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Abstract

Given a strongly directed graph D, let ΣD be the set of stochastic ma-
trices whose directed graph is a spanning subgraph of D. We consider the
problem of finding the infimum of ||x||∞ as x ranges over the set of station-
ary distribution vectors of irreducible matrices in ΣD. Using techniques from
nonlinear programming, combinatorial matrix theory, and nonnegative ma-
trix theory, we find this infimum, which is given in terms the cardinality of a
certain collection of vertex–disjoint cycles in D. The situation that the infi-
mum is attained as a minimum for the stationary distribution vector of some
irreducible matrix in ΣD is also considered.
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1 Introduction and motivation

A square matrix S is stochastic if all of its entries are nonnegative, and in addition
S1 = 1, where 1 is denotes an all–ones vector of the appropriate order. Stochastic
matrices arise as the centrepiece of the theory of discrete time, time homogeneous
Markov chains on a finite state space, and consequently, such matrices have received
a good deal of attention over the last century.

Recall that a stochastic matrix S of order n is irreducible if it has the property
that for each pair of indices i, j between 1 and n, there is a k ∈ N such that the (i, j)
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entry of Sk is positive. Further, if there is an m ∈ N such that Sm has all positive
entries, then we say that S is primitive. From the Perron–Frobenius theorem, it
follows that for any irreducible stochastic matrix S, there is a unique stationary
distribution vector – that is, and entrywise positive vector x such that xT S = xT

and xT1 = 1. The stationary distribution vector is of particular interest in the theory
of Markov chains, for the following reason: in the case that S is primitive, for any
initial distribution vector, the iterates of a Markov chain with transition matrix S
converge to the corresponding stationary distribution vector for S. Thus, each entry
in the stationary distribution vector can be interpreted as the long–term probability
that the Markov chain is in the corresponding state.

Associated with the any n × n stochastic matrix S we have a corresponding
directed graph, D(S). The vertices of D(S) are labelled 1, . . . , n, and there is an
arc i → j in D(S) if and only if sij > 0. Observe that D(S) captures qualitative
information about the Markov chain with transition matrix S, as D(S) records
which transitions are possible in one step of the Markov chain. The connections
between the structure of directed graph D(S) and the irreducibility or primitivity
of the stochastic matrix S are well–known: S is irreducible if and only if D(S) is
strongly connected, and S is primitive if and only D(S) is strongly connected, and in
addition, the greatest common divisor of the cycle lengths of D(S) is equal to 1 (see
[1]). In view of this connection between the combinatorial properties of D(S) and the
analytic properties of S, it is natural to wonder whether the qualitative information
contained in D(S) can be used to unearth further quantitative information about S.
There is an existing body of work in that direction that focuses on the eigenvalues
of the stochastic matrix in question; see for example [2], [3] and [4]. In this paper,
we adopt a related perspective by considering the influence of the directed graph
D(S) on the structure of the corresponding stationary distribution vector for S.

Markov chains are used extensively to model such diverse phenomena as the
succession of species in mathematical ecology (see [5]), the configuration of molecules
in mathematical chemistry (see [6]), and the levels of vehicle congestion or pollutants
in road networks (see [7] and [8], respectively). In a number of these settings,
the transition matrices in question are equipped with an underlying combinatorial
structure that is determined by the application. For instance in the vehicle traffic
application, where the states of the Markov chain represent road segments, the
structure of the road network determines which road segments can be reached from
a given road segment in one time step, thus placing restrictions on the directed
graph associated with the Markov chain’s transition matrix.

In this paper, we consider the following class of stochastic matrices. Given a
strongly connected directed graph D on vertices 1, . . . , n, let

ΣD = {S ∈ Rn×n|S ≥ 0, S1 = 1,D(S) ⊆ D}.

In other words, ΣD is the set of all stochastic matrices whose directed graph is a
spanning subgraph of D. Given an irreducible matrix S ∈ ΣD having stationary dis-
tribution vector x, what sorts of constraints on x are imposed by the directed graph
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D? That question is the primary focus of this paper. The following preliminary
result provides a little insight into this line of inquiry.

Proposition 1.1. Suppose that S is an irreducible stochastic matrix of order n ≥ 2,
and having stationary distribution vector x. Fix and i between 1 and n, and let gi

denote the length of a shortest cycle in D(S) that passes through vertex i. Then

xi ≤
1

gi

. (1)

Further, equality holds in (1) if and only if gi ≥ 2, every cycle in D(S) passes through
vertex i, and every cycle in D(S) has length gi.

Proof. Without loss of generality, we may assume that i = n. Note further that if
gn = 1, then clearly xn < 1 = 1

gn
, so that the conclusion certainly holds in that case.

Henceforth we assume that gn ≥ 2.
Partition out the last row and column of S as

S =

[
S̃ (I − S̃)1
rT 1− rT1

]
.

Using the eigen–equation xT S = xT and the fact that xT1 = 1, we deduce readily
that

xn =
1

1 + rT (I − S̃)−11
.

We have (I−S̃)−11 =
∑∞

k=0 S̃k1. For each i = 1, . . . , n−1, let pi denote the length of
a shortest path in D(S) from vertex i to vertex n. We have (I− S̃)−11 =

∑∞
k=0 S̃k1.

For each i = 1, . . . , n − 1, let pi denote the length of a shortest path in D(S) from
vertex i to vertex n. We find that for each i = 1, . . . , n− 1, eT

i S̃k1 = 1 if and only if
pi > k. Observe that ri > 0 only if n → i in D(S), and that since gn ≥ 2, the (n, n)
entry of S is zero, so that necessarily rT1 = 1.

