A functional-analytic proof of the conformal welding theorem

Eric Schippers¹ Wolfgang Staubach²

¹Department of Mathematics University of Manitoba Winnipeg, Canada

²Department of Mathematics Uppsala Universitet Uppsala, Sweden

CMS Winter Meeting 2012

Eric Schippers (Manitoba)

Conformal welding theorem

Definition

2

A quasiconformal map $\phi : A \to B$ between open connected domains A and B in \mathbb{C} is a homeomorphism such that

$$\left\|\frac{\overline{\partial}f}{\partial f}\right\|_{\infty} \leq k$$

for some fixed k < 1.

Definition

2

A quasiconformal map $\phi : A \to B$ between open connected domains A and B in \mathbb{C} is a homeomorphism such that

$$\left\|\frac{\overline{\partial}f}{\partial f}\right\|_{\infty} \leq k$$

for some fixed k < 1.

Definition

A quasisymmetric map $\phi : S^1 \to S^1$ is a homeomorphism which is the boundary values of some quasiconformal map $H : \mathbb{D} \to \mathbb{D}$.

Theorem (Conformal welding theorem)

Let $\phi : S^1 \to S^1$ be a quasisymmetric map and let $\alpha > 0$. There is a pair of maps $f : \mathbb{D} \to \mathbb{C}$ and $g : \mathbb{D}^* \to \overline{\mathbb{C}}$ such that

- f is one-to-one and holomorphic, and has a quasiconformal extension to C
- 2 g is one-to-one and holomorphic except for a simple pole at ∞ , and has a quasiconformal extension to \overline{C}

3
$$f(0) = 0$$
, $g(\infty) = \infty$ and $g'(\infty) = \alpha$.

•
$$\phi = g^{-1} \circ f \text{ on } S^1.$$

Theorem (Conformal welding theorem)

Let $\phi : S^1 \to S^1$ be a quasisymmetric map and let $\alpha > 0$. There is a pair of maps $f : \mathbb{D} \to \mathbb{C}$ and $g : \mathbb{D}^* \to \overline{\mathbb{C}}$ such that

- f is one-to-one and holomorphic, and has a quasiconformal extension to C
- 2 g is one-to-one and holomorphic except for a simple pole at ∞ , and has a quasiconformal extension to \overline{C}

3)
$$f(0) = 0$$
, $g(\infty) = \infty$ and $g'(\infty) = \alpha$.

•
$$\phi = g^{-1} \circ f$$
 on S^1 .

• standard proof uses existence and uniqueness to solutions of the Beltrami equation.

• We will give another proof using symplectic geometry and Grunsky inequalities.

The function spaces $\mathcal H$ and $\mathcal H_*$

Let \mathcal{H} denote the space of L^2 functions h on S^1 such that

$$\sum_{n=-\infty}^{\infty} |n| |\hat{h}(n)|^2 < \infty.$$

Define

$$||h||^2 = |\hat{h}(0)|^2 + \sum_{n=-\infty}^{\infty} |n||\hat{h}(n)|^2.$$

The function spaces $\mathcal H$ and $\mathcal H_*$

Let \mathcal{H} denote the space of L^2 functions h on S^1 such that

$$\sum_{n=-\infty}^{\infty} |n| |\hat{h}(n)|^2 < \infty.$$

Define

$$||h||^2 = |\hat{h}(0)|^2 + \sum_{n=-\infty}^{\infty} |n||\hat{h}(n)|^2.$$

We will also consider

$$\mathcal{H}_* = \{h \in \mathcal{H} : \hat{h}(0) = 0\}$$

with norm

$$||h||_{*}^{2} = \sum_{n=-\infty}^{\infty} |n||\hat{h}(n)|^{2}.$$

~~

Eric Schippers (Manitoba)

Conformal welding theorem

Decomposition of \mathcal{H}_*

$$\mathcal{H}_{+} = \{h \in \mathcal{H}_{*} : h = \sum_{n=1}^{\infty} h_{n} e^{in\theta} \}$$
$$\mathcal{H}_{-} = \{h \in \mathcal{H}_{*} : h = \sum_{n=-\infty}^{-1} h_{n} e^{in\theta} \}.$$

Decomposition of \mathcal{H}_{\ast}

$$\mathcal{H}_{+} = \{h \in \mathcal{H}_{*} : h = \sum_{n=1}^{\infty} h_{n} e^{in\theta}\}$$

 $\mathcal{H}_{-} = \{h \in \mathcal{H}_{*} : h = \sum_{n=-\infty}^{-1} h_{n} e^{in\theta}\}.$

It is well-known that we have the following isometries

$$\begin{aligned} \mathcal{H}_+ &\cong & \mathcal{D}(\mathbb{D}) = \{h: \mathbb{D} \to \mathbb{C} \,:\, \iint_{\mathbb{D}} |h'|^2 \, dA < \infty \ h(0) = 0\} \\ \mathcal{H}_- &\cong & \mathcal{D}(\mathbb{D}^*) = \{h: \mathbb{D}^* \to \mathbb{C} \,:\, \iint_{\mathbb{D}^*} |h'|^2 \, dA < \infty \ h(\infty) = 0\} \end{aligned}$$

Summarized in Nag and Sullivan.

