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Outline

Goals etc

Work is joint with either David Radnell (American Univ. of Sharjah). or
Wolfgang Staubach (Uppsala Universitet) or both.

Goals - Rigorously construct two-dimensional conformal field theory
according to Segal, Kontsevich and others.

- Resolve analytic issues arising in a program of Yi-Zhi Huang
(Rutgers) for constructing CFT from vertex operator algebras

- Partly we are exploiting the overlap between the fields to get new
results in geometric function theory and Teichmüller theory.

- My own goal: certain approach to conformal invariants and index
theorems.
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Teichmüller theory

Deformations of Riemann surfaces

Quasiconformal Teichmüller theory in a nutshell:
1 Teichmüller space is the set of deformations of Riemann surfaces
2 Local deformations are quasiconformal maps.

3 It imposes a *weaker* equivalence than conformal equivalence.
4 Teichmüller space can be modelled by function spaces (in several

ways); locally it is a Banach space.
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Teichmüller theory

Idea of quasiconformal map
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A quasiconformal map is one such that the Jacobian matrix takes
circles to ellipses of bounded distortion: i.e. ratio of the major to minor
axes is bounded by a fixed constant.

Idea: angle is distorted.
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Teichmüller theory

Precise definition

Let A,B ⊂ C be open and connected.

Definition
A quasiconformal map f : A→ B is an orientation-preserving
homeomorphism such that

1 f is absolutely continuous on horizontal and vertical lines
2 There is a fixed constant k < 1 such that∣∣∣∣ ∂f

∂z̄

∣∣∣∣ ≤ k
∣∣∣∣ ∂f
∂z

∣∣∣∣

Quasiconformal maps have a weaker local condition but a stronger
global condition than a diffeomorphism.
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Teichmüller theory

Teichmüller space

Definition
Fix a Riemann surface Σ. Its Teichmüller space T (Σ) is

{(Σ, f ,Σ1)}/ ∼

where f : Σ→ Σ1 is quasiconformal and

(Σ, f1,Σ1) ∼ (Σ, f2,Σ2)

if there’s a biholomorphism σ : Σ1 → Σ2 such that f−1
2 ◦ σ ◦ f1 is

homotopic to the identity rel boundary.

rel boundary means the homotopy is the identity map on the
boundary of Σ.

Eric Schippers (Manitoba) Analytic Problems in CFT Infinite-Dimensional Geometry 7 / 1



Teichmüller theory

Teichmüller space

Definition
Fix a Riemann surface Σ. Its Teichmüller space T (Σ) is

{(Σ, f ,Σ1)}/ ∼

where f : Σ→ Σ1 is quasiconformal and

(Σ, f1,Σ1) ∼ (Σ, f2,Σ2)

if there’s a biholomorphism σ : Σ1 → Σ2 such that f−1
2 ◦ σ ◦ f1 is

homotopic to the identity rel boundary.

rel boundary means the homotopy is the identity map on the
boundary of Σ.

Eric Schippers (Manitoba) Analytic Problems in CFT Infinite-Dimensional Geometry 7 / 1



Teichmüller theory

Teichmüller space

Definition
Fix a Riemann surface Σ. Its Teichmüller space T (Σ) is

{(Σ, f ,Σ1)}/ ∼

where f : Σ→ Σ1 is quasiconformal and

(Σ, f1,Σ1) ∼ (Σ, f2,Σ2)

if there’s a biholomorphism σ : Σ1 → Σ2 such that f−1
2 ◦ σ ◦ f1 is

homotopic to the identity rel boundary.

rel boundary means the homotopy is the identity map on the
boundary of Σ.

Eric Schippers (Manitoba) Analytic Problems in CFT Infinite-Dimensional Geometry 7 / 1



Teichmüller theory

Teichmüller equivalence

f−1
2 ◦ σ ◦ f1 is homotopic to the identity.

Σ

Σ2

f1 f2

Σ1 σ

Σ compact minus
points⇒ T (Σ)
finite dimensional.
Σ has boundary
curves⇒ T (Σ)
infinite
dimensional.
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Teichmüller theory

Complex structures on Teichmüller space

Theorem (Ahlfors, 1960)
Let R be a compact Riemann surface of genus g with n points
removed. Assume that 2g − 2 + n > 0. The Teichmüller space of R is
a 3g − 3 + n dimensional complex manifold.

More generally,

Theorem (Bers, 1964,1965)
The Teichmüller space of a Riemann surface is a complex Banach
manifold.
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Teichmüller theory

Example: universal Teichmüller space

Let Σ be the disc D∗ = {z : |z| > 1} ∪ {∞}.
Let µ ∈ L∞(D∗), ‖µ‖∞ = k < 1. Let fµ : D∗ → Σ1 be the solution to the
Beltrami differential equation

∂f
∂f

= µ.

Let gµ be the quasiconformal map satisfying
1 ∂g/∂g = µ on D∗
2 ∂g/∂g = 0 on D
3 g(0) = 0, g′(0) = 1, g′′(0) = 0.