Consider the quantity rT (I−S̃)−11. We have rT (I−S̃)−11 =
∑n−1

i=1

∑∞
k=0 rie

T
i S̃k1 =∑

n→i

∑∞
k=0 rie

T
i S̃k1 ≥

∑
n→i

∑pi−1
k=0 rie

T
i S̃k1 =

∑
n→i ripi. Note that for each vertex

i such that n → i, we have 1 + pi ≥ gn. Consequently, we find that
∑

n→i ripi ≥∑
n→i ri(gn − 1) = gn − 1. It now follows that

xn =
1

1 + rT (I − S̃)−11
≤ 1

gn

,

establishing (1).
Suppose now that equality holds in (1), and observe that necessarily gn ≥ 2 in

that case. From the argument above, it follows that for each i such that n → i, we
have pi = gn − 1, and eiS̃

k1 = 0 for all k ≥ gn − 1. This last condition is equivalent
to the statement that if n → i in D(S), every walk in D(S) starting from vertex i
and having length k ≥ gn−1 must pass through vertex n. We claim that necessarily
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every cycle in D(S) must pass through vertex n. To see the claim, suppose to the
contrary that there is some cycle C that does not pass through vertex n. Since S is
irreducible, there is some shortest path from n to C in D(S) that includes the arc
n → i0, say. It now follows that there are walks from vertex i0 of arbitrarily long
length that do not pass through vertex n, contrary to our hypothesis. Thus, every
cycle in D(S) passes through vertex n, as claimed. Finally, since pi = gn − 1 for
each i such that n → i, and since every path from such an i back to vertex n must
have length gn − 1, it follows that every cycle through vertex n has length gn.

Conversely, if every cycle in D(S) passes through vertex n and has length gn, it
is readily verified that equality holds in (1).

We note in passing that (1) can also be established by appealing to the standard
fact (see [9]) that the mean first return time to state i is given by 1

xi
, and then

observing that since a shortest path from vertex i back to vertex i has length gi,
it must be the case that the mean first return time to state i is at least gi, so that
1
xi
≥ gi. Note however, that while this line of reasoning establishes (1), it does not

readily yield the characterisation of equality in (1).
The following is immediate from Proposition 1.1.

Corollary 1.1. Suppose that S is an irreducible stochastic matrix of order n ≥ 2.
Let x denote the stationary vector for S, and let g denote the length of a shortest
cycle in D(S). Then for each j = 1, . . . , n we have xj ≤ 1

g
.

While our focus on this paper is on stationary vectors for stochastic matrices,
it turns out that our results have implications for more general nonnegative matri-
ces. Specifically, suppose that we have an n× n irreducible nonnegative matrix M,
and denote its Perron value by r. Let u and v be right and left Perron vectors,
respectively, for M , normalised so that vT u = 1. Letting U be the diagonal matrix
of order n whose i–th diagonal entry is ui, i = 1, . . . , n, it is readily established that
the matrix S = 1

r
U−1MU is irreducible and stochastic, and that D(S) = D(M).

Moreover, denoting the stationary distribution of S by x, we find that x = Uv, so
that in particular, for each i = 1, . . . , n, we have xi = uivi. It is known (see [11])
that for each i = 1, . . . , n, the derivative of the Perron value of M with respect to its
i–th diagonal entry is given by the quantity uivi. Consequently, the results in this
paper also have implications for the sensitivity of the Perron value with respect to
the diagonal entries of M .

The following is immediate from Proposition 1.1, Corollary 1.1, and the preceding
remarks.

Corollary 1.2. Suppose that M is an irreducible nonnegative matrix of order n ≥ 2
with right and left Perron vectors u and v, respectively, normalised so that vT u = 1.
For each i between 1 and n, let gi denote the length of a shortest cycle in D(M) that
passes through vertex i. Then for any i ∈ {1, . . . , n}, uivi ≤ 1

gi
, with equality holding

if and only if gi ≥ 2, every cycle in D(M) passes through vertex i, and every cycle
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in D(M) has length gi. In particular, letting g be the length of a shortest cycle in
D(M), we have ujvj ≤ 1

g
, j = 1, . . . , n.

Observe that while Proposition 1.1 uses the directed graph of a transition matrix
in order to provides a bound on a particular entry in the corresponding stationary
distribution vector, it does so without considering where that entry of the stationary
distribution vector sits in relation to the remaining entries in that vector. In the
remainder of the paper, we fix our attention on the maximum entry of the stationary
distribution vector, with a view to understanding when that maximum entry can be
made as small as possible. To be precise, we address the following problem:
given a strongly connected directed graph D on n vertices, find

inf{||x||∞|x is the stationary distribution vector for some irreducible S ∈ ΣD}.

Note that this problem can be thought of as a ‘load balancing’ problem, in the
sense that we seek to make the maximum entry in the stationary distribution vec-
tor as small as possible, subject to the constraint that the directed graph of the
corresponding transition matrix is a strongly connected spanning subgraph of D.
Referring to the application of Markov chain techniques to model vehicle traffic in
a road network, and noting that in that setting, the entries in the stationary dis-
tribution vector are interpreted as the traffic congestion levels on the corresponding
road segments, we see that the problem of minimising the maximum entry in the
stationary distribution corresponds to ensuring that the maximum congestion level
is as small as possible. In this setting at least, the term ‘load balancing’ seems to
be an appropriate one for the problem under consideration.

We note that the so–called Matrix Tree Theorem for Markov chains (see [10])
provides an expression for an entry in the stationary distribution vector of an irre-
ducible stochastic matrix, and that this expression is based in part on the structure
of the directed graph for the corresponding transition matrix. That said, we see
no straightforward way of using the Matrix Tree Theorem for Markov chains to
establish the results in the sequel.

Throughout the sequel, we will freely use standard notions and results on stochas-
tic matrices, directed graphs, and combinatorial matrix theory. We refer the inter-
ested reader to [9], [12] and [1], respectively, for the necessary background material.