Composition operators on $\mathcal H$ and $\mathcal H_*$

We consider two composition operators

$$egin{aligned} & \mathcal{C}_\phi:\mathcal{H} o\mathcal{H} & \mathcal{C}_\phi h = h\circ\phi \ & \hat{\mathcal{C}}_\phi:\mathcal{H}_* o\mathcal{H}_* & \mathcal{C}_\phi h = h\circ\phi - rac{1}{2\pi}\int_{\mathcal{S}^1}h\circ\phi(m{e}^{m{i} heta})\,d heta. \end{aligned}$$

Composition operators on \mathcal{H} and \mathcal{H}_*

We consider two composition operators

$$egin{aligned} & \mathcal{C}_\phi:\mathcal{H} o\mathcal{H} & \mathcal{C}_\phi h = h\circ\phi \ & \hat{\mathcal{C}}_\phi:\mathcal{H}_* o\mathcal{H}_* & \mathcal{C}_\phi h = h\circ\phi - rac{1}{2\pi}\int_{\mathcal{S}^1}h\circ\phi(e^{i heta})\,d heta. \end{aligned}$$

Theorem (Nag and Sullivan, quoting notes of Zinsmeister) \hat{C}_{ϕ} is bounded if ϕ is a quasisymmetry.

Theorem (S and Staubach)

If ϕ is a quasisymmetry then C_{ϕ} is bounded.

Sketch of a new proof

Treat ϕ as a composition operator C_{ϕ} on \mathcal{H} : we want to solve for unknown functions *f* and *g* in equation $f \circ \phi^{-1} = g$, $g_{-1} = \alpha$.

Sketch of proof

Sketch of a new proof

Treat ϕ as a composition operator C_{ϕ} on \mathcal{H} : we want to solve for unknown functions *f* and *g* in equation $f \circ \phi^{-1} = g$, $g_{-1} = \alpha$.

Using the decomposition $\mathcal{H}=[\mathcal{H}_+]\oplus [\mathbb{C}\oplus \mathcal{H}_-],$ the welding equation can be written

$$C_{\phi}f = \begin{pmatrix} M_{++} & M_{+-} \\ M_{-+} & M_{--} \end{pmatrix} \begin{pmatrix} f \\ 0 \end{pmatrix} = \begin{pmatrix} g_{+} \\ g_{-} \end{pmatrix}$$

SO

Sketch of proof

Sketch of a new proof

Treat ϕ as a composition operator C_{ϕ} on \mathcal{H} : we want to solve for unknown functions *f* and *g* in equation $f \circ \phi^{-1} = g$, $g_{-1} = \alpha$.

Using the decomposition $\mathcal{H}=[\mathcal{H}_+]\oplus [\mathbb{C}\oplus \mathcal{H}_-],$ the welding equation can be written

$$C_{\phi}f = \left(egin{array}{cc} M_{++} & M_{+-} \ M_{-+} & M_{--} \end{array}
ight) \left(egin{array}{cc} f \ 0 \end{array}
ight) = \left(egin{array}{cc} g_{+} \ g_{-} \end{array}
ight)$$

SO

 $M_{++}f = g_+$ and $M_{+-}f = g_-$.

where $g_+ = g_{-1}z = \alpha z$ and $g_- = g_0 + g_1/z + g_2/z^2 + \cdots$.

Sketch of proof

Sketch of a new proof

Treat ϕ as a composition operator C_{ϕ} on \mathcal{H} : we want to solve for unknown functions *f* and *g* in equation $f \circ \phi^{-1} = g$, $g_{-1} = \alpha$.

