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Introduction

Some Context

Physically: conformal field theories are certain statistical and
quantum field theories, invariant under local rescalings and
rotations.
Mathematically: major research problem. Sketch of rigorous
mathematical model given by G. Segal in infamous preprint.
David Radnell and I are doing “contract work” on analytic
problems in realizing this definition.
This leads to insight in function theory.
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Introduction

Outline

Define the Neretin-Segal semigroup and its multiplication
(precise).
Prove some theorems about a complex structure of this
semigroup.
Relate it to a Teichmüller space.
Discuss the multiplication.

This is part of a more general program with David Radnell, relating
moduli spaces in conformal field theory to quasiconformal Teichmüller
spaces.
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Introduction

CFT/GFT

Some work in the intersection of conformal field theory and geometric
function theory:

Nag and Sullivan (95).
Neretin (89 –)
Takhtajan and Teo (2006–)
Radnell and S (2006–)
Markina, Prokhorov, Vasil’ev (2006–)
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Definition of Neretin-Segal semigroup

Motivation for the definition of Neretin-Segal
semigroup

Let Diff(S1) denote the set of orientation-preserving diffeomorphisms
of the circle. Its Lie algebra is:

span
{
∂

∂θ
, cos nθ

∂

∂θ
, sin nθ

∂

∂θ
: n ∈ Z

}
whose complexification is the “Witt algebra”

W = span
{

zn ∂

∂z
: n ∈ Z

}
.

Theorem (Lempert, 97)

There is no Lie group whose Lie algebra is the Witt algebra. Diff(S1)
has no complexification.
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Definition of Neretin-Segal semigroup

Neretin-Segal semigroup

Consider triples (A, φ1, φ2) such that
A is an annulus
φ1 : S1 → ∂1A is a quasisymmetry
φ2 : S1 → ∂2A is a quasisymmetry

(A, φ1, φ2) ∼ (B, ψ1, ψ2) if
There is a conformal map σ : A→ B such that
ψi = σ ◦ φi .

Definition
The Neretin-Segal semigroup is:

{(A, φ1, φ2)}/ ∼ .
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Definition of Neretin-Segal semigroup

Some remarks

φi : S1 → ∂iA called “riggings”
(A, φ1, φ2) called a “rigged annulus”.

Quasisymmetries are not the usual choice for riggings in
conformal field theory (Neretin and Segal have analytic
diffeomorphisms).
It is necessary to use quasisymmetries, to get a connection with
Teichmüller theory.
Some do use quasisymmetric boundary parametrizations.
(Pickrell [98] (Neretin-Segal semigroup); also Nag and Sullivan
[95], Takhtajan and Teo [06])
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Definition of Neretin-Segal semigroup

Multiplying rigged annuli

Sewing:
Given (A, φ1, φ2) and (B, ψ1, ψ2), identify points on the boundaries
∂1A and ∂2B via ψ2 ◦ φ−1

1 to get A#B.
A B

φ1

ψ2

A#B

Definition
The multiplication is

[A, φ1, φ2]× [B, ψ1, ψ2] = [σ(A#B), σ ◦ ψ1, σ ◦ φ2].

where σ uniformizes A#B to an annulus.
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Definition of Neretin-Segal semigroup

Another model of the Neretin-Segal semigroup

Sewing on caps:
Given (A, φ1, φ2), use φi to identify points of ∂D with ∂iA, i = 1,2.
Sewing on two copies of D results in a Riemann surface
biholomorphically equivalent to a sphere.

f

g

And we can keep track of the riggings.Eric Schippers (Manitoba) Neretin-Segal semigroup Würzburg 9 / 31
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Definition of Neretin-Segal semigroup

The non-overlapping mapping model

Let
D = {z : |z| < 1} and D∗ = {z : |z| < 1} ∪ {∞}.

Definition

Let A0 = {(f ,g)} where f : D→ C, g : D∗ → C are one-to-one
holomorphic maps satisfying

1 f has a quasiconformal extension to C and g has a
quasiconformal extension to C.

2 f (D) ∩ g(D∗) = ∅
3 f (0) = 0
4 g(∞) =∞, g′(∞) = 1
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Complex structure

A complex structure on the Neretin-Segal semigroup

Let

A∞1 = {h : D→ C : h holomorphic, sup
z∈D

(1− |z|2)|h(z)| <∞}.

Define Ψ(f ) = f ′′/f ′ and ι(z) = 1/z.

B : Ao → A∞1 ⊕ C⊕ A∞1 ⊕ C
(f ,g) 7→

(
Ψ(f ), f ′(0),Ψ(ι ◦ g ◦ ι),g′(∞)

)
.