2 Minimising the maximum entry in the station-

ary distribution

Recall that the term rank of a square matrix A is the minimum number of lines (i.e.
rows and columns) that contain all of the nonzero entries of A. By König’s theorem,
the term rank of A coincides with the maximum number of nonzero entries of A
no two of which lie in the same line of A. We refer the interested reader to [1] for
further details on the term rank and König’s theorem. The following result, whose



6

proof employs the term rank, will be useful in establishing our main results; it may
also be of independent interest. Here, for a directed graph D, we denote its vertex
set by V (D).

Proposition 2.1. Let S be a stochastic matrix of order n ≥ 2, and suppose that we
have a vector x ∈ Rn such that x ≥ 0, xT1 = 1, and xT S = xT . Let I = {i|xi <
||x||∞},J = {j|xj = ||x||∞} and let K be the diagonal matrix such that ki,i = 1 for
all i ∈ I and kj,j = 0 for all j ∈ J . We have the following conclusions.
a) The matrix S + K has term rank equal to n.
b) There is a collection of vertex–disjoint directed cycles in D(S), say C1, . . . , Ck,
such that J ⊆ ∪k

l=1V (Cl).

Proof. a) Suppose first that |J | = n. Then all entries of x are equal, and so S
is doubly stochastic. (Observe also that K is the zero matrix.) From Birkhoff’s
theorem (see [1]) it now follows that S has term rank n.

Next we suppose that |J | = m ≤ n − 1, and without loss of generality we
assume that J = {1, . . . ,m}. Partition out the first m rows and columns of S as

S =

[
S1,1 S1,2

S2,1 S2,2

]
, and partition x conformally with S as x =

[
x11
y

]
; note that

each entry of y is less than x1. Let ∆ be the diagonal matrix of order n−m whose
diagonal entries are given by the corresponding entries of 1

x1
y.

Consider the matrix Ŝ given by

Ŝ =

[
S1,1 S1,2

∆S2,1 ∆S2,2 + (I −∆)

]
,

and note that the zero-nonzero pattern of Ŝ coincides with that of S + K. It is
straightforward to determine that Ŝ is doubly stochastic. Again applying Birkhoff’s
theorem, we find that Ŝ, and hence S + K, has term rank equal to n.

b) Denote the directed graph of the matrix S + K by D̂. From part a) it follows

that there is a spanning subgraph of D̂ that consists of a vertex–disjoint collection
of cycles. Noting that the only arcs in D̂ that are not arcs of D(S) are arcs of the
form i → i, where i ∈ I, the conclusion now follows readily.

Our next result adopts the perspective of nonlinear programming in order to
address the problem of minimising the maximum entry in the stationary distribution
vector.

Proposition 2.2. Suppose that S is a stochastic matrix of order n, and that x ∈ Rn

with x > 0, xT1 = 1 and xT S = xT . Suppose further that for some index k between
1 and n − 1 we have xj = x1 for j = 1, . . . , k and xj < x1 for j = k + 1, . . . , n.
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Finally, suppose that x is a solution to the following optimisation problem:

minimise x1 subject to:

x ≥ 0, xT1 = 1, xj = x1, j = 1, . . . , k, xj ≤ x1, j = k + 1, . . . , n, (2)

xT S = xT for some stochastic matrix S with D(S) ⊆ D(S).

Then there is a collection of vertex disjoint cycles C1, . . . , Cp in D(S) such that
1 ∈ ∪p

l=1V (Cl) and

x1 =
1∑p

l=1 |V (Cl)|
.

Proof. Denote D(S) by D and for each i, j between 1 and n such that i → j in D
we denote the arc i → j by ai,j. Next, observe that x is a solution to the following
nonlinear programming problem.

Minimise x1 subject to:

x1 ≥ xj, j = k + 1, . . . , n,

kx1 +
n∑

j=k+1

xj = 1,

x1

∑
i=1,...,k,ai,j∈D

si,j +
∑

i=k+1,...,n,ai,j∈D

xisi,j − x1 = 0, j = 1, . . . , k,

x1

∑
i=1,...,k,ai,j∈D

si,j +
∑

i=k+1,...,n,ai,j∈D

xisi,j − xj = 0, j = k + 1, . . . , n, (3)

∑
j=1,...,n,ai,j∈D

si,j = 1, i = 1, . . . , n,

xi ≥ 0, i = 1, i = k + 1, . . . , n,

si,j ≥ 0 for all ai,j ∈ D.

We note here that in (3), we are thinking of the variables over which the minimum
is taken as x1, xk+1, . . . , xn and si,j for each i, j such that ai,j ∈ D.

From the hypothesis, we find that x1, xk+1, . . . , xn along with the elements si,j

such that ai,j ∈ D, are all positive, and that taken together they yield an abso-
lute minimum to (3). Consequently, the Karush–Kuhn–Tucker necessary conditions
apply (see [13]). In order to formulate those conditions, we require a little extra no-
tation. Suppose that D has m arcs, and select an ordering of those arcs. Construct
the m× n (0, 1) matrices E(out) and E(in) as follows: for each arc ap,q ∈ D, we set

E(out)ap,q,r =

{
1 if r = p,

0 if r 6= p
, E(in)ap,q,r =

{
1 if r = q,

0 if r 6= q
.
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That is, E(out) is an m×n incidence matrix for the initial vertices of the arcs in D,
while E(in) is an m× n incidence matrix for the terminal vertices of the arcs in D.
Next, we let ∆ be the diagonal matrix of order m such that for each arc ap,q ∈ D,
the corresponding diagonal entry of ∆ is xp.