Using the decomposition $\mathcal{H}=[\mathcal{H}_+]\oplus [\mathbb{C}\oplus \mathcal{H}_-],$ the welding equation can be written

$$C_{\phi}f = \left(egin{array}{cc} M_{++} & M_{+-} \ M_{-+} & M_{--} \end{array}
ight) \left(egin{array}{cc} f \ 0 \end{array}
ight) = \left(egin{array}{cc} g_{+} \ g_{-} \end{array}
ight)$$

SO

$$M_{++}f = g_+$$
 and $M_{+-}f = g_-$.

where $g_+ = g_{-1}z = \alpha z$ and $g_- = g_0 + g_1/z + g_2/z^2 + \cdots$.

which leads to the solution

$$f = M_{++}^{-1}g_+$$
 $g_- = M_{+-}f.$

What are the gaps?

We need to show that

- *M*₊₊ is invertible: will use symplectic geometry and results of Nag and Sullivan, Takhtajan and Teo.
- The solutions in \mathcal{H} so obtained have the desired properties: conformal with quasiconformal extensions: will use Grunsky inequalities.

What are the gaps?

We need to show that

- *M*₊₊ is invertible: will use symplectic geometry and results of Nag and Sullivan, Takhtajan and Teo.
- The solutions in \mathcal{H} so obtained have the desired properties: conformal with quasiconformal extensions: will use Grunsky inequalities.

Here we go!

Symplectic structure on \mathcal{H}_*

For $f, g \in \mathcal{H}_*$ let

$$\omega(f,g)=-i\sum_{n=-\infty}^{\infty}f_ng_{-n}.$$

If one restricts to the real subspace (such that $\hat{f}(-n) = \hat{f}(n)$) this is a non-degenerate anti-symmetric form $2 \text{Im} \left(\sum_{n=1}^{\infty} \hat{f}(n) \hat{g}(n) \right)$.

Symplectic structure on \mathcal{H}_*

For $f, g \in \mathcal{H}_*$ let

$$\omega(f,g)=-i\sum_{n=-\infty}^{\infty}f_ng_{-n}.$$

If one restricts to the real subspace (such that $\hat{f}(-n) = \hat{f}(n)$) this is a non-degenerate anti-symmetric form $2 \text{Im} \left(\sum_{n=1}^{\infty} \hat{f}(n) \hat{g}(n) \right)$.

Theorem (Nag and Sullivan)

If $\phi : S^1 \to S^1$ is quasisymmetric then \hat{C}_{ϕ} is a symplectomorphism (that is, $\omega(\hat{C}_{\phi}f, \hat{C}_{\phi}g) = \omega(f, g)$).

Note that \hat{C}_{ϕ} has the form

$$\left(\begin{array}{cc} A & B \\ \overline{B} & \overline{A} \end{array}\right)$$

The infinite Siegel disc (Nag and Sullivan)

Definition

The infinite Siegel disc \mathfrak{S} is the set of maps $Z : \mathcal{H}_{-} \to \mathcal{H}_{+}$ such that $Z^{T} = Z$ and $I - Z\overline{Z}$ is positive definite.

The infinite Siegel disc (Nag and Sullivan)

Definition

The infinite Siegel disc \mathfrak{S} is the set of maps $Z : \mathcal{H}_{-} \to \mathcal{H}_{+}$ such that $Z^{T} = Z$ and $I - Z\overline{Z}$ is positive definite.

Context:

- the graph of each Z is a Lagrangian subspaces of \mathcal{H}_*
- symplectomorphisms \hat{C}_{ϕ} act on them.

Definition

Let ${\mathcal L}$ be the set of bounded linear maps of the form

$$(P, Q) : \mathcal{H}_{-}
ightarrow \mathcal{H}_{*}$$

where $P : \mathcal{H}_{-} \to \mathcal{H}_{+}$ and $Q : \mathcal{H}_{-} \to \mathcal{H}_{-}$ are bounded operators satisfying $\overline{P}^{T}P - \overline{Q}^{T}Q > 0$ and $Q^{T}P = P^{T}Q$.

Two facts

- *Q* invertible $\Rightarrow PQ^{-1} \in \mathfrak{S} \Leftrightarrow (P, Q) \in \mathcal{L}$.
- $(P, Q)Q^{-1} = (PQ^{-1}, I)$ has the same image as (P, Q)

Invariance of ${\cal L}$

 $\ensuremath{\mathcal{L}}$ is invariant under bounded symplectomorphisms.

Proposition

If Ψ is a bounded symplectomorphism which preserves $\mathcal{H}_{\mathbb{R}\,*}$ then

$$\Psi\left(\begin{array}{c} P\\ Q\end{array}
ight)\in\mathcal{L}.$$

Invertibility

Proposition

If $(P, Q) \in \mathcal{L}$ then Q has a left inverse.

Invertibility

Proposition

If $(P, Q) \in \mathcal{L}$ then Q has a left inverse.

