The Loewner and Hadamard variations

Oliver Roth¹ Eric Schippers²

¹Department of Mathematics University of Würzburg Würzburg, Germany

²Department of Mathematics University of Manitoba Winnipeg, Canada

CMFT 2009, Ankara

Table of contents

Two variational methods

- Hadamard variation
- Loewner variation

Relation between the Hadamard and Loewner variations

- The problem
- The solution

- Improved existence theorem for Loewner differential equations
- Improving the Hadamard variational formula still further
- Improvement of Loewner PDE

Hadamard variation

Hadamard variation

 g_t = Green's function, n = outward normal, s = arc length

The formula:

$$\frac{dg_t}{dt}(z,\zeta) = \frac{1}{2\pi} \int_{\partial\Omega_t} \frac{\partial g_t}{\partial n_u}(u,z) \frac{\partial g}{\partial n_u}(u,\zeta) \phi(s_u) ds_u.$$

Eric Schippers (MAN)

Drawback

• Cannot be anchored at an extremal domain (generically not smooth)

Drawback

Cannot be anchored at an extremal domain (generically not smooth)

Advantage

• Can reach a lot of "nearby" domains

Drawback

Cannot be anchored at an extremal domain (generically not smooth)

Advantage

- Can reach a lot of "nearby" domains
- But not really all of them:

Drawback

Cannot be anchored at an extremal domain (generically not smooth)

Advantage

- Can reach a lot of "nearby" domains
- But not really all of them:

Motivation for getting "all" of them:

- Can prove monotonicity theorems: $D_1 \subset D_2 \Rightarrow I(D_1) \subset I(D_2)$.
- Won't pursue monotonicity theorems in this talk.

Eric Schippers (MAN)

Loewner and Hadamard

An improvement of Hadamard formula

Hadamard variation

An improvement of Hadamard formula

An improvement of Hadamard formula

Theorem (S 2004)

Let Ω_t , $t \in (a, b)$ be a family of domains, bounded by C^2 curves such that $\Omega_s \subset \Omega_t$ whenever $s \leq t$ and the curves describe a C^2 injective homotopy. Then

$$\frac{dg_t}{dt}(z,\zeta) = \frac{1}{2\pi} \int_{\partial\Omega_t} \frac{\partial g_t}{\partial n_u}(u,z) \frac{\partial g}{\partial n_u}(u,\zeta) \nu_t(u) ds_u.$$

Loewner variation

Loewner chains

Definition

A Loewner chain is a one-parameter family of holomorphic maps $f_t: \mathbb{D} \to \mathbb{C}$:

1
$$f_t(0) = 0, f'_t(0) = e^t$$

- If one-to-one

Loewner variation

Loewner chains

Definition

A Loewner chain is a one-parameter family of holomorphic maps $f_t: \mathbb{D} \to \mathbb{C}$:

1
$$f_t(0) = 0, f'_t(0) = e^t$$

If one-to-one

$$1 \leq s \Rightarrow f_t(\mathbb{D}) \subset f_s(\mathbb{D})$$

Infinitesimal generators of Loewner chains:

 $\mathcal{P} = \{ \boldsymbol{p} : \mathbb{D} \to \mathbb{C}, \ \boldsymbol{p}(0) = 1 \}$ **Loewner chains satisfy the Loewner PDE**: $\exists p_t \in \mathcal{P}$, measurable in *t*, such that a.e. in t

$$\frac{df_t}{dt}(z) = zp_t(z)f'_t(z).$$

Every smooth injective homotopy of simply connected domains is a Loewner chain (perhaps after reparameterization).

Conversely \mathcal{P} should generate all outward directions.

Every smooth injective homotopy of simply connected domains is a Loewner chain (perhaps after reparameterization).

Conversely \mathcal{P} should generate all outward directions.

Problem: What is the relation between Loewner and Hadamard variation?

Every smooth injective homotopy of simply connected domains is a Loewner chain (perhaps after reparameterization).

Conversely \mathcal{P} should generate all outward directions.

Problem: What is the relation between Loewner and Hadamard variation?

- Relate the Loewner infinitesimal generator p_t to Hadamard infinitesimal generator v_t .
- For a fixed initial domain D = f(D), can you move in any direction p ∈ P?

Every smooth injective homotopy of simply connected domains is a Loewner chain (perhaps after reparameterization).

Conversely \mathcal{P} should generate all outward directions.

Problem: What is the relation between Loewner and Hadamard variation?

- Relate the Loewner infinitesimal generator p_t to Hadamard infinitesimal generator v_t .
- For a fixed initial domain D = f(D), can you move in any direction p ∈ P?

Heins[71] derived a Loewner equation for Green's function.