With this notation in place, we can now formulate the Karush–Kuhn–Tucker
necessary conditions. We order the variables by putting x1, xk+1, . . . , xn first, then
following them with the si,js where the latter are ordered according to the or-
dering of the arcs in D selected above. Computing the necessary gradient vec-
tors, we find from the Karush–Kuhn–Tucker conditions that there exist scalars
λk, . . . , λn−1, λn, λn+1, . . . , λ2n, λ2n+1, . . . , λ3m such that

[
e1

0

]
+

[
(e1 − ek+1) (e1 − ek+2) . . . (e1 − en) ((k − 1)e1 + 1)

0 0 . . . 0 0

]
λk
...

λn−1

λn



+

[
U(S − I)
∆E(in)

]
λn+1

...
λ2n−1

λ2n

 +

[
0

E(out)

]
λ2n+1

...
λ3n−1

λ3n

 = 0, (4)

where U is the (n− k + 1)× n matrix

U =

[
1T

k 0T
n−k

0 In−k

]
(here the subscripts on 1, 0 and I denote the orders of the all ones vector, zero vector,
and identity matrix, respectively). Also, since xj < x1 for j = k + 1, . . . , n, we find,
again from the Karush–Kuhn–Tucker conditions, that λj = 0, j = k, . . . , n− 1. We
rewrite (4) in two sets of equations as

U(I − S)

 λn+1
...

λ2n

 = e1 + λn


k
1
...
1

 , (5)

∆E(in)

 λn+1
...

λ2n

 + E(out)

 λ2n+1
...

λ3n

 = 0. (6)

Suppose that there are indices i, j1, j2 such that the arcs ai,j1 , ai,j2 are both in
D. Considering the entry of (6) corresponding to the arc ai,j1 , we see that xiλn+j1 +
λ2n+i = 0. Similarly, considering the entry of (6) corresponding to the arc ai,j2 ,
yields xiλn+j2 +λ2n+i = 0. Thus we have xiλn+j1 +λ2n+i = 0 = xiλn+j2 +λ2n+i, from
which we conclude that λn+j1 = λn+j2 .
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Next, we consider (5). Since
[

x1 xk+1 . . . xn

]
U = xT , it follows from (5)

that 0 = x1 + λn(kx1 +
∑n

j=k+1 xj) = x1 + λn. Hence we have λn = −x1. Applying

Proposition 2.1 b) to S and x, we find that there is a collection of vertex disjoint
cycles, C1, . . . , Cp in D such that {1, . . . , k} ⊆ ∪p

l=1V (Cl). Without loss of generality,
we may take ∪p

l=1V (Cl) = {1, . . . ,m}.
Now construct a stochastic matrix S̃ of order n as follows: for each i = 1, . . . ,m,

set s̃i,j = 1 if i → j is an arc in ∪p
l=1Cl and s̃i,j = 0 otherwise; for each i = m +

1, . . . , n, set eT
i S̃ equal to eT

i S. Observe that the leading m×m principal submatrix
of S̃ is a permutation matrix. In particular, we have

[
1T

m 0T
n−m

]
(I − S̃) = 0T .

Further, from the fact, established above, that λn+j1 = λn+j2 whenever there is an
index i such that i → j1, j2 in D, it follows that

(I − S̃)

 λn+1
...

λ2n

 = (I − S)

 λn+1
...

λ2n

 .

Multiplying both sides of (5) from the left by the vector yT =
[

1 1T
m−k 0T

n−m

]
,

we find that

yT U(I − S̃)

 λn+1
...

λ2n

 = yT U(I − S)

 λn+1
...

λ2n

 = yT

e1 + λn


k
1
...
1


 .

Since yT U(I − S̃) =
[

1T
m 0T

n−m

]
(I − S̃) = 0T , it now follows that 0 = 1 + mλn.

But then we have λn = −1
m

, from which we deduce that

x1 =
1

m
=

1∑p
l=1 |V (Cl)|

,

as desired.

Next, we show by example that the conclusion of Proposition 2.2 may fail to
hold if x is not an optimal solution to (2).

Example 2.1. Fix an a ∈ (0, 1), and consider the matrix S =

[
a 1− a
1 0

]
. The

stationary distribution vector for S is given by x = 1
2−a

[
1

1− a

]
, so that x1 > x2.

However, observe that since 1
2

< x1 < 1, the conclusion of Proposition 2.2 fails to
hold. Evidently x is not an optimal solution to (2).

Next, we introduce a little notation that will be useful in the sequel. Let D
be a strongly connected directed graph on vertices 1, . . . , n, and fix an index i
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between 1 and n. For each collection C of vertex disjoint cycles in D that passes
through i, let mC = |V (C)|. Denote the maximum of all such mC’s by mi(D).
Finally, let m(D) = max{mi(D)|i = 1, . . . , n}. Propositions 2.1 and 2.2 will assist
in establishing the following theorem, which is one of our main results.

Theorem 2.1. Let D be a strongly connected directed graph on n vertices, and
consider the set Pi = {x ≥ 0|xT1 = 1, xi = ||x||∞, and xT S = xT for some S ∈ ΣD}.
Then

min{xi|x ∈ Pi} =
1

mi(D)
.

Proof. We begin with a claim that Pi 6= ∅. To see the claim, let S be the (0, 1)
adjacency matrix of a spanning subgraph of D containing a single directed cycle,
passing through vertex i. It is readily seen that the corresponding left Perron vector
of S, normalised so that its entries sum to one, is an element of Pi. Suppose now
that x is a vector in Pi. By Proposition 2.2, there is a collection C of vertex disjoint
cycles in D such that xi ≥ 1

mC
. Consequently we have xi ≥ 1

mi(D)
whenever x ∈ Pi.

Next, let C0 be a collection of vertex disjoint cycles in D passing through vertex i
such that mC0 = mi(D), and let S be a (0, 1) matrix in ΣD whose principal submatrix
corresponding to V (C0) is the adjacency matrix of C0. Consider the vector x such
that

xj =

{
1

mi
if j ∈ V (C0),

0 if j /∈ V (C0).

