6= 0 since h is one-to-one on A. Thus there is a uniform bound for A(h), A(h)′

and A(h)′′ on ft(D). So by a change of variables, there is an M such that

(3.14) ‖A(h) ◦ ft · f ′t‖ =

(∫∫
ft(D)

|A(h)|2dA
)1/2

≤M.

Similarly there are M ′ and M ′′ such that

(3.15) ‖A(h)′ ◦ ft · f ′t‖ ≤M ′ and ‖A(h)′′ ◦ ft · f ′t‖ ≤M ′′.

Since ft(D) is contained in the compact set K, |ft(z)| is bounded by a constant C which
is independent of t. By applying Cauchy estimates in the variable t on a curve |t| = r2, we
see that for 0 < r1 < r2 and |t| ≤ r1,

|ḟt(z)| ≤ r2
(r1 − r2)2

sup
|s|=r2

|fs(z)|

and thus we can find a constant C ′ such that |ḟt(z)| ≤ C ′ for |t| ≤ r1. Similarly, there is a

C ′′ such that |f̈t(z)| ≤ C ′′ for all z ∈ D and |t| ≤ r1. Combining with (3.15), we have that
‖I‖ and ‖II‖ are uniformly bounded on |t| ≤ r1.

Next, observe that ‖A(h)′ ◦ ft‖∞ ≤ D and ‖A(h) ◦ ft‖∞ ≤ D′ for some constants D and
D′ which are independent of t, since ft(D) is contained inside a compact set in the interior
of the domain of h, and h is holomorphic and one-to-one. Therefore, to get a uniform bound
on ‖α̈‖ we only need to show that ‖ḟ ′t‖ and ‖f̈ ′t‖ are bounded by some constant which is
independent of t on a neighborhood of 0.

A simple computation yields

ḟ ′t(z) =
q̇(t)

q(t)
f ′t(z) +

(∫ z

0

φ(w)dw

)
f ′t(z).

Since q(t) is holomorphic and non-zero, q̇/q is uniformly bounded on a neighborhood of 0.
Furthermore, ∫∫

D
|f ′t |2dA = Area(ft(D))
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which is uniformly bounded since ft(D) is contained in a fixed compact set. Since ψ(z) =∫ z
0
φ(w)dw is in the Dirichlet space, we can apply Lemma 3.8 with β = 2, which proves that

‖ḟ ′t‖ is uniformly bounded for t in some neighborhood of 0. We further compute that

f̈ ′t(z) =
q̈(t)

q(t)
f ′t(z) + 2

q̇(t)

q(t)

(∫ z

0

φ(w)dw

)
f ′t(z) +

(∫ z

0

φ(w)dw

)2

f ′t(z),

so the same reasoning (this time using Lemma 3.8 with β = 2 and β = 4) yields a uniform

bound for ‖f̈ ′t‖. This completes the proof. �

4. Complex Hilbert manifold structure on Oqc
WP(Σ)

In this section we show that the class of non-overlapping holomorphic maps into a Riemann
surface, with WP-class quasiconformal extensions, is a Hilbert manifold. This requires defin-
ing a topology and atlas on Oqc

WP(Σ), and proving that this topology is Hausdorff and second
countable. Finally we must show that the overlap maps of the atlas are biholomorphisms.

The idea behind the complex Hilbert space structure is as follows. Any element (f1, . . . , fn)
of Oqc

WP(Σ) maps n closed discs onto closed sets containing the punctures. We choose charts
ζi, i = 1, . . . , n, which map non-overlapping open neighborhoods of the closed discs into C.
The maps ζi ◦ fi are in Oqc

WP, which is an open subset of a Hilbert space. By Theorem 3.4
the components gi of an element g nearby to f will also have images in the domains of the
charts ζi. Thus we can model Oqc

WP(Σ) locally by Oqc
WP×· · ·×O

qc
WP. Theorem 3.9 will ensure

that the transition functions of the charts are biholomorphisms.
We now turn to the proofs, beginning with the topology on Oqc

WP(Σ). Before defining a
topological basis we need some notation.