Theorem (Radnell & S)

B(A0) is a complex submanifold of A∞1 ⊕ C⊕ A∞1 ⊕ C. Thus Ao

possesses a complex structure.
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Complex structure

Elements of proof

If we enlarge A0 by removing the condition that g′(∞) = 1, then
the image under B is open.
This is a special case of a general result on non-overlapping
mappings into a Riemann surface (Radnell and S, Journal
d’Analyse 2009).
This requires equicontinuity of families of quasiconformal maps
It also requires some results of Lee-Peng Teo, on the compatibility
of the pre-Schwarzian embedding with the Schwarzian
embedding.
Imposing the condition that g′(∞) = 1 results in a complex
submanifold (easy).
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Complex structure

The more general result

Let ΣB be a Riemann surface of genus g with n boundary curves
homeomorphic to S1.
Let ΣP be a punctured Riemann surface obtained by sewing on n
copies of the punctured disc.

Theorem (Radnell & S, Journal d’Analyse, 2009)
The set of non-overlapping, quasiconformally extendible conformal
mappings from the punctured disc into ΣP , taking punctures to
punctures has a natural complex structure.
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Relation to Teichmüller space

Teichmüller space of annuli

Fix a doubly-connected Riemann surface A. Consider triples (A, f ,A1)
where f : A→ A1 is quasiconformal, A and A1 are doubly-connected
Riemann surfaces.

Definition
The Teichmüller space of annuli is

T (A) = {(A, f ,A1)}/ ∼

where (A, f1,A1) ∼ (A, f2,A2) if there is a biholomorphism σ : A1 → A2
such that f−1

2 ◦ σ ◦ f1 is homotopic to the identity via a homotopy which
is constant on ∂A.
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Relation to Teichmüller space

Relation between Neretin-Segal semigroup and T (A)

Theorem (Radnell & S)
The Neretin-Segal semigroup is in one-to-one correspondence with
T (A)/Z. The Z-action is by a properly-discontinuous fixed-point free
group of biholomorphisms.

Note: this cannot be proven without extending the riggings to
quasisymmetries.

This is an exceptional case related to a general result [Radnell & S,
10], that identifies sets of non-overlapping mappings with fibers in
Teichmüller space.
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Relation to Teichmüller space

Sketch of the correspondence

Fix a “base”: (A, τ0, τ∞) where
A is a doubly-connected subset of C, bordered by quasicircles
Quasisymmetric riggings τi extend to τ̃i as follows:
τ̃0 : D→ C is conformal with q.c. extension and maps onto
bounded component of Ac

τ̃∞ : D∗ → C is conformal with q.c. extension and maps onto
unbounded component of Ac

Every element of T (A) has a canonical representative (A,h,A′)
where

h has a quasiconformal extension h̃ to C
h̃ is conformal on Ac .

There is a Z-action which preserves boundary values.
Two canonical representatives of T (A) are equivalent in T (A)/Z if and
only if their h’s have the same boundary values.
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Relation to Teichmüller space

Correspondence continued

The correspondence is:

Each element of T (A) represented by a map h̃ : C→ C
h̃ 7→ (h̃ ◦ τ̃0, h̃ ◦ τ̃∞).
Well-defined mod Z.

Surjective: every pair of riggings can be quasiconformally extended to
an h̃ (by λ-lemma).
Injective: simple consequence of Teichmüller equivalence.
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Relation to Teichmüller space

Compatibility

Theorem (Radnell & S)

The complex structure on Ao derived from A∞1 ⊕ C⊕ A∞1 ⊕ C is
compatible with the complex structure inherited from T (A).

Recall: Ψ(f ) = f ′′/f ′ and ι(z) = 1/z.

B : Ao → A∞1 ⊕ C⊕ A∞1 ⊕ C
(f ,g) 7→

(
Ψ(f ), f ′(0),Ψ(ι ◦ g ◦ ι),g′(∞)

)
.

Note similarity to Bers embedding.
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Relation to Teichmüller space

Remarks about the proof

We show that the bijection T (A)/Z→ A0 is biholomorphic (not
just Gâteaux holomorphic).
A theorem of Chae says that you need only show it’s Gâteaux
holomorphic and locally bounded.
Inverse function theorem for holomorphic maps does not hold in
infinite dimensions.
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Relation to Teichmüller space

A generic result

This theorem is an exceptional case, corresponding to a generic result.

Theorem (Radnell & S, Conformal Geometry and Dynamics, 2010)

Let ΣB be a Riemann surface of genus g with n boundary curves
homeomorphic to S1. Let ΣP be the punctured surface obtained by
sewing on copies of the punctured disc. Assume that 2g − 2 + n > 0.