Evidently x ∈ Pi and xi = 1
mi(D)

, and so the conclusion follows readily.

From Theorem 2.1, we find that there is an x ∈ Pi such that xi = 1
mi(D)

, and

xT S = xT for some S ∈ ΣD. Note however that the matrix S may be reducible.
The following result discusses a certain limit of stationary distribution vectors for
irreducible matrices in ΣD. We introduce the following notation: given an n × n
matrix A and a set W ⊆ {1, . . . , n}, we let A(W ) denote the principal submatrix of
A on the rows and columns indexed by W .

Proposition 2.3. Let D be a strongly connected graph on n vertices, and let C1, . . . , Ck

be a collection of vertex disjoint cycles in D. Denote ∪k
j=1V (Cj) by W , let w = |W |,

and let u be the indicator vector for W (that is, ui = 1 if i ∈ W, and ui = 0 if
i /∈ W ). Then there is a sequence of irreducible matrices Sp ∈ ΣD such that:
a) the sequence Sp(W ) converges to the adjacency matrix of ∪k

j=1Cj as p →∞; and
b) denoting the stationary vector of Sp by x(p) for p ∈ N, , we have x(p) → 1

w
u as

p →∞.

Proof. We proceed by induction on n, and note that the case that n = 2 is easily
established. Suppose now that n ≥ 3, and suppose without loss of generality that
W = {1, . . . , w}. Consider the directed graph D̂ on n − w + k vertices formed as
follows:
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i) for each j = 1, . . . , k, identify the vertices of Cj with a single vertex j;

ii) for each j = k + 1, . . . , n−w + k, identify vertex j of D̂ with vertex j + w− k of
D;
iii) for i, j = 1, . . . , k, i → j is an arc in D̂ provided that in D there are vertices
a ∈ Ci, b ∈ Cj such that a → b;

iv) for each i = 1, . . . , k, j = k + 1, . . . n−w + k, i → j is an arc in D̂ provided that
in D there is a vertex a ∈ Ci, such that a → j + w − k, and j → i is an arc in D̂
provided that in D there is a vertex b ∈ Ci, such that j + w − k → b;
v) for each i, j = k + 1, . . . , n − w + k, i → j is an arc in D̂ provided that
i + w − k → j + w − k in D.
It is straightforward to show that since D is strongly connected, then so is D̂. Fur-
ther, by deleting arcs from D̂ if necessary, we may assume that D̂ is a minimally
strong directed graph. (Recall that a strongly connected directed graph is minimally
strong if it has the property that the deletion of any arc yields a directed graph that
is no longer strongly connected.) Since D̂ is minimally strong, it has no loops. Fur-
ther, we find from Lemma 3.3.2 of [1] that there is a vertex j of D̂ having indegree
1 and outdegree 1. We consider the following two cases.

Case 1, k + 1 ≤ j ≤ n− w + k:
Without loss of generality we take j = n−w+k. In that case we may consider n×n
irreducible matrices in ΣD of the following form[

A tel

eT
m 0

]
.

Observe that for such a matrix, A + tele
T
m is irreducible and stochastic, and that

∪k
r=1Cr ⊆ D(A + tele

T
m). Suppose first that the arc l → m is not among the arcs of

∪k
r=1Cr. Let D0 be the subgraph of D induced by vertices 1, . . . , n − 1. Applying

the induction hypothesis, we find that there is a sequence of matrices of the form
Bp ≡ Ap + tpele

T
m ∈ ΣD0∪{l→m} whose sequence of stationary vectors x(p) converges

to the appropriately normalised indicator vector of W in Rn−1 and such that Bp(W )
converges to the adjacency matrix of ∪k

r=1Cr. Note in particular that since l → m is
not among the arcs of ∪k

r=1Cr, we have tp → 0 as p →∞. For each p ∈ N, consider
the irreducible matrix

Sp =

[
Ap tpel

eT
m 0

]
,

which has stationary distribution given by[
1

1+tpx(p)l
x(p)T tpx(p)l

1+tpx(p)l

]T

.

It now follows that the sequence Sp has the desired properties.
On the other hand, if the arc l → m is one of the arcs of ∪k

r=1Cr, we again
consider the sequence of matrices Ap and scalars tp above. Note that tp may not
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converge to zero in this case. For each p ∈ N, let

S̃p =

[
Ap + p−1

p
tpele

T
m

1
p
tpel

eT
m 0

]
.

It follows that the corresponding stationary vectors are given by[
p

p+tpx̃(p)l
x(p)T tpx(p)l

p+tpx(p)l

]T

,

and hence the sequence S̃p has the desired properties.

Case 2, 1 ≤ j ≤ k:
If k = 1, let A be a (0, 1) matrix in ΣD whose directed graph contains a single cycle,
namely C1. Since the irreducible matrices in ΣD are dense in that set, we may find a
sequence of irreducible matrix in ΣD converging to A, and such a sequence is readily
seen to satisfy the desired properties.

Henceforth we assume that k ≥ 2. Without loss of generality we take j = 1, and
suppose for concreteness that the cycle C1 has length q. By applying a permutation
similarity transformation (if necessary), we may consider irreducible matrices in ΣD

of the following form

S =

[
Ms se1e

T
i

tele
T
m A

]
,

where the q × q matrix Ms has the form

Ms =



0 0 . . . 0 0 1− s
1 0 . . . 0 0 0
0 1 . . . 0 0 0
...

. . .
...

0 . . . 0 1 0 0
0 . . . 0 0 1 0


.