Definition 4.1. For any n-chart (ζ, E) = (ζ1, E1, . . . , ζn, En) (see Definition 3.2), we say
that an n-tuple U = (U1, . . . , Un) ⊂ Oqc

WP × · · · × O
qc
WP, with Ui open in Oqc

WP, is compatible

with (ζ, E) if f(D) ⊂ ζi(Ei) for all f ∈ Ui.

For any n-chart (ζ, E) and compatible open subset U of Oqc
WP × · · · × O

qc
WP let

Vζ,E,U = {g ∈ Oqc
WP(Σ) : ζi ◦ gi ∈ Ui, i = 1, . . . , n}(4.1)

= {(ζ−1
1 ◦ h1, . . . , ζ

−1
n ◦ hn) : hi ∈ Ui, i = 1, . . . , n}.

Definition 4.2 (base a for topology on Oqc
WP(Σ)). Let

V = {Vζ,E,U : (ζ, E) an n-chart, U compatible with (ζ, E)}.

Theorem 4.3. The set V is the base for a topology on Oqc
WP(Σ). This topology is Hausdorff

and second countable.

Proof. We first establish that V is a base. For any element f of Oqc
WP(ΣP ), since fi(D) is

compact for all i, there is an n-chart (ζ, E) such that fi(D) ⊂ Ei for each i. By Theorem
3.4 there is a U = (U1, . . . , Un) compatible with (ζ, E). Thus V covers Oqc

WP(ΣP ).
Now let Vζ,E,U and Vζ′,E′,U ′ be two elements of V containing a point f ∈ Oqc

WP(ΣP ). Define

E ′′ by E ′′i = Ei ∩ E ′i. For each i choose a compact set κi such that fi(D) ⊆ κi ⊆ E ′′i . Let
Ki = ζi(κi), K

′
i = ζ ′i(κi),

Wi = {φ ∈ Oqc
WP : φ(D) ⊆ Kint

i }
and

W ′
i = {φ ∈ Oqc

WP : φ(D) ⊆ K ′i
int}
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where Kint
i and K ′i

int are the interiors of Ki and K ′i respectively. By Theorem 3.4 Wi and
W ′
i are open, and by Theorem 3.9 the map φ 7→ ζ ′i ◦ ζ−1

i ◦ φ is a biholomorphism from Wi

onto W ′
i . So the set

U ′′i = Ui ∩
(
ζi ◦ ζ ′i

−1
(W ′

i ∩ U ′i)
)
⊆ Ui ∩Wi

is an open subset of Oqc
WP (by ζ ′i

−1(W ′
i ∩ U ′i) we mean the set of ζ ′i

−1 ◦ φ for φ ∈ W ′
i ∩ U ′i).

Setting ζ ′′i = ζ|E′′i we have that f ∈ Vζ′′,E′′,U ′′ ⊆ Vζ,E,U ∩ Vζ′,E′,U ′ by construction. Thus V is

a base.
To show that the topology generated by V is Hausdorff, let f, g ∈ Oqc

WP(ΣP ). Choose

open, simply connected sets Ei and Fi, i = 1, . . . , n such that fi(D) ⊂ Ei and gi(D) ⊂ Fi and
Ei ∩ Ej = Fi ∩ Fj = ∅ whenever i 6= j. For each i let ζi : Ei ∪ Fi → C be a biholomorphism
taking pi to 0. Thus ζi|Ei defines an n-chart (ζ, E), and similarly for ζi|Fi . (The collection
ζi|Ei∪Fi does not necessarily form an n-chart, but this is inconsequential).