Teichmüller equivalence: [D∗, fµ,Σ1] = [D∗, fν ,Σ2] if and only if gµ = gν
on D.

So T (D∗) is a function space of conformal maps g : D→ C.
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Teichmüller theory

Example continued

Let S(g) denote the Schwarzian derivative

S(g) =
g′′′

g′
− 3

2

(
g′′

g′

)
.

Theorem (Bers, classical)
The set of Schwarzian derivatives of g arising from the Teichmüller
space above is an open subset of the Banach space of holomorphic
functions

{h : D→ C : ‖(1− |z|2)2h(z)‖∞ <∞}.
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Teichmüller theory

Quasisymmetries

Quasisymmetries = QS(S1) = boundary values of quasiconformal
maps of D.

AnalyticDiff(S1) ( Diff(S1) ( QS(S1) ( Homeo(S1).

The universal Teichmüller space is in natural one-to-one
correspondence with

T (D∗) ∼= QS(S1)/Möb(S1).

Relation to CFT/representations of Diff (S1)/string theory in various
forms recognized by Bowick and Rajeev, Nag and Verjovsky, Kirillov,
Neretin, Nag and Sullivan, etc, etc.
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Conformal field theory
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Conformal field theory Introduction and motivation

What is conformal field theory?

Conformal Field Theory (CFT) is:
Special class of quantum/statistical field theories, invariant under
local rescaling and rotation.
Mathematical definition (G. Segal, Kontsevich ≈ 1986).
Requires results in algebra, topology and analysis.
Related to vertex operator algebras, representations of
infinite-dimensional Lie algebras.

Our General Aim:
Provide a natural analytic setting for the rigorous definition of CFT
in higher genus.
Use CFT ideas to prove new results in Teichmüller theory and
geometric function theory.
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Conformal field theory Introduction and motivation

Rigged moduli space of Friedan and Shenker/Vafa

Let Σ be a bordered Riemann surface of genus g with n boundary
curves ∂iΣ homeomorphic to S1.

Definition (Riggings)

A “rigging” is an n-tuple of maps φ = (φ1, . . . , φn) where φi : S1 → ∂iΣ
is a parametrization of the boundary.

Equivalence relation: (Σ, φ) ∼ (Ξ, ψ) if and only if there is a
biholomorphism σ : Σ→ Ξ such that ψi = σ ◦ φi for all i .

Definition (Rigged moduli space)

The rigged moduli space of bordered Riemann surfaces of genus g
with n boundary curves is

M̃(g,n) = {(Σ, φ)}/ ∼ .
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Conformal field theory Introduction and motivation

Riggings: important analytic point

Question sometimes ignored: how regular are the riggings?
Must include at the very least all analytic diffeomorphisms
φi : S1 → ∂iΣ.

The question of what choice of riggings is fundamental.

Radnell, Staubach and I assume that each map φi is a quasisymmetry.
However that may be too big a class.
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Conformal field theory Introduction and motivation

Needs of conformal field theory I

Let H be a Hilbert space.

(Σ, φ)

A(Σ, φ) : H⊗H → H

It is required that A(Σ, φ) depends holomorphically on (Σ, φ).
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Conformal field theory Introduction and motivation

Needs of conformal field theory II

So need a complex structure on the rigged moduli space M̃(g,n).

There is also an algebraic structure: “sewing” Riemann surfaces.
This should also be holomorphic.
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Results Part I
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Results Part I

Rigged moduli space is almost Teichmüller space

Theorem (Radnell and S, 2006 Commun. Contemp. Math.)
Let Σ be a Riemann surface of genus g bordered by n closed curves.

M̃(g,n) = T (Σ)/G.

The action by G is fixed-point-free and properly discontinuous.

(G is a
mapping class group).
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Results Part I

Consequences for conformal field theory

Theorem (Radnell and S, 2006 Commun. Contemp. Math.)

The rigged moduli space M̃(g,n) is a Banach manifold.

Theorem (Radnell and S, 2006 Commun. Contemp. Math.)
The sewing operation on rigged moduli space is holomorphic.
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Results Part I

Some consequences for Teichmüller theory

1 Teichmüller space of a bordered surface is holomorphically fibered
over the Teichmüller space of a punctured surface obtained by
sewing on discs. [Radnell & S, Journal d’Analyse 2009, Conf.
Geom. and Dynamics 2010]

2 New coordinates on the infinite-dimensional Teichmüller space
(same refs as above)

3 For a doubly-connected Riemann surface A, T (A)/Z is a
semigroup with holomorphic multiplication (Neretin-Segal
semigroup). [Radnell and S, J. Lond. Math. Soc 2012]
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Weil-Petersson class Teichmüller space

WP-class Teichmüller space or What kind of riggings?
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What kind of riggings?
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Weil-Petersson class Teichmüller space

WP-class Teichmüller space

The universal Teichmüller space is “too big”.
Hui, Cui, Takhtajan and Teo:
Model I:

Definition
The WP-class universal Teichmüller space is the subset TWP(D∗) of
T (D∗) whose elements are represented by conformal maps g : D→ C
such that ∫∫

D

∣∣∣∣g′′g′

∣∣∣∣2 dA <∞.