Observe that for such an S, the matrix A + tele
T
i is irreducible, stochastic, and that

∪k
r=2Cr ⊆ D(A). From the induction hypothesis, there is a sequence of matrices Ap

and scalars tp > 0 such that for each p, Ap + tpele
T
i is irreducible and stochastic,

(Ap + tpele
T
i )(W \V (C1)) converges to the adjacency matrix of ∪k

r=2Cr ⊆ D(A), and
the stationary vectors x(p) of Ap +tpele

T
i converge to the appropriate scalar multiple

of the indicator vector for V (∪k
r=2Cr).

Suppose first that the arc l → i is not an arc of ∪k
r=2Cr. From this it follows that

tp → 0 as p →∞. For each p ∈ N, let

sp =
qtpx(p)l(w − q)

q + (q −m)tpx(p)l(w − q)
,
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and note that for all sufficiently large p, 0 < sp < 1; without loss of generality we
take sp ∈ (0, 1) for all p ∈ N. Let y(p) ∈ Rq be given by

y(p)T =
1

q − (q −m)sp

[
1m (1− sp)1q−m

]
.

Finally we consider the sequence of matrices

Sp =

[
Msp spe1e

T
i

tpele
T
m Ap

]
.

Evidently each Sp is an irreducible matrices in ΣD, and a straightforward verification
shows that the stationary vector for Sp is given by

z(p)T =
[

q
w
y(p)T (1− q

w
)x(p)T

]
.

Evidently Sp(W ) converges to the adjacency matrix of ∪k
r=1Cr, while z(p) converges

to 1
w
u.

Now we suppose that the arc l → i is an arc of ∪k
r=2Cr. Again we consider the

sequence of matrices Ap scalars tp above, and note that tp may not converge to zero
in this case. For each p ∈ N, set

s̃p =
qtpx(p)l(w − q)

pq + (q −m)tpx(p)l(w − q)
,

ỹ(p)T =
1

q − (q −m)s̃p

[
1m (1− s̃p)1q−m

]
,

and

S̃p =

[
Ms̃p s̃pe1e

T
i

tp
p
ele

T
m Ap + p−1

p
tpele

T
i

]
.

It can be verified that the stationary vector for S̃p is equal to[
q
w
ỹ(p)T (1− q

w
)x(p)T

]T
,

and it now follows that the sequence S̃p has the desired properties. This completes
the proof of the induction step.

We now apply Theorem 2.1 and Proposition 2.3 to obtain the following.

Corollary 2.1. Let D be a strongly connected graph on n vertices, and let

P = {x|x is the stationary vector for an irreducible matrix in ΣD}. (7)

Then

inf{||x||∞|x ∈ P} =
1

m(D)
.
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Proof. We find from Theorem 2.1 that for each x ∈ P, ||x||∞ ≥ 1
m(D)

. Let C be a

vertex disjoint union of cycles in D such that |V (C)| = m(D), and let u be the
indicator vector for V (C). From Proposition 2.3, we find that there is a sequence of
irreducible matrices Sp ∈ ΣD with stationary vectors x(p) that converges to 1

m(D)
u,

as p →∞ so that limp→∞ ||x(p)||∞ = 1
m(D)

.

The following is immediate from Corollary 2.1 and the remarks preceding Corol-
lary 1.2. Here, for vectors u, v ∈ Rn, we denote their entrywise product by u ◦ v.

Corollary 2.2. Let D be a strongly connected graph on n vertices, and let

Q = {u ◦ v|∃ an irreducible M ≥ 0 with D(M) ⊆ D, and with right and

left Perron vectors u, v respectively, normalised so that vT u = 1}.

Then

inf{||y||∞|y ∈ Q} =
1

m(D)
.

3 Equality cases and examples

Corollary 2.1 establishes the infimum of ||x||∞ taken over the set P of (7), but
leaves open the question of whether or not the infimum is attained – i.e. whether
there is an irreducible matrix S ∈ ΣD such that for the corresponding stationary
distribution vector x we have ||x||∞ = 1

m(D)
. In this section we address that question,

which appears to be quite difficult. We begin our discussion with a class of highly
structured examples.

Example 3.1. Suppose that D is a strongly connected directed graph on n vertices
that is periodic with period p ≥ 2 – that is, the greatest common divisor of the cycle
lengths in D is p. It follows that there is a partition of V (D) as ∪p

k=1Ak such that
i → j is an arc in D only if for some index k between 1 and p, i ∈ Ak and j ∈ Ak+1,
where we take the subscripts modulo p (see [9]). (We refer to the sets A1, . . . , Ap as
the cyclically transferring classes of the periodic directed graph D.) Suppose further
that at least one Ak has cardinality 1. By relabelling the vertices of D if necessary,
we may take A1 = {1}. From our hypothesis that A1 = {1}, it follows that a) each
cycle in D passes through vertex 1, and b) each cycle in D has length p. (Note that
we have already seen this type of directed graph in the context of Proposition 1.1.)
We conclude then that m(D) = p.

Suppose now that S ∈ SD and that S is irreducible. It follows from standard
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results then that S is permutationally similar to a matrix Ŝ of the form

Ŝ =



0 M1 0 0 . . . 0
0 0 M2 0 . . . 0
...

. . . . . .
...

0 0 . . . 0 Mp−2 0
0 0 . . . 0 0 Mp−1

Mp 0 0 . . . 0 0


,

where the first diagonal block in the partitioned form for Ŝ is 1 × 1. It is straight-
forward to verify that the vector x given by

xT =
1

p

[
1 M1 M2M2 . . . M1 . . . Mp−1

]
serves as the stationary distribution vector for Ŝ. In particular, note that x1 =
||x||∞ = 1

p
. Thus we find that for any irreducible matrix in ΣD, the corresponding

stationary distribution vector attains the infimum in Corollary 2.1.

Our next result continues with the theme of periodic matrices, and considers (5)
in a special case.