The Teichmüller space T (ΣB) is fibered over T (ΣP), and the fibers
are the set of non-overlapping mappings modulo a properly
discontinuous group action.
The complex structures of T (ΣB) and that of the non-overlapping
mappings are compatible.

Remarks: The proof of the generic case was significantly more
complicated.
On the other hand, the statement and proof of the exceptional case do
not follow directly from the generic case.
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The multiplication

Multiplication in A0

Theorem (Multiplication in non-overlapping mapping model)

Let (f1,g1) ∈ A and (f2,g2) ∈ A be two non-overlapping pairs
representing rigged annuli.

(f1,g1) · (f2,g2) = (F ◦ f2 , G ◦ g1) .

where F : g2(D)
c → C and G : f1(D)

c → C are the unique normalized
conformal maps such that

F−1 ◦G = g2 ◦ f1
−1.

Proof.
Conformal welding.
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The multiplication

Explanation of multiplication

Sew with blue riggings:

g∞1

Id

g∞2

f 0
2f 0

1
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The multiplication

Explanation of multiplication

Sew with blue riggings:

f 0
2

g∞1 g∞2 ◦ f 0
1
−1
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The multiplication

Explanation of multiplication
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2
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The multiplication

Explanation of multiplication: uniformize

H(z)

g∞2 ◦ f 0
1
−1

H(z) =

{
G(z) z ∈ top
F (z) z ∈ bottom

F ◦ g∞2 ◦ f1
−1 = G.
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The multiplication

Explanation of multiplication: uniformize
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The multiplication

Attribution of the sewing equation

Sewing equation:
F ◦ g2 ◦ f1

−1 = G.

The proof of the existence of a solution to the sewing equation is due
to Y.-Z Huang, [97], for analytic parametrizations. (Largely algebraic.)

Quasisymmetric case by Radnell & S; however the only change is the
analytic condition. (Easy, using conformal welding).

Conformal welding was used in conformal field theory (unwittingly).
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The multiplication

Multiplication is holomorphic

Theorem (Radnell & S)
Multiplication is holomorphic.

This is a special case of a more general theorem:

Theorem (Radnell & S, Communications in Contemporary
Mathematics 2006)
The operation of sewing Riemann surfaces with boundary
parametrizations is holomorphic (on an appropriate moduli space).
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The multiplication

The subgroup of bounded univalent functions

Consider
E = {(f , Id) ∈ A0}.

f : D→ D, is one-to-one, and quasiconformally extendible.
This is a subgroup, with multiplication (f1, Id)× (f2, Id) = (f1 ◦ f2, Id).

Solve sewing equation: F−1 ◦G = f−1
1

So G = Id and F = f1.
So

(f1, Id) · (f2, Id) = (F ◦ f2,G ◦ Id) = (f1 ◦ f2, Id).
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Solve sewing equation: F−1 ◦G = f−1
1

So G = Id and F = f1.
So

(f1, Id) · (f2, Id) = (F ◦ f2,G ◦ Id) = (f1 ◦ f2, Id).
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The multiplication

E is a complex submanifold

Theorem (Radnell & S)

E is a complex submanifold of A0 (and thus of T (A)/Z). Composition
is holomorphic.
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The multiplication

The subgroup of quasisymmetries

Extension A of A0: allow elements (f ,g) where f (∂D) and g(∂D)
overlap. i.e. possibly “degenerate” annuli .

We now include conformal welding pairs (f ,g) corresponding to
quasisymmetries φ : S1 → S1:

φ = g−1 ◦ f .

So QS(S1) is a subgroup of A. The multiplication reduces to
composition of quasisymmetries:

Sewing equation says: f1 ◦ g−1
2 = G−1 ◦ F

so the product (f1,g1) · (f2,g2) = (F ◦ f2,G ◦ g1) corresponds to the
quasisymmetry

g−1
1 ◦G−1 ◦ F ◦ f2 = g−1

1 ◦ f1 ◦ g−1
2 ◦ f2.
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The multiplication

A decomposition

In fact, every element of A can be factored uniquely as a product of a
“quasisymmetry” and an element of E (a “bounded univalent function”).
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Conclusion

Conclusion

Geometric function theory and Teichmüller theory solve analytic
problems in conformal field theory.

Example: the semigroup has a complex structure, and
multiplication is holomorphic.
Conformal field theory can provide algebraic and geometric
insight into geometric function theory.
Example: New model of T (A).
Two semigroups in function theory are subgroups of a semigroup
of non-overlapping mappings, which is naturally related to T (A).
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