Since Oqc
WP is a Hilbert space, it is Hausdorff, so for all i there are open sets Ui and Wi

such that ζi ◦ fi ∈ Ui, ζi ◦ gi ∈ Wi, and Ui ∩Wi = ∅. By Theorem 3.4, by shrinking Ui and
Wi if necessary, we can assume that hi(D) ⊂ ζi(Ei) for all hi ∈ Ui and hi(D) ⊂ ζi(Fi) for all
hi ∈ Wi. That is, U is compatible with (ζ, E) and W is compatible with (ζ, F ). Furthermore
f ∈ Vζ,E,U , g ∈ Vζ,F,W and Vζ,E,U ∩ Vζ,F,W = ∅ by construction. Thus Oqc

WP(Σ) is Hausdorff
with the topology defined by V .

To see that Oqc
WP(Σ) is second countable, we proceed as follows. First observe that Σ is

second countable by Rado’s Theorem (see for example [13]). Thus it has a countable basis B
of open sets. Let Bn = {(B1, . . . , Bn)} where each Bi (1) is a finite union of elements of B
and (2) contains pi. Clearly Bn is countable. Consider the set of n-tuples C = (C1, . . . , Cn)
such that (1) (C1, . . . , Cn) ∈ Bn and (2) Ci ∩ Cj is empty whenever i 6= j. Since this
is a subset of Bn, it is countable. Furthermore, for each (C1, . . . , Cn), we can fix a chart
ζi : Ci → C. Let C be the collection of n-charts {(ζ1, C1, . . . , ζn, Cn)} where ζi and Ci are as
above.

Next, since Oqc
WP is a Hilbert space (and hence a separable metric space), it has a countable

basis of open sets O. We define a countable basis for the topology of Oqc
WP(Σ) as follows:

V ′ = {V(ζ,C,W ) : (ζ, C) ∈ C, W compatible with (ζ, C), Wi ∈ O, i = 1, . . . , n}.

Each V ′ ∈ V ′ is open by Theorem 3.4. Furthermore V ′ is countable since C and O are
countable. We need to show that V ′ is a base for the topology of Oqc

WP(Σ). Clearly V ′ ⊂ V .
Thus it is enough to show that for every f = (f1, . . . , fn) ∈ Oqc

WP(Σ) and V ∈ V containing
f , there is a V ′ ∈ V ′ such that f ∈ V ′ ⊂ V .

Let Vζ,E,U ∈ V contain f . We claim that there is an n-chart (η, C) ∈ C such that

fi(D) ⊂ Ci ⊂ Ei for all i. To see this, fix i and observe that since B is a base for Σ,

for each point x ∈ fi(D) there is an open set Bi,x ∈ B such that x ∈ Bi,x ⊂ Ei. The set

{Bi,x}x∈fi(D) is a cover of fi(D); since it is compact there is a finite subcover say {Bi,α}. Set
Ci = ∪αBi,α and perform this procedure for each i = 1, . . . , n. By construction the Ci are
non-overlapping and C = (C1, . . . , Cn) ∈ Bn. It follows that (η, C) = (η1, C1, . . . , ηn, Cn) ∈ C
where ηi are the charts corresponding to Ci. This proves the claim.

Since O is a basis of Oqc
WP, by Theorems 3.4 and 3.9 (using an argument similar to the

one earlier in the proof), for each i there is a Wi ∈ O satisfying ηi ◦ fi ∈ Wi ⊂ ηi ◦ ζ−1
i (Ui).

If g ∈ V ′η,C,W then gi = η−1
i ◦ hi for some hi ∈ Wi for all i = 1, . . . , n by (4.1). But
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hi ∈ ηi ◦ ζ−1
i (Ui), so gi ∈ ζ−1

i (Ui) and hence g ∈ Vζ,E,U by (4.1). Thus V ′η,C,W ⊂ Vζ,E,U which
completes the proof. �

Remark 4.4. In particular, Oqc
WP(Σ) is separable since it is second countable and Hausdorff.