Proposition 3.1. Let S be an irreducible stochastic matrix of order n ≥ 3. Suppose
that there is an integer m ≥ 2 and a vector λ ∈ Rn such that

(I − S)λ = e1 −
1

m
1. (8)

Suppose also that for each i = 1, . . . , n, we have λj1 = λj2 whenever si,j1 , si,j2 > 0.
Then S is a periodic matrix with period at least m, and in addition {1} is one of
the cyclically transferring classes of D(S).

Proof. We proceed by induction on n, and first consider the case that n = 3. From
(8) we see that λ cannot be a scalar multiple of 1. Further, if the entries of λ are
distinct, then each vertex of D(S) has outdegree 1; it then follows that S is a cyclic
permutation matrix, for which the conclusion is evident. It remains to consider two
cases: i) λ1 = λ2 6= λ3 (without loss of generality), and ii) λ2 = λ3 6= λ1.

Suppose first that i) λ1 = λ2 6= λ3. Observe that D(S) cannot contain any of
the arcs 1 → 1, 1 → 2, 2 → 1, 2 → 2, for otherwise (8) yields 0 = m−1

m
in the first

two cases, and 0 = −1
m

in the last two cases. Consequently, it must be the case that
1 → 3 and 2 → 3 in D(S). Again referring to (8), we then find that λ1 − λ3 = m−1

m

and λ2 − λ3 = −1
m

, contrary to the hypothesis that λ1 = λ2. So, we see in fact that
i) cannot hold. Next, suppose that ii) λ2 = λ3 6= λ1. Observe that D(S) cannot
contain any of the arcs 2 → 2, 2 → 3, 3 → 2, 3 → 3, otherwise (8) yields the equation
λ2 − λ3 = 0 = −1

m
, a contradiction. Similarly, D(S) cannot contain the arc 1 → 1,

otherwise (8) yields λ1 − λ1 = 0 = m−1
m

, another contradiction. We deduce that
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the only possible arcs in D(S) are 2 → 1, 3 → 1, 1 → 2 and 1 → 3. Referring
again to (8), it follows that λ2 = λ3 = λ1 − 1

m
, which in turn yields that 1

m
= m−1

m
.

Hence m = 2. But note that S is necessarily a periodic matrix with period 2 and
in addition that {1} is one of the cyclically transferring classes of D(S). Hence the
conclusion holds for the case that n = 3.

Next we suppose that n ≥ 4, that the induction hypothesis holds for n− 1, and
that S is of order n. We consider the following three cases.

Case 1, λi 6= λj whenever i 6= j:
From the hypothesis, we find that each vertex of D(S) has outdegree 1. Hence S is
an n× n cyclic permutation matrix, and the conclusion follows readily.

Case 2, λi 6= λj whenever i, j ≥ 2 and i 6= j, and λ1 = λi for some i ≥ 2 :
For concreteness we suppose that λ1 = λ2. Observe that D(S) does not contain
the arc 2 → 1, for otherwise (8) yields λ2 − λ1 = 0 = −1

m
, a contradiction. Con-

sider a shortest path from 2 to 1 in D(S), say 2 → i1 → . . . → id−1 → 1, where
ij ∈ {3, . . . , n}, j = 1, . . . , d− 1. From (8), we find that λ2 − λi1 = −1

m
, λij − λij+1

=
−1
m

, j = 1, . . . , d− 2, and λid−1
− λ1 = −1

m
. Consequently, λ2 − λ1 = −d

m
, a contradic-

tion. Thus, we find that case 2 cannot occur.

Case 3, λi = λj for some i, j ≥ 2:
Without loss of generality, we suppose that λn−1 = λn. Write the matrix S as

S =

[
S1,1 S1,2

S2,1 S2,2

]
,

where S2,2 is 2× 2. Note that from the hypothesis, if D(S) contains the arcs n → i
and n−1 → j, then by (8) we have λn−λi = −1

m
, λn−1−λj = −1

m
, so that necessarily

λi = λj. Observe also that S2,2 = 0, otherwise we find that 0 = − 1
m

, which is
impossible. Set

S̃ =

[
S1,1 S1,21

1
2
1T S2,1

1
2
1T S2,21

]
,

and note that from (8), we have

(I − S̃)

 λ1
...

λn−1

 = e1 −
1

m
1.

Further, for each i ∈ {1, . . . n− 1}, λj1 = λj2 whenever s̃i,j1 , s̃i,j2 > 0. Consequently,
the matrix S̃ of order n− 1 satisfies the induction hypothesis. Hence, S̃ is periodic
with period p ≥ m, and {1} is one of the cyclically transferring classes of D(S̃).
Thus there is a partition of {1, . . . , n− 1} as A1 = {1}, A2, . . . , Ap, such that a → b
in D(S̃) only if there is an index j such that a ∈ Aj, b ∈ Aj+1. (Here we take the
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subscripts on the Ajs modulo p.) Observe that the arcs of D(S̃) are of one of three
types: i → j where 1 ≤ i, j ≤ n− 2 and i → j ∈ D(S); i → n− 1 where i ≤ n− 2
and either i → n− 1 or i → n in D(S); and n− 1 → j where j ≤ n− 2 and either
n−1 → j or n → j in D(S). Let q denote the index such that n−1 ∈ Aq. Considering
the partitioning of {1, . . . , n} given by A1, . . . , Aq−1, Aq ∪ {n}, Aq+1, . . . , Ap, it now
follows that S is periodic with period at least p ≥ m.

This completes the proof of the induction step, and the conclusion now follows.

Corollary 3.1. Let D be a strongly connected directed graph on n ≥ 3 vertices.
Suppose that S ∈ ΣD is irreducible with stationary vector x. If x1 = 1

m1(D)
> xj, j =

2, . . . , n, then necessarily S is periodic with period m1(D). Further, there is a unique
cyclically transferring class of D(S) having cardinality one, namely {1}.