Proof.

If $Q\mathbf{v} = 0$ then by the positive-definiteness of $\overline{Q}^T Q - \overline{P}^T P$

$$0 \leq \overline{\boldsymbol{v}}^T \left(\overline{\boldsymbol{Q}}^T \boldsymbol{Q} - \overline{\boldsymbol{P}}^T \boldsymbol{P} \right) \boldsymbol{v} = -\overline{\boldsymbol{v}}^T \overline{\boldsymbol{P}}^T \boldsymbol{P} \boldsymbol{v} = - \| \boldsymbol{P} \boldsymbol{v} \|^2.$$

Thus Pv = 0. This implies that $\overline{\mathbf{v}}^T \left(\overline{Q}^T Q - \overline{P}^T P \right) \mathbf{v} = 0$ so $\mathbf{v} = 0$. Thus Q is injective, or equivalently Q has a left inverse.

Invertibility of A

Note that $A = M_{++}$, the matrix we needed to show was invertible.

Theorem (S, Staubach)

Let $\phi: S^1 \to S^1$ be a quasisymmetry, with

$$\hat{C}_{\phi^{-1}}=\left(egin{array}{cc} A & B \ \overline{B} & \overline{A} \end{array}
ight).$$

Then A is invertible and $Z = B\overline{A}^{-1} \in \mathfrak{S}$.

Invertibility of A

Note that $A = M_{++}$, the matrix we needed to show was invertible.

Theorem (S, Staubach)

Let $\phi: S^1 \to S^1$ be a quasisymmetry, with

$$\hat{C}_{\phi^{-1}} = \left(egin{array}{cc} A & B \ \overline{B} & \overline{A} \end{array}
ight).$$

Then A is invertible and $Z = B\overline{A}^{-1} \in \mathfrak{S}$.

Note: This theorem was proven originally by Takhtajan and Teo. However their proof uses the conformal welding theorem, so we must provide a new one.

Proof

Proof: Invertibility of *A*:

$$\left(\begin{array}{cc} A & B \\ \overline{B} & \overline{A} \end{array}\right) \cdot \left(\begin{array}{c} 0 \\ I \end{array}\right) = \left(\begin{array}{c} B \\ \overline{A} \end{array}\right) \in \mathcal{L}.$$

So \overline{A} has a left inverse.

Proof

Proof: Invertibility of A:

$$\left(\begin{array}{cc} A & B \\ \overline{B} & \overline{A} \end{array}\right) \cdot \left(\begin{array}{c} 0 \\ I \end{array}\right) = \left(\begin{array}{c} B \\ \overline{A} \end{array}\right) \in \mathcal{L}.$$

So \overline{A} has a left inverse. Apply to ϕ^{-1} (also a quasisymmetry)

$$\hat{C}_{\phi} = \left(egin{array}{cc} \overline{A}^{T} & -B^{T} \ -\overline{B}^{T} & A^{T} \end{array}
ight).$$

So \overline{A}^{T} has a left inverse; thus *A* is a bounded bijection so it is invertible.

Let $Z = B\overline{A}^{-1}$.

Let
$$Z = B\overline{A}^{-1}$$
.
Recall:

$$(B,\overline{A})\in\mathcal{L}\Rightarrow B\overline{A}^{-1}\in\mathfrak{S}.$$

Definition of Grunsky matrix

Let

$$g(z) = g_{-1}z + g_0 + g_1z + g_2z^2 + \cdots$$

The Grunsky matrix b_{mn} of g is defined by

$$\log \frac{g(z) - g(w)}{z - w} = \sum_{m,n=1}^{\infty} b_{mn} z^m w^n.$$

Grunsky matrix and welding maps

Theorem (Takhtajan and Teo)

Let $f(z) = f_1 z + f_2 z^2 + \cdots \in \mathcal{D}(\mathbb{D})$ and $g = g_{-1} z + g_-$ where $g_- \in \mathcal{D}(\mathbb{D}^*)$, and let $\phi : \mathbb{S}^1 \to \mathbb{S}^1$ be a quasisymmetry. Assume that $g \circ \phi = f$ on \mathbb{S}^1 . Let

$$\hat{C}_{\phi} = \left(egin{array}{cc} \mathfrak{A} & \mathfrak{B} \ \mathfrak{B} & \mathfrak{A} \end{array}
ight)$$
 and $\hat{C}_{\phi^{-1}} = \left(egin{array}{cc} A & B \ \overline{B} & \overline{A} \end{array}
ight)$

If g₋₁ ≠ 0, then the Grunsky matrix of g is BA⁻¹.
 If f₁ ≠ 0, then the Grunsky matrix of f is BΩ⁻¹.