The Solution

Notation:

- f_t a Loewner chain, $p_t \in \mathcal{P}$ the infinitesimal generator
- u(s) parametrizes the boundary of $f_t(\partial \mathbb{D})$ w.r.t. arc length
- $\nu_t(u)$ the infinitesimal generator of generalized Hadamard formula

The Solution

Notation:

- f_t a Loewner chain, $p_t \in \mathcal{P}$ the infinitesimal generator
- u(s) parametrizes the boundary of $f_t(\partial \mathbb{D})$ w.r.t. arc length
- $\nu_t(u)$ the infinitesimal generator of generalized Hadamard formula

Theorem (Roth and S, 08)

Let f_t be a Loewner chain, satisfying

$$\dot{f}_t = z p_t f'_t(z)$$

such that $F(t, s) = f_t(e^{is})$ is a C^2 injective homotopy of closed curves.

$$\nu_t(u) = -Re\left(\frac{1}{i}f_t^{-1}(u)f' \circ f_t^{-1}(u)p_t \circ f_t^{-1}(u)\frac{d\bar{u}}{ds}\right)$$

A picture of the proof

$$\nu_t(u) = \operatorname{\mathsf{Re}}\left(\dot{f}_t(z)\overline{n(t,u)}\right) = -\operatorname{\mathsf{Re}}\left(zp_t(z)f'_t(z)\frac{1}{i}\frac{d\bar{u}}{ds}\right)$$

A picture of the proof

$$\nu_t(u) = \operatorname{\mathsf{Re}}\left(\dot{f}_t(z)\overline{n(t,u)}\right) = -\operatorname{\mathsf{Re}}\left(zp_t(z)f'_t(z)\frac{1}{i}\frac{d\bar{u}}{ds}\right)$$

Remark:

- The expression $f_t^{-1} f' \circ f_t^{-1} p_t \circ f_t^{-1}$ is $Ad_f zp$ in some sense.
- If $p_t = p$ is constant and $f_0(z) = z$, then $f_t^{-1}f' \circ f_t^{-1}p_t \circ f_t^{-1} = p$

Existence theorem

Theorem (Roth and S, 2008)

Let f be 1-1, p satisfy the following conditions:

•
$$f:\mathbb{D} o D_0,\,f\in C^3(\overline{\mathbb{D}})$$

• $p \in \mathcal{P} \cap C^2(\overline{\mathbb{D}})$

There exists a Loewner chain f_t on [0, T] satisfying $f_0 = f$, $f_t(z) = zp_t(z)f'_t(z)$ and $p_0 = p$.

Proof.

Use a normal variation $(s, r) \mapsto u(s) + \nu(u(s))r$ at each point *u* on the boundary, where $\nu(u)$ is chosen to generate *p*.

Existence theorem

Theorem (Roth and S, 2008)

Let f be 1-1, p satisfy the following conditions:

•
$$f:\mathbb{D} o D_0,\,f\in C^3(\overline{\mathbb{D}})$$

• $p \in \mathcal{P} \cap C^2(\overline{\mathbb{D}})$

There exists a Loewner chain f_t on [0, T] satisfying $f_0 = f$, $f_t(z) = zp_t(z)f'_t(z)$ and $p_0 = p$.

Proof.

Use a normal variation $(s, r) \mapsto u(s) + \nu(u(s))r$ at each point *u* on the boundary, where $\nu(u)$ is chosen to generate *p*.

Question: How much can you weaken the conditions?

Eric Schippers (MAN)

Loewner and Hadamard

Some examples

Example: for some f_0 there is no Loewner chain f_t

Remark: There may be a solution that continues to be analytic on the disc, but not univalent.

Question: Is there a Loewner chain with $f_0(z) = z$ and for $|\kappa| = 1$

$$p_0 = \frac{1+\kappa}{1-\kappa}?$$

Did not answer but:

Question: Is there a Loewner chain with $f_0(z) = z$ and for $|\kappa| = 1$

$$p_0 = rac{1+\kappa}{1-\kappa}?$$

Did not answer but: **Example:** For

$$p_t = \frac{1 + e^{-3t}z}{1 - e^{-3t}z}$$

the solution to $f_t(z) = zp_t(z)f'_t(z)$ with $f_0(z) = z$ is

$$f_t = 1 - \sqrt{1 - 2e^t z + e^{-2t} z^2}.$$

Not analytic on \mathbb{D} for any t > 0!

Question: Is there a Loewner chain with $f_0(z) = z$ and for $|\kappa| = 1$

$$p_0 = rac{1+\kappa}{1-\kappa}?$$

Did not answer but: **Example:** For

$$p_t = \frac{1 + e^{-3t}z}{1 - e^{-3t}z}$$

the solution to $\dot{f}_t(z) = zp_t(z)f'_t(z)$ with $f_0(z) = z$ is

$$f_t = 1 - \sqrt{1 - 2e^t z + e^{-2t} z^2}.$$

Not analytic on \mathbb{D} for any t > 0!