We make one final simple but useful observation regarding the base V .
For a Riemann surface Σ denote by V(Σ) the base for Oqc

WP(Σ) given in Definition 4.2. For
a biholomorphism ρ : Σ→ Σ1 of Riemann surfaces Σ and Σ1, and for any V ∈ V(Σ), let

ρ(V ) = {ρ ◦ φ : φ ∈ V }

and

ρ(V(Σ)) = {ρ(V ) : V ∈ V}.

Theorem 4.5. If ρ : Σ → Σ1 is a biholomorphism between punctured Riemann surfaces Σ
and Σ1 then ρ(V(Σ)) = V(Σ1).

Proof. It is an immediate consequence of Definition 4.2 and Theorem 3.9 that ρ(V(Σ)) ⊆
V(Σ1). Similarly ρ−1(V(Σ1)) ⊆ V(Σ). Since ρ(ρ−1(V(Σ1))) = V(Σ1) and ρ−1(ρ(V(Σ))) =
V(Σ) the result follows. �

Definition 4.6 (standard charts on Oqc
WP(Σ)). Let (ζ, E) be an n-chart on Σ and let κi ⊂ Ei

be compact sets containing pi. Let Ki = ζi(κi). Let Ui = {ψ ∈ Oqc
WP : ψ(D) ⊂ interior(Ki)}.

Each Ui is open by Theorem 3.4 and U = (U1, . . . , Un) is compatible with (ζ, E) so we have
Vζ,E,U ∈ V . A standard chart on Oqc

WP(Σ) is a map

T : Vζ,E,U −→ Oqc
WP × · · · × O

qc
WP

(f1, . . . , fn) 7−→ (ζ1 ◦ f1, . . . , ζn ◦ fn).

Remark 4.7. To obtain a chart into a Hilbert space, one simply composes with χ as defined
by (2.2). Abusing notation somewhat and defining χn by

χn ◦ T : Vζ,E,U −→
n⊕
A2

1(D)⊕ C
(f1, . . . , fn) 7−→ (χ ◦ ζ1 ◦ f1, . . . , χ ◦ ζn ◦ gn)

we obtain a chart into
⊕nA2

1(D) ⊕ C. Since χ(Oqc
WP) is an open subset of A2

1(D) ⊕ C by
Theorem 2.3, and χ defines the complex structure Oqc

WP, we may treat T as a chart with the
understanding that the true charts are obtained by composing with χn.

Theorem 4.8. Let Σ be a punctured Riemann surface of type (g, n). With the atlas consist-
ing of the standard charts of Definition 4.6, Oqc

WP(Σ) is a complex Hilbert manifold, locally
biholomorphic to Oqc

WP × · · · × O
qc
WP.

Proof. We have already shown that Oqc
WP(Σ) is Hausdorff and separable (in fact second

countable). So we need only show that the charts above form an atlas of homeomorphisms
with biholomorphic transition functions.

Let V = Vζ,E,U and V ′ = Vζ′,E′,U ′ where U and U ′ are determined by compact sets κi and
κ′i respectively, as in Definition 4.6. With the topology from the basis V of Definition 4.2 the
charts are automatically homeomorphisms. It suffices to show that for two standard charts
T : V → Oqc

WP × · · ·O
qc
WP and T ′ : V ′ → Oqc

WP × · · · × O
qc
WP the overlap maps T ◦ T ′−1 and

T ′ ◦ T−1 are holomorphic.
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Assume that V ∩ V ′ is non-empty. For (ψ1, . . . , ψn) ∈ T ′(V ∩ V ′)

T ◦ T ′−1
(ψ1, . . . , ψn) = (ζ1 ◦ ζ ′1

−1 ◦ ψ1, . . . , ζn ◦ ζ ′n
−1 ◦ ψn).