(1)

Grunsky matrix and welding maps

Theorem (Takhtajan and Teo)

Let $f(z) = f_1 z + f_2 z^2 + \cdots \in \mathcal{D}(\mathbb{D})$ and $g = g_{-1} z + g_-$ where $g_- \in \mathcal{D}(\mathbb{D}^*)$, and let $\phi : \mathbb{S}^1 \to \mathbb{S}^1$ be a quasisymmetry. Assume that $g \circ \phi = f$ on \mathbb{S}^1 . Let

$$\hat{C}_{\phi} = \left(egin{array}{cc} \mathfrak{A} & \mathfrak{B} \ \mathfrak{B} & \mathfrak{A} \end{array}
ight) \quad \textit{and} \quad \hat{C}_{\phi^{-1}} = \left(egin{array}{cc} A & B \ \overline{B} & \overline{A} \end{array}
ight)$$

• If $g_{-1} \neq 0$, then the Grunsky matrix of g is $\overline{B}A^{-1}$.

2 If $f_1 \neq 0$, then the Grunsky matrix of f is $\overline{\mathfrak{B}}\mathfrak{A}^{-1}$.

Note: Their statement assumes that f and g are the maps in the conformal welding theorem. However their *proof* only uses the assumptions above and invertibility of g.

Eric Schippers (Manitoba)

Conformal welding theorem

(1)

Recap: proof of conformal welding theorem

Proof:

(1) For a quasisymmetry ϕ .

$$\hat{C}_{\phi^{-1}} = \left(egin{array}{cc} A & B \ \overline{B} & \overline{A} \end{array}
ight)$$

A is invertible.

Recap: proof of conformal welding theorem

Proof:

(1) For a quasisymmetry ϕ .

$$\hat{C}_{\phi^{-1}} = \left(egin{array}{cc} A & B \ \overline{B} & \overline{A} \end{array}
ight)$$

A is invertible.

(2) We may find $f, g \in \mathcal{H}$ such that $f \circ \phi^{-1} = g$ using

$$C_{\phi^{-1}}f=\left(egin{array}{cc} M_{++}&M_{+-}\ M_{-+}&M_{--}\end{array}
ight)\left(egin{array}{cc} f\ 0\end{array}
ight)=\left(egin{array}{cc} g_+\ g_-\end{array}
ight)$$

where $g_+ = g_{-1}z = \alpha z$ and $g_- = g_0 + g_1/z + g_2/z^2 + \cdots$ which has the solution

$$f = M_{++}^{-1}g_+$$
 $g_- = M_{+-}f.$

Note that $M_{++} = A$.

(3) $B\overline{A}^{-1}$ is the Grunsky matrix of *g* under these assumptions, by the theorem of Takhtajan and Teo.

(3) $B\overline{A}^{-1}$ is the Grunsky matrix of *g* under these assumptions, by the theorem of Takhtajan and Teo.

(4) $Z = B\overline{A}^{-1}$ satsifies $I - Z\overline{Z}$ is positive definite since $Z \in \mathfrak{S}$. Thus $||Z|| \le k < 1$ some *k*.

(3) $B\overline{A}^{-1}$ is the Grunsky matrix of *g* under these assumptions, by the theorem of Takhtajan and Teo.

(4) $Z = B\overline{A}^{-1}$ satsifies $I - Z\overline{Z}$ is positive definite since $Z \in \mathfrak{S}$. Thus $||Z|| \le k < 1$ some *k*.

(5) By a classical theorem of Pommerenke if $||Z|| \le k < 1$ then *g* is univalent and quasiconformally extendible. A bit of work shows the same for *f*.

References

- Lehto, Olli. Univalent functions and Teichmüller spaces. Graduate Texts in Mathematics 109 Springer-Verlag, New York, 1987.
- Nag, Subhashis; Sullivan, Dennis. Teichmüller theory and the universal period mapping via quantum calculus and the H^{1/2} space on the circle. Osaka Journal of Mathematics **32** (1995), no. 1, 1–34.
- Pommerenke, Christian Univalent functions. Vandenhoeck & Ruprecht, Göttingen (1975).
- Tatkhajan, Leon A. and Teo, Lee-Peng. Weil-Petersson metric on the universal Teichmüller space. Memoirs of the American Mathematical Society 183 (2006), no. 861.
- Vaisman, Izu. Symplectic geometry and secondary characteristic classes. Progress in Mathematics, 72. Birkhäuser Boston, Inc., Boston, MA, 1987.