Model II

Definition
The WP-class universal Teichmüller space is the subset TWP(D∗) of
T (D∗) whose elements are represented by elements φ ∈ QS(S1) such
that φ is absolutely continuous and log |φ′| ∈ H1/2 [Shen, 2013].
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Weil-Petersson class Teichmüller space

Monograph of Takhtajan and Teo

Revolutionary monograph of Takhtajan and Teo:
1 TWP(D∗) is a Hilbert manifold.
2 TWP(D∗) is a topological group.
3 The Weil-Petersson metric converges, and is Kähler-Einstein.
4 TWP(D∗) embeds holomorphically in the Segal-Wilson universal

Grassmanian
5 Kähler potentials for WP metric, etc. etc. etc.
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Results Part II

Results Part II

Results Part II
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Results Part II

Extension to arbitrary bordered surfaces

Theorem (Radnell, S, and Staubach 2012, submitted)
A bordered Riemann surface Σ of genus g with n boundary curves
homeomorphic to S1 possesses a Teichmüller space TWP(Σ) with a
Hilbert manifold structure. The inclusion TWP(Σ) ↪→ T (Σ) is
holomorphic.

Call it the “Weil-Petersson class” Teichmüller space of Σ.

Theorem (Radnell, S, and Staubach 2013, prepint)
The WP-class Teichmüller space has a convergent Weil-Petersson
metric in terms of L2 quadratic differentials. Weil-Petersson class
Teichmüller space is locally modelled on this L2 space.

Proof.
Many challenging analysis problems.
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Results Part II

Needs of CFT III: Families of Cauchy-Riemann
operators

• The parametrization φ : S1 → ∂iΣ induces a decomposition of Fourier
series of functions on the boundary
C i
± = {f : ∂iΣ→ C : f ◦ φi has only ± Fourier coefficients}.

π : Hol(Σ)→ C1
+ ⊕ · · · ⊕ Cn

+

f 7→
(

P1
+ f |∂1Σ , . . . ,P

1
+ f |∂1Σ

)
.

where P i
+ are the projections onto C i

+.

• π depends both on Σ and the rigging.
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Results Part II

Needs IV: Families of Cauchy-Riemann operators
continued

1 Family of operators should vary holomorphically (so you get an
honest line bundle over the moduli space)

2 Need eventually to establish certain sewing relations of the
determinant line bundle of this operator

3 Existence of the determinant line requires sufficient regularity,
which is closely tied to two questions:

1 What is the regularity of the riggings?
2 What further regularity do you impose on Hol(Σ) (i.e. at the

boundary)?

Remark: this is closely related to convergence of the Weil-Petersson
metric.
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Results Part II

Analytic problems with the determinant line bundle

Problem of construction of the determinant line of π reduces to the
Plemelj-Sokhotski jump formula on n boundary curves (Yi-Zhi Huang).
(in genus zero; higher genus introduces the interesting algebraic
problems).

Sew on caps
Σ a bordered Riemann surface of type (g,n).

Fix a rigging τ = (τ1, . . . , τn)
Sew on n copies of D\{0} to obtain a punctured Riemann surface
ΣP .
Identify points on ∂D with ∂iΣ via τi .

τ1 τ2

ΣP
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Results Part II

Solution to analytic problems

Theorem (Radnell, S, Staubach 2013, submitted)
(genus zero case) Let Σ ⊂ C∞ be an open connected set bordered by
n WP-class Jordan curves.

Complex harmonic functions on Σ of finite Dirichlet energy are
precisely those with boundary values in a certain Besov space H
on ∂iΣ

Extension and restriction operators are bounded.
The Plemelj-Sokhotski jump decomposition is bounded on this
Besov space.

Remark 1: all analytic problems already appear in genus zero.
Remark 2: all function spaces appearing are conformally invariant.
Remark 3: Takhtajan/Teo technology can be used to show the
determinant exists.
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Results Part II

What else

Analytically we’ve cleared a path, but there are some issues left:
1 Loewner theory in WP-class Teichmüller space (not necessarily

randomized).
2 Prove holomorphicity of sewing for WP-class Teichmüller

space/rigged moduli space

But, we are now (finally!) in a position to make rigorous geometric and
algebraic constructions.

1 Determinant line bundle (genus zero easy)
2 Sewing properties of determinant line bundle.
3 embeddings of Teichmüller space into the infinite Grassmanian in

genus g and n boundary curves.
4 Connect CFT determinant line bundle to local index theorems.
5 Curvature of WP metric.
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Results Part II

The end

Thanks!
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