Asymmetry: there is always a solution to $f_t(z) = -zp_t(z)f'_t(z)$, $f_0(z) = z$.

A naive attempt at a proof of existence theorem

• Given
$$p$$
, solve $\dot{w}_{s,t} = -w_{s,t} p_t \circ w_{s,t}$ with $p_0 = p$, $w_{s,s}(z) = z$

A naive attempt at a proof of existence theorem

- Given p, solve $\dot{w}_{s,t} = -w_{s,t} p_t \circ w_{s,t}$ with $p_0 = p$, $w_{s,s}(z) = z$
- Get your Loewner chain $f_s = \lim_{t\to\infty} e^t w_{s,t}(z)$, which satisfies Loewner PDE

A naive attempt at a proof of existence theorem

- Given p, solve $\dot{w}_{s,t} = -w_{s,t} p_t \circ w_{s,t}$ with $p_0 = p$, $w_{s,s}(z) = z$
- Get your Loewner chain $f_s = \lim_{t\to\infty} e^t w_{s,t}(z)$, which satisfies Loewner PDE
- Problem: not free to specify $f_0 = \lim_{t\to\infty} e^t w_{0,t}$

A naive attempt at a proof of existence theorem

- Given p, solve $\dot{w}_{s,t} = -w_{s,t} p_t \circ w_{s,t}$ with $p_0 = p$, $w_{s,s}(z) = z$
- Get your Loewner chain $f_s = \lim_{t\to\infty} e^t w_{s,t}(z)$, which satisfies Loewner PDE
- Problem: not free to specify $f_0 = \lim_{t\to\infty} e^t w_{0,t}$

Corollary (Roth and S, 2008)

For $f : \mathbb{D} \to \mathbb{C}$ and $p \in \mathcal{P}$ which are sufficiently smooth, there exists a p_t , solution to the Loewner ODE

$$\dot{w}_t = -w_t \, p_t \circ w_t$$

on $[0,\infty)$ such that $w_0(z) = z$, $p_0 = p$ and $\lim_{t\to\infty} e^t w_t = f$.

Relation with Heins' Loewner equation for Green's function

Recall Heins derived a Loewner equation for Green's function. What's the relation of Heins' equation with generalized Hadamard variation?

• Heins' Loewner equation for Green's function is recovered from the generalized Hadamard formula

Relation with Heins' Loewner equation for Green's function

Recall Heins derived a Loewner equation for Green's function. What's the relation of Heins' equation with generalized Hadamard variation?

- Heins' Loewner equation for Green's function is recovered from the generalized Hadamard formula
- You can generalize the (generalized) Hadamard formula to any Loewner chain (i.e. remove smoothness)

Relation with Heins' Loewner equation for Green's function

Recall Heins derived a Loewner equation for Green's function. What's the relation of Heins' equation with generalized Hadamard variation?

- Heins' Loewner equation for Green's function is recovered from the generalized Hadamard formula
- You can generalize the (generalized) Hadamard formula to any Loewner chain (i.e. remove smoothness)
- In fact can let $\nu = d\mu$ for some μ increasing and of bounded variation in Hadamard variational formula for inward variations.

Loewner PDE for any subordination chain

Finally, can prove Loewner's equation for arbitrary subordination chains - no smoothness assumption on $f'_t(0)$

Theorem (Roth and S, 2008)

Let $f_t : \mathbb{D} \to \mathbb{C}$, $t \in [0, T]$, $f_t(0) = 0$, be univalent maps satisfying $s < t \Rightarrow f_s(\mathbb{D}) \subset f_t(\mathbb{D})$. There is a p_t such that Re(p) > 0, measurable in t, such that

 $\dot{f}_t(z) = zp_t(z)f'_t(z)$

a.e. in t.

Loewner PDE for any subordination chain

Finally, can prove Loewner's equation for arbitrary subordination chains - no smoothness assumption on $f'_t(0)$

Theorem (Roth and S, 2008)

Let $f_t : \mathbb{D} \to \mathbb{C}$, $t \in [0, T]$, $f_t(0) = 0$, be univalent maps satisfying $s < t \Rightarrow f_s(\mathbb{D}) \subset f_t(\mathbb{D})$. There is a p_t such that Re(p) > 0, measurable in t, such that

$$\dot{f}_t(z) = z p_t(z) f'_t(z)$$

a.e. in t.

Proof.

- Use Hein's idea of deriving the Loewner equation from a Loewner equation for Green's function.
- Green's function is monotonic, and hence differentiable a.e.