The maps ψi 7→ ζi ◦ ζ ′i
−1 ◦ ψi are holomorphic maps of ζ ′i(Vi ∩ V ′i ) by Theorem 3.9 with

A = ζ ′i(Ei ∩ E ′i), U = ζ ′i(ζ
−1
i (Ui) ∩ ζ ′i

−1(U ′i)) = ζ ′i ◦ ζ−1
i (Ui) ∩ U ′i , K = ζ ′i ◦ ζ−1

i (Ki) ∩K ′i and
h = ζi ◦ ζ ′i

−1. Similarly T ′ ◦ T−1 is holomorphic. �

Remark 4.9 (chart simplification). Now that this theorem is proven, we can simplify the

definition of the charts. For an n-chart (ζ, E), if we let Ui = {f ∈ Oqc
WP : f(D) ⊂ ζi(Ei)},

then the charts T are defined on Vζ,E,U . It is easy to show that T is a biholomorphism on
Vζ,E,U , since any f ∈ Vζ,E,U is contained in some Vζ,E,W ⊂ Vζ,E,U which satisfies Definition
4.6, and thus T is a biholomorphism on Vζ,E,W by Theorem 4.8.

Remark 4.10 (standard charts on Oqc(Σ)). A standard chart on Oqc(Σ) is defined in the same
way as Definition 4.6 and its preamble, by replacing Oqc

WP with Oqc everywhere. Furthermore
with this atlas Oqc(Σ) is a complex Banach manifold [18].

Finally, we show that the inclusion map I : Oqc
WP(Σ)→ Oqc(Σ) is holomorphic.

Theorem 4.11. The complex manifold Oqc
WP(Σ) is holomorphically contained in Oqc(Σ) in

the sense that the inclusion map I : Oqc
WP(Σ)→ Oqc(Σ) is holomorphic.

Proof. This follows directly from the construction of the charts on Oqc(Σ). Let T : V →
Oqc×· · ·×Oqc be a standard chart on Oqc(Σ) as specified in Remark 4.10. Let U = T (V ) and
U0 = U ∩Oqc

WP×· · ·×O
qc
WP. Let V0 = T−1(U0). The map T |V0

is a chart on V0 ⊆ Oqc
WP(Σ), so

it is holomorphic in the WP-class setting. Since the inclusion map ι : U0 → U is holomorphic
by Theorem 2.3, the inclusion map I = T−1 ◦ ι◦

(
T |V0

)
is holomorphic on V0. Since Oqc

WP(Σ)
is covered by charts of this form, I is holomorphic. �

References

[1] Arcozzi, N.; Rochberg, R.; and Sawyer, E. Carleson measures for analytic Besov spaces, Rev. Mat.
Iberoamericana 18 (2002), no. 2, 443–510.

[2] Astala, K. and Zinsmeister, M. Teichmüller spaces and BMOA, Mathematische Annalen, 289 no 1
(1991), 613–625.

[3] Chae, S. B. Holomorphy and Calculus in Normed Spaces. With an appendix by Angus E. Taylor.
Monographs and Textbooks in Pure and Applied Mathematics, 92. Marcel Dekker, Inc., New York,
1985.

[4] G. Cui, Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces, Sci. China
Ser. A 43 (2000), no. 3, 267–279.

[5] Cui, G. and Zinsmeister, M. BMO-Teichmüller spaces. Illinois Journal of Mathematics 48 no. 4 (2004),
1223–1233.

[6] Fritzsche, K. and Grauert, H. From Holomorphic Functions to Complex Manifolds, Graduate Texts in
Mathematics, 213, Springer-Verlag, New York, 2002.

[7] Flett, T. M. The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math.
Anal. Appl. 38 (1972), 746–765.

[8] Friedan, D. and Shenker, S. The analytic geometry of two-dimensional conformal field theory. Nuclear
Physics B 281 (1987), 509–545.

[9] Gardiner, F. P. Schiffer’s interior variation and quasiconformal mapping, Duke Math. J. 42 (1975),
371–380.

[10] Gardiner, F. P. and Sullivan, D. P. Symmetric structures on a closed curve. American Journal of Math-
ematics, 114 no. 4 (1992), 683–736.



WP-CLASS MAPS 17
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