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Two variational methods Hadamard variation

Hadamard variation
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Two variational methods Hadamard variation

Advantages and drawbacks

Drawback
Cannot be anchored at an extremal domain (generically not
smooth)

Advantage
Can reach a lot of “nearby” domains

But not really all of them:

Motivation for getting “all” of them:
Can prove monotonicity theorems: D1 ⊂ D2 ⇒ I(D1) ⊂ I(D2).

Won’t pursue monotonicity theorems in this talk.
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Two variational methods Hadamard variation

An improvement of Hadamard formula

nu

u(s)
∂Ωt
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4n(u, t , r)

νt (u) := d
dr
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r=04n(u, t , r)

Theorem (S 2004)

Let Ωt , t ∈ (a,b) be a family of domains, bounded by C2 curves such
that Ωs ⊂ Ωt whenever s ≤ t and the curves describe a C2 injective
homotopy. Then
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Two variational methods Loewner variation

Loewner chains

Definition
A Loewner chain is a one-parameter family of holomorphic maps
ft : D→ C:

1 ft (0) = 0, f ′t (0) = et

2 ft one-to-one
3 t ≤ s ⇒ ft (D) ⊂ fs(D)

Infinitesimal generators of Loewner chains:
P = {p : D→ C, p(0) = 1}
Loewner chains satisfy the Loewner PDE: ∃pt ∈ P, measurable in t ,
such that a.e. in t

dft
dt

(z) = zpt (z)f ′t (z).
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Relation between the Hadamard and Loewner variations The problem

The Problem

Every smooth injective homotopy of simply connected domains is a
Loewner chain (perhaps after reparameterization).

Conversely P should generate all outward directions.

Problem: What is the relation between Loewner and Hadamard
variation?

Relate the Loewner infinitesimal generator pt to Hadamard
infinitesimal generator νt .
For a fixed initial domain D = f (D), can you move in any direction
p ∈ P?

Heins[71] derived a Loewner equation for Green’s function.
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Relation between the Hadamard and Loewner variations The solution

The Solution

Notation:
ft a Loewner chain, pt ∈ P the infinitesimal generator
u(s) parametrizes the boundary of ft (∂D) w.r.t. arc length
νt (u) the infinitesimal generator of generalized Hadamard formula

Theorem (Roth and S, 08)
Let ft be a Loewner chain, satisfying

ḟt = zpt f ′t (z)

such that F (t , s) = ft (eis) is a C2 injective homotopy of closed curves.

νt (u) = −Re
(

1
i
f−1
t (u)f ′ ◦ f−1

t (u)pt ◦ f−1
t (u)

dū
ds

)
.
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Relation between the Hadamard and Loewner variations The solution

A picture of the proof

u = ft(z)

ft+r (z)

4n(u, t , r)

νt (u) = Re
(

ḟt (z)n(t ,u)
)

= −Re
(

zpt (z)f ′t (z)
1
i

dū
ds

)

Remark:
The expression f−1

t f ′ ◦ f−1
t pt ◦ f−1

t is Adf zp in some sense.

If pt = p is constant and f0(z) = z, then f−1
t f ′ ◦ f−1

t pt ◦ f−1
t = p
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Applications Improved existence theorem for Loewner differential equations

Existence theorem

Theorem (Roth and S, 2008)
Let f be 1-1, p satisfy the following conditions:

f : D→ D0, f ∈ C3(D)

p ∈ P ∩ C2(D)

There exists a Loewner chain ft on [0,T ] satisfying f0 = f ,
ḟt (z) = zpt (z)f ′t (z) and p0 = p.

Proof.
Use a normal variation (s, r) 7→ u(s) + ν(u(s))r at each point u on the
boundary, where ν(u) is chosen to generate p.

Question: How much can you weaken the conditions?
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Applications Improved existence theorem for Loewner differential equations

Some examples

Example: for some f0 there is no Loewner chain ft

f0

Remark: There may be a solution that continues to be analytic on the
disc, but not univalent.
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Applications Improved existence theorem for Loewner differential equations

Question: Is there a Loewner chain with f0(z) = z and for |κ| = 1

p0 =
1 + κ

1− κ
?

Did not answer but:

Example: For

pt =
1 + e−3tz
1− e−3tz

the solution to ḟt (z) = zpt (z)f ′t (z) with f0(z) = z is

ft = 1−
√

1− 2etz + e−2tz2.

Not analytic on D for any t > 0!

Asymmetry: there is always a solution to ḟt (z) = −zpt (z)f ′t (z),
f0(z) = z.
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Applications Improved existence theorem for Loewner differential equations

Loewner ordinary differential equation

A naive attempt at a proof of existence theorem
Given p, solve ẇs,t = −ws,t pt ◦ ws,t with p0 = p, ws,s(z) = z

Get your Loewner chain fs = limt→∞ etws,t (z), which satisfies
Loewner PDE
Problem: not free to specify f0 = limt→∞ etw0,t

Corollary (Roth and S, 2008)
For f : D→ C and p ∈ P which are sufficiently smooth, there exists a
pt , solution to the Loewner ODE

ẇt = −wt pt ◦ wt

on [0,∞) such that w0(z) = z, p0 = p and limt→∞ etwt = f .
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Applications Improving the Hadamard variational formula still further

Relation with Heins’ Loewner equation for Green’s
function

Recall Heins derived a Loewner equation for Green’s function.
What’s the relation of Heins’ equation with generalized Hadamard
variation?

Heins’ Loewner equation for Green’s function is recovered from
the generalized Hadamard formula

You can generalize the (generalized) Hadamard formula to any
Loewner chain (i.e. remove smoothness)
In fact can let ν = dµ for some µ increasing and of bounded
variation in Hadamard variational formula for inward variations.
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Applications Improvement of Loewner PDE

Loewner PDE for any subordination chain

Finally, can prove Loewner’s equation for arbitrary subordination
chains - no smoothness assumption on f ′t (0)

Theorem (Roth and S, 2008)

Let ft : D→ C, t ∈ [0,T ], ft (0) = 0, be univalent maps satisfying
s < t ⇒ fs(D) ⊂ ft (D). There is a pt such that Re(p) > 0, measurable
in t, such that

ḟt (z) = zpt (z)f ′t (z)

a.e. in t.

Proof.
Use Hein’s idea of deriving the Loewner equation from a Loewner
equation for Green’s function.
Green’s function is monotonic, and hence differentiable a.e.
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