Proof. From the hypothesis, we find that the vector x and the matrix S satisfy the
hypotheses of Proposition 2.2, where the parameter k in that proposition is equal
to 1. Following the proof of Proposition 2.2, we see that the matrix S satisfies (5),
where the matrix U in that equation is an identity matrix, and the parameter λn is
equal to − 1

m1(D)
. Hence S satisfies the hypothesis of Proposition 3.1; the conclusion

now follows readily.

Example 3.1 shows that for an irreducible periodic stochastic matrix whose di-
rected graph has a cyclically transferring class of cardinality one, the corresponding
stationary distribution vector necessarily attains the infimum in Corollary 2.1. From
Corollary 3.1, we see that for an irreducible stochastic matrix whose stationary dis-
tribution vector attains the infimum in Corollary 2.1 and has a unique maximum
entry, the matrix must be of the form in Example 3.1. However, there are examples
of primitive stochastic matrices for which the infimum of Corollary 2.1 is attained.
Our next example presents just such a family of matrices.

Example 3.2. Consider the directed graph D pictured in Figure 1. An inspection
reveals that D contains a vertex–disjoint union of cycles involving five vertices, but
no such collection of cycles involving six vertices. In particular, we have mi(D) =
5, i = 1, . . . , 6. For each 0 < a < 1, consider the matrix

Sa =


0 a 0 0 0 (1− a)
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 (1− a) a
0 0 0 1 0 0
0 0 (1− a) a 0 0

 ,

and note that D(Sa) = D. The stationary distribution vector for Sa is given by
1
5

[
1 a 1 1 (1− a) 1

]T
, and so we find that for i = 1, 3, 4, 6, there is an



18

u u u
u

u
u

2 3 5

41

6

-

�
�

�	 @
@

@I
�

�
�

�
��*�

�
�

�
�

��

i

j

6?

Figure 1: The graph for Example 3.2

irreducible matrix in ΣD for which the i–th entry in the stationary distribution is
simultaneously the largest in the stationary distribution vector, and equal to 1

mi(D)
.

Observe also that if S is any irreducible matrix in ΣD, then there are scalars
r, s, t ∈ (0, 1) such that

S =


0 r 0 0 0 (1− r)
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 (1− s) s
0 0 0 1 0 0
0 0 (1− t) t 0 0

 .

From the eigen–equation xT S = xT , it follows that for the stationary distribution
vector x we have x2 = rx1 < x1 and x5 = (1− s)x4 < x4, so that neither x2 nor x5

can be the maximum entry in the stationary distribution vector.

In Example 3.2 we saw that vertices 2 and 5 cannot yield the maximum en-
try in the stationary distribution vector for any irreducible matrix S in ΣD. That
observation prompts the following question.

Open Problem 3.1. Let D be a strongly connected directed graph on n vertices,
and fix an index i between 1 and n. Determine necessary and sufficient conditions
in order that there is an irreducible matrix S ∈ ΣD whose stationary distribution
vector x has the property that xi = ||x||∞.

Example 3.3. In this example, we consider an application of our results to a family
of matrices arising in mathematical ecology. A standard stage–classified model for
population growth leads to the analysis of the so–called population projection matrix
for a particular species. See [14, Chapter 4] for an extensive discussion of this
model. This stage–classified population model leads us to consider an entrywise
nonnegative matrix M of order n whose Perron value, say r(M) represents the
asymptotic growth rate of the population under consideration. As noted in section
1, if M is irreducible with right Perron vector u, then letting U denote the diagonal
matrix with ui,i = ui, i = 1, . . . , n, it follows that the matrix S = 1

r(M)
U−1MU is

irreducible, stochastic, and has the same directed graph as M . Further, for each
index i between 1 and n, the i–th entry in the stationary distribution vector of S
coincides with the derivative of r(M) with respect to the i–th diagonal entry of M .
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Such derivatives arise in the sensitivity analysis of the corresponding population
model, and can be used to inform strategies for species management, among other
things. Chapter 9 of [14] discusses sensitivity analysis in further detail.

As a specific example, we consider the population projection matrix for the North
Atlantic right whale. According to [15], the directed graph for the corresponding
population projection matrix (which is known as the life cycle graph) is given in
Figure 2.

u u u u u1 32 4 5m m
- -

� �

- - - -

Figure 2: Life cycle graph for the North American right whale (female)

Consider an irreducible stochastic matrix S whose directed graph is given by the
graph D of Figure 2. Then S can be written as

S =


0 1 0 0 0
0 s 1− s 0 0
t 0 r 1− t− r 0
0 0 0 0 1
0 0 1 0 0


for some choice of the parameters r, s, t such that 0 ≤ r, 0 ≤ s < 1, 0 < t, t + r < 1.
It is straightforward to verify that the stationary distribution vector x for S is given
by

xT =
1

3− r + st
1−s

[
t t

1−s
1 (1− t− r) (1− t− r)

]
.

Observe that for any such r, s and t, the maximum entry is either x2 or x3.
Inspecting D, we find that it has a vertex–disjoint union of cycles passing through

four vertices, but no such union of cycles passing through all five vertices. It now
follows from Corollary 2.1 that if x is the stationary distribution vector for any
stochastic matrix with directed graph D, then max{x2, x3} = ||x||∞ ≥ 1

4
. In partic-

ular, we deduce that for a population projection matrix M with directed graph D,
the maximum of the sensitivities of the Perron value with respect to the (2, 2) and
(3, 3) entries is bounded below by 1

4
. Thus we see that the qualitative information

contained in the life cycle graph leads to quantitative information about certain
sensitivities of the asymptotic growth rate of the population being modelled.
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